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Abstract

Scene text instances found in natural images carry ex-

plicit semantic information that can provide important cues

to solve a wide array of computer vision problems. In this

paper, we focus on leveraging multi-modal content in the

form of visual and textual cues to tackle the task of fine-

grained image classification and retrieval. First, we obtain

the text instances from images by employing a text reading

system. Then, we combine textual features with salient im-

age regions to exploit the complementary information car-

ried by the two sources. Specifically, we employ a Graph

Convolutional Network to perform multi-modal reasoning

and obtain relationship-enhanced features by learning a

common semantic space between salient objects and text

found in an image. By obtaining an enhanced set of vi-

sual and textual features, the proposed model greatly out-

performs previous state-of-the-art in two different tasks,

fine-grained classification and image retrieval in the Con-

Text[23] and Drink Bottle[4] datasets.

1. Introduction

Since the advent of written text to represent ideas, hu-

mans have employed it to communicate non-trivial and se-

mantically rich information. Nowadays, text can be found

in a ubiquitous manner in images and video, especially in

urban and man-made environments[52, 24]. Extracting and

analyzing such textual information in images jointly with

the visual content is indispensable to achieve full scene un-

derstanding. In this work, we explore the role of such multi-

modal cues, specifically in the form of visual and textual

features to solve the task of fine-grained image classifica-

tion and retrieval.

The task of fine-grained image classification (FGIC)

consists of labeling a set of images that are visually alike. A

lot of research on this problem has been oriented to differ-

entiate visually similar objects such as birds[15], aircrafts

[40], and dog breeds[26] among others, which more often
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Figure 1. The proposed model uses a Graph-based Multi-Modal

Reasoning (MMR) module to enrich location-based visual and tex-

tual features in a combined semantic representation. The network

learns at the output of the MMR to map strong complementary

regions of visual (blue) and text (green) instances to obtain dis-

criminative features to perform fine-grained image classification

and retrieval.

than not require domain specific knowledge. However, dif-

ferentiating objects by leveraging available textual instances

in the scene is an omnipresent practice in daily life. In

this work, we focus on exploiting scene-text as the main

discriminatory feature to perform FGIC. A seminal work

on leveraging textual cues was presented by Movshovitz

et al. [42], who showcased that in order to classify store-

fronts, a trained Convolutional Neural Network (CNN) had

automatically learned to focus on scene text instances as the

sole way to solve the given task. In the case of blurred or

occluded text instances, the classification task is extremely

challenging for humans as well. Consequently, scene text

found in an image serves as an additional discriminative sig-

nal that a model should incorporate into its design. Further

research has been devoted to explicitly leveraging textual

cues in the task of FGIC. Similar to our work, Karaoglu et

al. [23, 22] introduces a simple pipeline to perform fine-

grained classification using scene text and extending the

previous work, an attention mechanism is proposed by Bai
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et al. [4] to learn a common semantic space. In a different

approach, Mafla et al. [38] learns a morphological space by

using textual instances as discriminative features rather than

semantics to solve this task.

Departing from previous approaches, we exploit a struc-

tural representation between the studied modalities. Our

work, summarized in Figure 1 with publicly available code

at 1, focuses on learning an enhanced visual representation

that incorporates reasoning between salient regions of an

image and scene text to construct a semantic space over

which fine-grained classification is performed. In this ex-

ample, we can observe that relevant regions such as the text

”Bakery” and ”Bread” are associated with a visual region

that depicts pastry, both important cues to classify the given

image. Additionally, we show experiments of fine-grained

image retrieval, using the same multi-modal representation,

in the two evaluated datasets. Overall, the main contribu-

tions can be summarized as follows:

• We propose a novel architecture that greatly surpasses

previous state-of-the-art results in two datasets by

more than 5% on fine-grained classification and 10%

on image retrieval by considering text and visual fea-

tures of an image.

• We design a fully end-to-end trainable pipeline that in-

corporates a Multi-Modal Reasoning module that com-

bines textual and visual features that do not rely on en-

semble models or pre-computed features.

• We provide exhaustive experiments in which we an-

alyze the effectiveness of different modules in our

model architecture and the importance of scene text to-

wards comprehensive models of image understanding.

2. Related Work

2.1. Scene Text Detection and Recognition

Localizing and recognizing text instances found in a nat-

ural image is a challenging problem due to the variability,

orientation, occlusion, and background noise among other

factors [10]. Deep learning-based methods began with the

work proposed by [21] which focused on a sliding window

and a CNN to filter the proposals. The proposals were used

as input into another CNN that posed the task as a classifi-

cation problem over a large fixed dictionary of words. Later

works take object detection pipelines such as YOLO [46]

used by [18] to obtain a Fully Convolutional Neural Net-

work along with a focus on generating synthetic training

data, which later became the go-to data to train text de-

tectors and recognizers. Along these lines, a variation of

SSD [36] is presented by [33, 32] to develop a text detec-

tor which easily integrates with a module trained for recog-

nition. Methods that focus on an end-to-end recognition

1https://github.com/AndresPMD/GCN_

classification

have been explored by [7] based on Faster R-CNN [47],

which performs text detection and incorporates a Connec-

tionist Temporal Classification (CTC) [17] to recognize a

given text instance. Similarly, [20] presents a CNN as

a region-based feature extractor, features that are fed to

two attention-based Long-Short Term Memories (LSTM)

to predict bounding boxes and recognize the textual pro-

posals. Multi-lingual models have been proposed as in the

case of [8], work that uses a CNN as an encoder and a CTC

to decode the characters from a set of different languages.

On a different approach, the Pyramidal Histogram of

Characters (PHOC) [1] is used to represent words and it has

been amply used in text spotting in documents [50] and text

retrieval in natural images [16, 39]. Despite all the progress

done in scene text detection and recognition, it remains an

open problem in the computer vision community, with a

special focus placed lately on multi-oriented text localiza-

tion and recognition.

2.2. Fine-Grained Classification

The task of Fine-Grained Image Classification (FGIC)

focuses on finding discriminative visual regions that often

require domain-specific knowledge to correctly perform the

labeling task [53]. Different to solely visual-based FGIC

methods, there has been growing interest to use textual cues

to achieve this task by incorporating two modalities.

Closely related to this work, the initial approach taken

by [22] was to extract scene text and construct a bag of

words, while the visual features were obtained by employ-

ing a pre-trained GoogLeNet [51]. Soon after, [4] proposes

the usage of Textboxes [33] to read scene-text in an image, a

CNN to obtain visual features along with an attention mech-

anism and a concatenation of the final features to learn a

semantic space suitable for scene-text based FGIC. Later

work performed by [38] employs a CNN as a visual fea-

ture extractor and uses the PHOC representation of a word

along with the Fisher Vector [45] to learn a space based on

the morphology of text instances to overcome Optical Char-

acter Recognition (OCR) errors. Several fusion methods are

explored in the work by [38] but finally a concatenation of

features is performed to solve the task of image classifica-

tion and retrieval.

2.3. Multi-Modal Fusion and Reasoning

Several fusion-based techniques such as Multimodal

Compact Bilinear Pooling (MCB) [14, 12], Low-rank Bi-

linear Attention Network (MLB) [27] and Block [5] have

been explored to model relationships between language and

vision. To model this interaction, attention-based [3] ap-

proaches also have been proposed [2, 54, 25]. With the

aim of designing models capable of reasoning, the intrin-

sic synergy between visual and textual features has been

explored. Work such as [57, 30] employ variations of an
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Figure 2. Detailed model architecture. The proposed model combines features of regions of scene text and visual salient objects by

employing a graph-based Multi-Modal Reasoning (MMR) module. The MMR module enhances semantic relations between the visual

regions and uses the enriched nodes along with features from the Global Encoder to obtain a set of discriminatory signals for fine-grained

classification and retrieval.

LSTM and a Gated Recurrent Unit (GRU) to perform rea-

soning in a sequential manner. However, significant ad-

vances have been made by the usage of Graph Convolu-

tional Networks (GCN) [28], due to the proven capability of

modeling relationships [48] between nodes in a given graph.

Along this road, GCNs have been successfully used in tasks

that require reasoning such as VQA [43, 49, 13], image cap-

tioning [31, 55] and image-sentence retrieval [30, 34].

In this work, we propose a method to learn a richer set of

visual features and model a more discriminative semantic

space by employing a GCN. To the best of our knowledge,

this is the first approach that integrates multimodal sources

that come in the form of visual along with textual features

jointly with positional encoding into a GCN pipeline that

performs reasoning for the task of scene-text based fine-

grained image classification and retrieval.

3. Method

In this section, we detail each of the components that

comprise the proposed architecture. Figure 2 depicts the

overall scheme of the proposed model, which is formed by

6 different modules: global image encoder, local feature

encoder, text encoder, positional encoder, multi-modal rea-

soning graph and classification module. The local feature

encoder employs features extracted based on the regions of

interest obtained by a Faster R-CNN [47] in a similar man-

ner as the bottom-up attention model [2]. The scene text

encoder uses an OCR model to obtain scene text and fur-

ther embed it into a common space. The goal is to obtain

multi-modal node representations that leverage the seman-

tic relationships found between salient objects and text in-

stances within an image that are discriminative enough to

perform fine-grained classification.

3.1. Global Image Encoder

We employ a CNN as an encoder, which in our case

is a ResNet-152 [19] pre-trained on ImageNet [11] to ac-

quire global image features. Particularly, given an image

I we take the output features before the last average pool-

ing layer, which output is denoted as Gf = ψ(I). In order

to obtain a more descriptive set of global features and due

to its differentiable properties, we compute a soft attention

mechanism on top of the global features. This self-attention

mechanism yields an attention mask, attnmask, that assigns

weights on different regions of the input image. The atten-

tion weights are learned in an end-to-end manner by con-

volving 1×1 kernels projected into a single-dimensional fil-

ter and later followed by a Softmax function. In order to ob-

tain the final attended global features, the attention mask is

broadcasted and multiplied with the global features, which

result is added to the global features Gf to later be used as

input of a Fully-Connected layer, FC, in the form of:

Gfa = FC(Gf + (Gf × attnmask)) (1)

where Gfa ∈ R
1×D, Gf ∈ R

HxWxD, attnmask ∈ R
HxW

stands for the final encoded global features, where D =
2048, H = 7 and W = 7.

3.2. Local Feature Encoder

Following [2], we employ a Faster R-CNN [47] pre-

trained on Visual Genome [29] as the extractor of local

visual features. This approach allows us to obtain salient

image regions that are potentially discriminative for our

task. We use an IoU threshold of 0.7 and a confidence

threshold of 0.3, and sort the obtained predictions before

the last average pooling layer to use the top n most con-

fident regions of interest. Thus, we can represent the out-

put of an image I with a set of region features Rf =
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{(r1, bboxr1)..., (rn, bboxrn)}, ri ∈ R
d, where ri is the

ith region of interest and bboxri is the ri’s corresponding

bounding box coordinates normalized with respect to the

image. In our experiments, we set n = 36 and the obtained

features have a dimension of d = 2048. In order to encode

the local visual features, we project the features through a

fully-connected layer.

In this manner, we obtain the final encoded local features

that will serve as input to the multi-modal GCN in the form

of Vf = {v1, ..., vn}, vi ∈ R
D, where D = 1920 is the

dimension of the final embedding space. We use D = 1920
to further add positional encoding information D = 128
to have a final feature representation of D = 2048. The

bounding boxes obtained to represent these regions are later

used as input into the positional encoder module. If there

are less than n = 36 regions in an image, a zero padding

scheme is adopted.

3.3. Text Encoder

To extract text contained in an image, we ran several pub-

lic state of the art text recognizers as well as a commercial

OCR model provided by Google2. We extract the transcrip-

tions of each word, denoted as wi, as well as the correspond-

ing bounding boxes, bboxwi
. In particular, we extract the

top m most confident textual instances found in an image.

The transcriptions are embedded using fastText [6] and the

bounding boxes will be used as input in the positional en-

coder branch. We employ the fastText embedding due to

its capability of encoding word morphology in the form of

n-grams as well as preserving a semantic space similar to

Word2Vec [41] while at the same time dealing with out of

vocabulary words. Analogously to the case of local fea-

tures, we project the obtained embedded textual features by

passing them through a fully-connected layer. The final tex-

tual features are represented by Tf = {t1, ..., tm}, ti ∈ R
D,

where D = 1920 is the dimension of the final embedding

space and m = 15 is the number of text proposals extracted

from an image. In the case that there is no text found in

a given image, similarly to the local encoder module, zero

padding is employed.

3.4. Positional Encoder

Encoding the position of objects and text instances

within an image can provide important relational infor-

mation about the scene. For example text found on top

of a building often refers to its class in a explicit man-

ner contrary to text found in any other location in the im-

age. To meet this end, we design a positional encoding

that takes as input a predicted bounding box of an ob-

ject or text instance. The input to the positional encoder

describes the top left (x1, y1), and bottom right (x2, y2)
coordinates normalized according to the image size, and

2https://cloud.google.com/vision/

is a concatenation of the bounding boxes of the local

and text regions of interest. The bbox matrix is given

by: bboxesinput = {bboxr1 , .., bboxrn , bboxt1 , ..., bboxtm}
where bboxi = (x1, y1, x2, y2). In order to encode them,

we pass the bounding boxes over a fully-connected in a

similar way as the same as previous sections. The final

encoded representation can be described as: bboxes =
{bboxr1 , .., bboxrn , bboxt1 , ..., bboxtm}, bboxi ∈ R

b, in

which the dimension b = 128 represents the final encoded

bounding boxes.

3.5. Multi-modal Reasoning Graph

Due to the showcased capability of graphs to describe

reasoning between objects [49, 55, 13, 34], we construct a

richer set of region-based visual descriptors that exploit the

semantic correlation between visual and textual features. In

order to do so, we initialize the node features as local vi-

sual features and textual features concatenated with their

respective positional encoding of bounding boxes. We can

describe the node features as:

V = {(v1, bboxr1), ..(vn, bboxrn), (t1, bboxt1), ...

..., (tm, bboxtm)}, V ∈ R
(n+m)×D

where n,m is the number of visual and textual features, re-

spectively. In our case, n+m = 51 and D = 1920+128 =
2048. Furthermore, we construct the affinity matrix R

which measures the degree of correlation of between two

visual regions. The construction of the affinity matrix is

given by:

Rij = φ(ki)
T γ(kj) (2)

where ki, kj ∈ V , φ(.) and γ(.) are two fully connected

layers that are learned end-to-end by back propagation at

training time. If we define k = n + m, then the obtained

affinity matrix consists of a shape k × k. Once R is calcu-

lated, we can define our graph by G = (V,R), in which the

nodes are represented by the local and textual features V ,

and the edges are described by R. The obtained graph de-

scribes through the affinity matrix R the degree of semantic

and spatial correlation between two nodes. We use the for-

mulation of Graph Convolutional Networks given by [28]

to obtain reasoning over the nodes and edges. Particularly,

we use residual connections in the GCN formulation as it is

presented by [30]. We can write the equation that describes

a single Graph Convolution layer performed as:

V l
g = W l

r(R
lV l−1W l

g) + V l−1 (3)

where R ∈ R
k×k is the affinity matrix , V ∈ R

k×D the

local visual features, Wg ∈ R
D×D is a learnable weights

matrix of the GCN, Wr ∈ R
k×k corresponds to the residual

weights matrix and l is the number of GCN layer. Notice

4026



that passing V through the GCN layer, a richer set of multi-

modal features is obtained. In order to find an enhanced

representation of the visual features we apply l = 8 GCN

layers in total, which finally yields a set of enriched nodes

that represent the visual features VG such that:

VG = {vg1, .., vgk}, VG ∈ R
k×D

3.6. Classification

In order to combine the global Gfa and the enriched lo-

cal and textual VG visual features, firstly we perform an av-

erage pooling of the VG tensor. Specifically, we can rewrite

the final local feature vector VGf as:

VGf =
1

k

kX

n=1

Vgi (4)

Lastly, we simply concatenate the two obtained vectors

VGf and Gfa, to obtain the final vector F that is used as in-

put for the final fully-connected layer for classification de-

noted by: F = [Gfa, VGf ]
By applying a softmax to the output of the final layer,

we obtain a probability distribution of a class label given an

input image. The model is trained in an end-to-end fashion

optimized with the cross entropy loss function described by:

J(θ) = −
1

N

NX

n=1

CX

i=1

yni log(p
n
i ) (5)

Where, C is the number of classes, N the dataset

samples such that each pair contains an annotation

{x(n), y(n)}|n = 1, 2, ..., N , and pn is the predicted out-

put label.

4. Experiments and Results

This section presents an introduction to the datasets em-

ployed in this work, as well as the implementation details,

ablation studies performed, and a thorough analysis of the

results obtained in the experiments conducted.

4.1. Datasets

The Con-Text dataset was introduced by Karaoglu et

al. [23] and is a subset of ImageNet [11], constructed by se-

lecting the sub-categories of ”building” and ”place of busi-

ness”. This dataset contains 24, 255 images in total divided

into three-folds to divide training and testing sets. This

dataset introduces 28 visually similar categories of images

such as Cafe, Pizzeria, and Pharmacy in which in order to

perform fine-grained classification, text is a necessary cue

to solve otherwise a very difficult task even for humans.

This dataset closely resembles natural circumstances due to

the fact that the images are taken without considering scene

text instances, thus some images do not have text present in

them.

The Drink Bottle dataset was presented by Bai et al. [4]

and as the Con-Text dataset, it is a subset of images of

ImageNet [11], specifically taken from the sub-categories

of soft drink and alcoholic drink. The dataset is divided

in three-folds as well and contains 18, 488 images. There

are 20 image categories which include visually similar in-

stances such as Coca Cola, Pepsi Cola and Cream Soda.

Akin to the Con-Text dataset, some images contain scene-

text while others do not have it.

4.2. Implementation Details

In our experiments in order to extract visual regions

of an image, we use the same settings as [2]. We take

the top n = 36 ROIs and encode them along with their

bounding boxes into a common space of 2048-d. The tran-

scribed text is sorted by confidence score and we take the

top m = 15 confident predictions. We embed the textual

instances by a using a pre-trained fastText model with 1 mil-

lion 300d word vectors, trained with sub-word information

on Wikipedia2017, UMBC webbase corpus and statmt.org

news dataset. The obtained 300-d textual vectors are pro-

jected with the corresponding bounding boxes into a 2048-

d space. The Faster R-CNN [47] from [2] and the OCR

models, both employed as initial feature extractor mod-

ules use pre-trained weights and are not updated at train-

ing stage. The rest of the weights of each module in the

model are learned in an end-to-end manner during training.

The graph-based multimodal reasoning module employs 8
multi-modal GCN layers to obtain the final enriched visual

features. In the last full-connected layer before classifica-

tion, we employ a dropout rate of 0.3 to avoid over-fitting on

the evaluated datasets. In general, we employ Leaky ReLU

as an activation function in all layers except the last one, in

which we use a Softmax to compute the class label proba-

bilities. The proposed model is trained for 45 epochs, but an

early stop condition is employed. We use a combination of

optimizers comprised by RAdam [35] and Lookahead [58].

The batch size employed in all our experiments is 64, with a

starting learning rate of 0.001 that decays by a factor of 0.1
on the epochs 15, 30 and 45. The momentum value used on

the optimizers is 0.9 and the weight decay is 0.0005.

4.3. Comparison with the State-of-the-Art

We show the experimental results of our method com-

pared to previous state-of-the-art on Table 1. We can note

that the performance obtained in the Con-Text significantly

surpasses the previous best performing method by 5.9%.

The improvement in the Drink-Bottle dataset is more mod-

est, of about 1.98%, however it is still significant.

We believe the improvement is greater in Con-Text due

to the text instances found in it, which refer mostly to busi-
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Method OCR Emb. Con-Text Bottles

Karao.[23] Custom BoB1
39.0 −

Karao.[22] Jaderberg Probs2 77.3 −

Bai[4] Textboxes GloVe 78.9 −

Bai[4]† Textboxes GloVe 79.6 72.8

Bai[4]† Google OCR GloVe 80.5 74.5

Mafla[38] SSTR-PHOC FV 80.2 77.4

Proposed E2E-MLT fastText 82.36 78.14

Proposed SSTR-PHOC PHOC 82.77 78.27

Proposed SSTR-PHOC FV 83.15 77.86

Ours Google OCR fastText 85.81 79.87

Table 1. Classification performance of state-of-the art methods on

the Con-Text and Drink-Bottle datasets. The results depicted with
† are based on an ensemble model. The embeddings labeled as 1

refer to a Bag of Bigrams, 2 is a probability vector along a dic-

tionary. The acronym FV stands for Fisher Vector. The metric

depicted is the mean Average Precision (mAP in %).

ness places without many out of vocabulary words, there-

fore a semantic space for classification is more discrimina-

tive when compared to the Drink-Bottle dataset. To provide

further insights, we conducted experiments by employing

the final model along with different OCRs and word em-

beddings in both datasets. It is essential to note that state-

of-the-art results are achieved by the usage of other OCRs

as well, showing that the proposed pipeline still outperforms

previous methods. Results showing the classification scores

of each evaluated class and further analysis are shown in the

Supplementary Material section.

When comparing to previous methods, it is worth re-

visiting previous approaches. The results reported by [4]

used an ensemble of classifiers to reach the obtained perfor-

mance. As an additional experiment to showcase the effect

of using the same OCR as our proposed model is included,

and it shows that our model vastly outperforms the evalu-

ated pipeline not because of the OCR system employed. On

the other side, the work done by [38] requires offline pre-

computation of the Fisher Vector by training a Gaussian

Mixture Model and tuning the hyper-parameters involved.

In this manner, the method proposed in this work does not

require an ensemble and the features used are learned in

an end-to-end manner at training time. We clearly show

that the proposed pipeline surpasses other approaches even

when employing a set of different scene-text OCRs.

With the aim of offering additional insights, we present

in Table 2 the performance of previous state of the art meth-

ods compared with our proposed method in a subset of

the test set such that the evaluated images either contain

scene-text or not. The results show the average performance

along with 3 different splits of each dataset. We can ob-

serve that our model is able to perform better than previ-

ous approaches in both scenarios while a more significant

improvement is achieved in images that contain scene-text,

Method
Con-Text Drink Bottle

I + T I - T I + T I - T

Bai [4] 78.92 71.63 71.61 62.25

Mafla [38] 80.94 72.59 78.57 68.97

Ours 86.76 74.31 82.75 69.19

Table 2. Classification performance of the proposed method on

the subset of images from the test set of the Con-Text and Drink-

Bottle datasets such that the images: contain scene-text (I + T) and

do not contain scene-text (I - T) . The metric depicted is the mean

Average Precision (mAP in %).

which we treat as the major discriminative feature to per-

form the task of fine-grained classification.

4.4. Importance of Textual Features

In order to assess the importance of the scene text found

in images, we follow the previous works [22, 4, 38] by

defining two different evaluation baselines, the visual fea-

tures based and the textual features based. Moreover, due to

the fact that the evaluated datasets do not contain text tran-

scriptions as ground truth, we evaluated the effectiveness of

the OCR employed in the fine-grained classification task.

The visual only evaluates all the test set images by only

employing the global encoder features Gf in the first sce-

nario and the global encoder along with the self attention

features Gfa in the second scenario. In both cases the out-

put of the global encoder, a 2048-d feature vector, is directly

passed through a fully connected layer to obtain the final

classification prediction. In the textual only, the baselines

are evaluated only in the subset of images which contained

spotted scene text. The results of each baseline by employ-

ing visual only, different OCRs and word embeddings are

shown in Table 3.

Following a previous approach [38], we employ m = 15
text instances and pre-trained word embeddings that yield

300-d vectors in the case of Word2Vec [41], GloVe [44] and

fastText [6]. The textual tensor obtained is used as input to

a fully connected layer, which output is used for classifi-

cation purposes. In our experiments we evaluate two addi-

tional state-of-the-art scene text recognizers, FOTS [37] and

the commercially used Google OCR Cloud Vision based on

an API. We note that the embedding that performs the best

is fastText due to the capability of embedding out of vo-

cabulary words by using character n-grams. Regarding the

results, it was found that the best performing standard rec-

ognizer is the Google OCR, which employs a more compact

(300-d) vector compared to a PHOC or a Fisher Vector. The

PHOC embedding employs a 604-d feature vector along

with m = 15 and the Fisher Vector is a single 38400-d vec-

tor in our experiments. Overall, by using only textual fea-

tures, the Fisher Vector based on PHOCs remains as the best

performing descriptor. However, besides the high dimen-

sional vector employed, extensive offline pre-computation
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Model Con-Text Bottles

Visual
CNN 62.11 65.15

CNN + Self Attention 63.78 66.62

Textual

Texspotter+w2v†
35.09 50.68

Texspotter+glove† 34.52 50.26

Texspotter+fastText† 36.71 51.93

E2E MLT+w2v†
44.36 43.98

E2E MLT+glove† 44.25 42.64

E2E MLT+fastText† 45.07 44.31

FOTS+w2v 43.22 41.33

FOTS+glove 43.71 41.85

FOTS+fastText 44.19 42.69

Google OCR+w2v 53.87 53.47

Google OCR+glove 54.48 54.39

Google OCR+fastText 55.61 55.16

PHOC†
49.18 52.39

Fisher Vector (PHOC)† 63.93 62.41

Table 3. Visual only and Textual only results. The textual only re-

sults were performed on the subset of images that contained spot-

ted text. The results with † were reported by [38]. The metric

depicted is the mean Average Precision (mAP in %).

is required to obtain such descriptor. Nonetheless, as it can

be seen in Table 1, the FV descriptor does not achieve the

best results in our final model.

4.5. Ablation studies

In this section, we present the incremental improvements

and the effects obtained by the addition of each module that

comprises the final architecture in the method proposed.

Table 4 shows the quantitative results of adding compo-

nents in the baseline model. Namely, we evaluate the ef-

fect of using self-attention and the multi-modal reasoning

(MMR) module. We successively add to the attended global

features (Gfa), local features (Vf ), textual features (Tf )

and the bounding boxes (bboxes) of both used in the Po-

sitional Encoder. In order to assess the effectiveness of the

multi-modal reasoning graph module, we compare a model

that uses the Faster R-CNN ROIs without the usage of the

MMR. It is observed that solely by using the Faster R-CNN

features, an important boost is achieved. One of the biggest

improvements is reached by the usage of scene text, which

enforces the idea that textual information is essential to suc-

cessfully discriminate between visually similar classes. By

the incorporation of scene text, an improvement of 9.7% is

gained in Con-Text and 2.5% in the Drink-Bottle datasets.

Nonetheless, the improvement is accentuated by the usage

of the MMR module, which produces as output richer local

and textual features coming from the graph nodes. Finally

by adding the positional encoder module into the MMR, an-

other increase in the results is achieved. This encourages us

to think that the MMR module learns relationships coming

from semantic and spatial information. Insights into the at-

Features Con-Text Drink Bottle

Gf 62.11 65.15

Gfa 63.78 66.62

without MMR

Gfa + Vf 70.48 73.21

Gfa + Vf + Tf 78.72 76.43

Gfa + Vf + Tf + bboxes 80.12 77.51

with MMR

Gfa + Vf 72.88 74.96

Gfa + Vf + Tf 82.51 77.46

Vf + Tf + bboxes 84.33 75.42

Gfa + Vf + Tf + bboxes 85.81 79.87

Table 4. Quantitative results of the different components that

form the proposed model. Gf : Global features, Gfa: Gf + Self-

Attention, Vf : Local Features, Tf : Text Features, bboxes: Bound-

ing Box information used by the Positional Encoder, MMR: Multi-

modal Reasoning. Results are shown in terms of the mAP(%).

Projection Fusion Con-Text Drink Bottle

Attention MLB [27] 80.83 78.26

Attention Block [5] 80.82 78.42

Attention Concat 81.09 78.45

GRU MLB [27] 83.12 78.21

GRU Block [5] 83.8 78.74

GRU Concat 83.93 78.89

Avg Pooling MLB [27] 84.23 78.56

Avg Pooling Block [5] 85.11 79.15

Avg Pooling Concat 85.81 79.87

Table 5. Results obtained by employing different Projection and

Fusion strategies on all the modules of our pipeline. Results are

shown in terms of the mAP(%).

tention masks learned and the reasoning coming from the

MMR by using visual and textual regions can be found in

the Supplementary Material section.

Furthermore, we explore in our work several projection

and fusion methods which are shown in Table 5. In our

experiments, Projection refers to the strategy used to re-

duce the dimensionality of the output tensor coming from

the MMR as VG to obtain a single vector VGf . Late Fusion

showcases the method employed to combine the features

coming from VGf and Gfa. Due to several works showing

performance gains by the usage of attention [56, 54] and

Recurrent Neural Networks [30, 9] as reasoning modules,

we explored those alternatives, however, no improvements

were found. In the same manner, as it is presented by [38],

we explored two additional fusion mechanisms, MLB [27]

and Block [5] but no gains were obtained compared to fea-

ture concatenation.

4.6. Qualitative Results

Qualitative results of the fine-grained image classifica-

tion task are shown in Figure 3. By reviewing the samples

obtained, we can note that our model is capable of learn-

ing a semantic space which combines successfully visual
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GT: Bakery
Bakery: 0.44
Barber: 0.32
Cafe: 0.15

GT: Barber
Barber: 0.99
Packing: 3.4e-7
Discount: 1.8e-7

GT: Pizzeria
Pizzeria: 0.99
Restaur: 4.9e-5
Dinner: 1.2e-5

GT: Tea House
Tea H: 0.98
Cafe: 1.4e-2
Barber: 1.3e-3

GT: CountryS.
CountryS.: 0.94
Tea H: 1.6e-2
Cafe: 1.4e-2

GT: Diner
Diner: 0.99
Packing: 1.4e-7
Restaur: 9.8e-8

GT: School
Theatre: 0.22
Pharma: 0.18
Barber: 0.18

GT: Cafe
Restaur: 0.79
Packing: 0.11
Bistro: 3.8e-2

GT: Ouzo
Ouzo: 0.99
Bitter: 7e-5
RootB: 1.5e-5

GT: GingerA
GingerA: 0.99
QuinW: 4.7e-3
Sarsap: 6.2e-4

GT: Vodka
Vodka: 0.99
Ouzo: 2.9e-4
QuinW: 1.3e-6

GT: RootB
RootB: 0.99
GingerA: 1.4e-3
BirchB: 6.2e-4

GT: Guiness
Guiness: 0.99
GingerA: 2.1e-6
Ouzo: 1.2e-6

GT: GingerA
GingerA: 0.99
Ouzo: 1.8e-5
CreamS: 5.9e-6

GT: Ouzo
Drambuie: 0.53
Ouzo: 0.31
Vodka: 8.8e-2

GT: Drambuie
Chablis: 0.29
Vodka: 0.25
Bitter: 0.13

Figure 3. Classification predictions. The top-3 probabilities of a class are shown as well as the Ground Truth label performed on the test

set. Without recognizing textual instances some images are extremely hard to classify even for humans. Text in blue and red is used to

show correct and incorrect predictions respectively. Best viewed in color.

and textual signals coming from a single image. Classified

samples such as “Pizzeria”, “Tea House” and “Diner” often

contain similar semantic classes ranked on second and third

positions. Images belonging to the Drink Bottle dataset on

the second row, are correctly classified even though text in-

stances belong to specific brands, thus showing generaliza-

tion capability of our method. The seventh image on the first

row is wrongly classified as ”Theatre” due to OCR recog-

nition errors and a lack of strong enough visual cues. The

remaining wrongly classified images are very challenging

and contain some degree of ambiguity even for humans.

4.7. Fine-Grained Image Retrieval

As an additional experiment that highlights the capabil-

ities of the proposed model, we show the results obtained

in Table 6 by performing query-by-example (QbE) image

retrieval. In QbE, a system must return images in the form

of a ranked list that belongs to the same class as the image

used as a query. To provide comparable results and fol-

lowing the work from [4, 38], we use the vector of class

probabilities as the image descriptor without using a spe-

cific metric-learning method. This vector is used to retrieve

the nearest samples computed by the usage of the cosine

similarity as a distance metric.

In our experiments, the query, as well as the database

is formed by unseen samples at training time. The results

demonstrate that a very significant boost of 10.98% and

2.48% in Con-Text and Drink-Bottle is achieved respec-

tively. The lower gain in the Drink-Bottle dataset directly

depends on the harder to recognize text instances, as well as

the low image quality of several samples that directly affects

the model performance.

Method Con-Text Drink Bottle

Bai[4] 62.87 60.80

Mafla[38] 64.52 62.91

Proposed 75.50 65.39

Table 6. Retrieval results on the evaluated datasets. The retrieval

scores are depicted in terms of the mAP(%).

Qualitative results that show the robustness of the model,

as well as experiments addressing the importance of text can

be found in the Supplementary Material section.

5. Conclusions

In this paper, we have presented a simple end-to-end

model that employs a Multi-Modal Reasoning graph to en-

counter semantic and positional relationships between text

and salient visual regions. The learned space is composed

of enriched features obtained from nodes in a graph, mod-

ule that acts as an appropriate reasoning scheme. Exhaus-

tive experiments in two datasets and two different tasks val-

idate the robustness of the presented model which achieves

state-of-the-art results by a significant margin over previous

methods. Moreover, our end-to-end pipeline does not re-

quire pre-computed handcrafted features or a collection of

ensemble models as earlier works. In the future, we expect

to explore the effectiveness of this approach in other vision

and language-related tasks.
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