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Abstract

Recent models for cross-modal retrieval have benefited

from an increasingly rich understanding of visual scenes,

afforded by scene graphs and object interactions to men-

tion a few. This has resulted in an improved matching be-

tween the visual representation of an image and the textual

representation of its caption. Yet, current visual represen-

tations overlook a key aspect: the text appearing in im-

ages, which may contain crucial information for retrieval.

In this paper, we first propose a new dataset that allows

exploration of cross-modal retrieval where images con-

tain scene-text instances. Then, armed with this dataset,

we describe several approaches which leverage scene text,

including a better scene-text aware cross-modal retrieval

method which uses specialized representations for text from

the captions and text from the visual scene, and reconcile

them in a common embedding space. Extensive experi-

ments confirm that cross-modal retrieval approaches benefit

from scene text and highlight interesting research questions

worth exploring further. Dataset and code are available at

europe.naverlabs.com/stacmr.

1. Introduction

Textual content is omnipresent in most man-made envi-

ronments and plays a crucial role as it conveys key infor-

mation to understand a visual scene. Scene text commonly

appears in natural images, especially in urban scenarios, for

which about half of the images habitually contain text [51].

This is especially relevant when considering vision and lan-

guage tasks, and in particular, related to our work, cross-

modal retrieval. Scene text is a rich, explicit and semantic

source of information which can be used to disambiguate

the fine-grained semantics of a visual scene and can help

to provide a suitable ranking for otherwise equally proba-

ble results (see example in Figure 1). Thus explicitly taking

advantage of this third modality should be a natural step to-

wards more efficient retrieval models. Nonetheless, and to

the best of our knowledge, scene text has never been used

for the task of cross-modal retrieval, and the community

lacks a benchmark to properly address this research ques-

tion. Our work tackles these two open directions.

A group of people eating pizza
Joint embedding space

for cross-modal retrieval

?

Which of these two images best correspond to the query caption?

Image 1 Image 2

Query caption 

Figure 1: This paper introduces the scene-text aware cross-

modal retrieval (StacMR) task and studies scene text as a

third modality for cross-modal retrieval. For the example

query above, the restaurant name provides crucial informa-

tion to disambiguate two otherwise equally relevant results.

Scene text has been successfully leveraged to improve

several semantics tasks in the past, such as fine-grained im-

age classification [4, 21, 34, 40], visual question answer-

ing (VQA) [5, 47] or image captioning [46]. Current main-

stream methods tackle cross-modal retrieval by either learn-

ing to project images and their captions into a joint embed-

ding space [15, 25, 28, 54] or by directly comparing im-

age regions and caption fragments to compute a similarity

score [22, 27]. Although significant gaps have been over-

come by previous methods, the lack of integration between

scene text and the other modalities still hinder a fuller image

comprehension. The intuition that serves as the foundation

of this work stems from the notion that scene text, found in

natural images, can be exploited to obtain stronger seman-

tic relations between images and their captions. Obtaining

such relations opens up the path toward improved retrieval

systems in which scene text can serve as a guiding signal to

provide more relevant and precise results.

This paper introduces the Scene-Text Aware Cross-

Modal Retrieval (StacMR) task which aims to capture the

interplay between captions, scene text, and visual signals.
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To overcome the data scarcity of the proposed task, we

have constructed a dataset based on COCO images [30]

which we name COCO-Text Captioned (CTC). It exhibits

unique characteristics compared to other datasets employed

for multi-modal tasks and does not share their bias towards

scene text as the main component present in an image. In

this work, we also evaluate the performance of different

state-of-the-art cross-modal retrieval models, their limita-

tions, and we propose distinctive baselines to solve this task.

Concretely, the contribution of this paper is threefold.

First, we introduce a new task called Scene-Text Aware

Cross-Modal Retrieval (or StacMR in short), as an exten-

sion to cross-modal retrieval. In this task, leveraging the ad-

ditional modality provided by scene text is crucial to further

reduce the heterogeneity gap between images and captions.

Second, we describe a new dataset, COCO-Text Cap-

tioned (CTC), as the first dataset properly equipped to eval-

uate the StacMR task. We highlight the importance of the

role that incidental scene text plays when interpreting an

image and its positive impact on retrieval results. We also

compare the properties of our CTC dataset with similar ex-

isting datasets containing scene text and captions.

Finally, we provide a extensive analysis of CTC. In

particular (1) we benchmark the combination of differ-

ent cross-modal baselines to model the interaction between

scene text, visual, and caption information, and (2) we pro-

pose and evaluate a new model, STARNet, which explicitly

learns to combine visual and scene-text cues into a unified

image-level representation.

2. Related Work

Scene-Text Detection and Recognition. Due to the

large variance in text instances found in the wild [10, 64],

scene text detection and recognition is still an active re-

search field. Methods such as EAST [63], Textboxes++ [29]

or LOMO [61] draw inspiration from general object detec-

tors [19, 31, 44, 45] and typically localize text instances by

regressing pre-defined anchor boxes or pixels.

Moreover, pipelines trained end-to-end often benefit

from both tasks, detection and recognition. Mask Textspot-

ter [32] is an end-to-end segmentation-based approach

which detects and recognizes text in arbitrary shapes. Sim-

ilarly, [20] extracts image features with a CNN that are

later refined by two Long-Short Term Memories (LSTMs)

along with a text-alignment layer to perform these two tasks

jointly. In another approach, [60] employs a semantic rea-

soning network to mitigate transcriptions by projecting tex-

tual regions in a learned semantic space.

Scene Text in Vision and Language. Methods for

vision and language tasks typically align both modalities

and often perform visual reasoning. Only recently have

they started including scene text as an additional modality.

Works such as Text-VQA [47] and Scene-Text VQA [5] fo-

cus on models capable of reading text in the wild as well as

reasoning about the inherent relations with visual features

to properly answer a question given in natural language.

Scene text has also been used to perform fine-grained im-

age classification: [4, 21, 35] learn a shared semantic space

between visual features and text to perform classification

while [34] uses the Pyramidal Histogram Of Characters

(PHOC) [2, 16, 36] descriptor as a way of overcoming OCR

limitations and learn a morphological space suitable for the

task. Other works [17, 39] perform scene-text based image

search, where we query with a word and retrieve images

containing such word. Closer to our work, the TextCaps

dataset [46] includes scene text into textual descriptions.

We discuss further the link with our work in Section 3.

Cross-Modal Retrieval. Most cross-modal retrieval

(CMR) approaches learn a joint representation space to-

gether with visual and textual embedding functions which

produce similar representations for semantically related in-

put, e.g. an image and its captions. Often, the visual em-

bedding function is a CNN and the textual one a recur-

rent neural network [15, 33, 37, 55]. Other approaches

use regions of interest given by a detector [3]. These

approaches align each visual region with a correspond-

ing caption word to get a finer-grained image representa-

tion [8, 23, 27, 28, 54, 62]. Some methods also use atten-

tion mechanisms [27, 41, 48] that model detailed interac-

tions between captions and image regions. More recently,

transformers [50] have been combined [49, 57, 58] to per-

form multi-layered self-attention operations in order to bet-

ter align visual and textual features. Other works [28, 56]

perform visual reasoning by employing graph convolutional

networks [24] which yield a rich set of features by defin-

ing a relational graph between paired images and sentences.

Closer to our work, Vo et al. [53] propose to use text modi-

fiers along with images to retrieve relevant images.

3. The CTC Dataset

This section introduces the proposed COCO-Text Cap-

tioned (CTC) dataset. We first describe how it was gathered

and tailored for the new StacMR task, which extends tra-

ditional cross-modal retrieval to leverage information from

a third modality: scene text. (Section 3.1). Then we

present CTC statistics and discuss the dataset in the light of

other benchmarks and in particular the most related dataset:

TextCaps [46] (Section 3.2).

3.1. Data Collection and Statistics

Building the Dataset. A suitable dataset for the pro-

posed StacMR task requires the availability of these three

modalities: images, captions and scene text. The most com-

monly used datasets for the cross-modal retrieval task [14,

15, 26, 27, 28, 49, 54, 56] are COCO Captions [9], com-

monly known as MS-COCO in the cross-modal literature,
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Dataset
Total

Images

Images

w/ Text

Annotations

Scene Text Captions

Flickr30K [59] 31,783 3,338⋆ ✗ ✓

TextCaps [46] 28,408 28,408‡ ✗ ✓

COCO Captions [9] 123,287 15,844⋆ ✗ ✓

COCO-Text [51] 63,686 17,237† ✓ ✗

COCO-Text Caps 10,683 10,683† ✓ ✓

Table 1: Datasets’ statistics for standard benchmarks and

the proposed CTC. † refers to COCO-Text filtered select-

ing machine printed, English and legible scene text only. ⋆

numbers obtained with method from [36]. ‡ numbers ob-

tained with method from [7].

CTC Explicit

CTC-1k CTC-5k

COCO Captions
COCO Text

COCO-Text Captioned (CTC) dataset

Test sets

CTC Full

+

UTwo test sets:

(Filtered)

Figure 2: Proposed CTC dataset, which is designed to al-

low a proper evaluation of the STACMR task, as all entries

contain three modalities: image, scene text and caption.

and Flickr30K [59]. Only very few images from Flickr30K

contain scene text (see Table 1), so we decided to start from

COCO Captions, a subset of the COCO dataset [30]. Ad-

ditionally, the reading systems community commonly uses

the COCO-Text dataset [51]. It contains a sample of 63, 686
COCO images with fully annotated scene-text instances.

Among the COCO-Text images, we selected the ones that

contain machine printed, legible text in English, leading to

a total of 17, 237 images. In order to gather only images

with the three modalities, we finally select the intersection

between the filtered COCO-Text and COCO Captions. This

leads to a multimodal dataset of 10, 683 items, each item

consisting of an image with scene text and five captions,

referred to as as COCO-Text Captioned (CTC).

Note that the resulting CTC dataset shares 92.47% of its

images with the original COCO caption training split. As a

consequence, we can not use any models trained on COCO

caption in our experiments, as their training set would in-

evitably share images with our test set. The dataset’s con-

struction is illustrated in Figure 2.

Statistics. Our only driver for building the CTC dataset

has been to identify samples where all three modalities

are available, without explicitly requiring at any point that

scene text had any semantic relation to the captions. This
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Figure 3: CTC full statistics. Cumulative histograms (as

thresholds over similarity vary) of the semantic similarity

between instances of scene-text tokens and a) all captions

for an image (Images), b) individual captions (Captions),

and c) individual words in captions (Words).

is the most important requirement for a dataset where scene

text is truly incidental and captions are not biased towards

this additional modality. Despite this, to be coherent with

the StacMR task definition, it is paramount to show that

the proposed CTC dataset contains some inherent seman-

tic relations between scene text found in an image and the

captions that describe it. To this end, we design three sce-

narios which illustrate this semantic relevance at the image,

caption and word-level.

More precisely, we first remove stop-words from cap-

tions and scene-text annotations, and embed each remain-

ing word with Word2Vec [38] vectors trained on the Google

News dataset. The semantic relevance between two words

is defined as the cosine similarity between their Word2Vec

embeddings. We then consider three scenarios to showcase

the relevance of scene text to image captions. The first sce-

nario considers the highest semantic similarity between any

scene-text word and any word from the set of 5 captions,

for each image. This scenario visualizes the semantic re-

lation with images, seen as sets of captions. The second

scenario considers the highest semantic similarity between

any scene-text word and any word from a corresponding

caption. It highlights the semantic relation with individual

captions. The third scenario considers how many caption

words are related to scene-text words. This captures the se-

mantic relation with individual words in captions.

The three histograms of Figure 3 correspond to the three

previously described scenarios. The fact that many words

have a strong similarity at all three levels confirm that scene

text can be used to model the semantics between the three

studied modalities to further leverage them in order to ob-

tain a better performing cross-modal retrieval system.

As scene text provides fine-grained semantic informa-

tion, its importance is query-dependant and it should be
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used selectively. An algorithm designed for the task should

be able to decide, for each image, to which extent scene text

is relevant for the cross-modal retrieval task. In order to bet-

ter capture this, we define two partitions of the CTC dataset.

CTC presents a natural semantic split that is evident in Fig-

ure 3 - a) that quantifies semantic similarity at the image-

level. The first quantization (threshold = 1) corresponds to

images for which at least one word appears in both the scene

text and one of the captions. We refer to this set of 1, 738
images as CTC explicit. We expect scene text from this set

to often be relevant to the retrieval task. We employ the full

CTC dataset, here referenced as CTC full to avoid ambigu-

ity, to evaluate the more generic scenario where the role of

scene text for retrieval is a priori unknown. This second set

contains the previously mentioned explicit partition as well

as images in which scene text is less relevant according to

the annotated captions. Example image-caption pairs from

CTC explicit are shown in Figure 5. This illustrates that

scene text provides a strong cue and fine-grained informa-

tion for cross-modal retrieval.

For evaluation purposes, we define two test splits. The

first one, which we refer to as CTC-1K, is a subset of CTC

explicit. The second test set, CTC-5K, contains the previous

1, 000 explicit images of CTC-1K plus 4, 000 non-explicit

images. The remaining 738 explicit plus 4, 945 non-explicit

images are used for training and validation purposes.

3.2. Comparison with other Datasets

Table 1 provides a comparison with the previously

mentioned datasets with statistics on the three modalities.

Scene-text from COCO Captions [9] and Flickr30K [59]

was acquired using a scene-text detector [36]. As men-

tioned earlier, none of the existing benchmarks contains

samples where all three modalities are annotated.

Closely related to the proposed CTC dataset,

TextCaps [46] is an image captioning dataset that contains

scene-text instances in all of its 28, 408 images. TextCaps

is biased by design, as annotators were asked to describe an

image in one sentence which would require reading the text

in the image. From the statistics shown in Figure 4 it can

be seen first, that TextCaps images were selected to contain

more text tokens than should be naturally expected and

second, that many more of these tokens end up being used

in the captions compared to the unbiased captions of CTC.

The existing bias in TextCaps is also evident by analysing

the intersection of 6, 653 images it has with the recently

published Localized Narratives dataset [43]. From those

6, 653 images only 512 (10%) of them were annotated with

captions that make use of any text tokens in the Localised

Narratives dataset, where annotators were not instructed

to always use the scene text. According to our statistics,

this is already higher than expected in the real world.

This is because the Localised Narratives captions are long

Figure 4: Histograms of the number of OCR tokens found

in images (seen as sets of captions, left) and in individual

captions (right) for the CTC and TextCaps datasets.

Image Captions

Sign warns against runaway vehicles along a hilly

roadway.

A white signing telling people how to park their

cars on a steep hill.

A sign explaining how to park on a hill is posted

on the street.

A warning sign is fastened to a post.

Street sign with instructions on parking the hilly

city roads.

A person holding up a tasty looking treat.

A person holding up a gummy hot dog in their

hand..

a closeup of a candy gummy hot dog in plastic

packaging.

A hotdog that appears to be a gummy hotdog.

A gummy hot dog that is for sale.

Parked school bus with a banner attached to it and

people looking at it.

A man and a woman outside a school bus.

A school bus parked outside of a building.

A school bus sits parked as people walk by.

A school bus sitting on the side of the road near a

pink car.

Figure 5: Image-caption pairs from the CTC dataset.

These images belong to CTC explicit, i.e. their scene text

and captions share at least one word (marked in bold).

descriptions and tend to venture to fine-grained (localised)

descriptions of images parts where text is more relevant.

The proposed CTC is a much less biased dataset in terms

of caption generation. The objective is to provide realistic

data that permit algorithms to explore the complex, real-life

interaction between captions, visual and scene-text infor-

mation, avoiding to assume or force any semantic relation

between them. More experiments showing the bias between

TextCaps’ captions and scene-text are provided in Section 5

and in the supplementary material.

4. Method

This section describes approaches to tackle the StacMR

task. First, we propose strategies to directly apply standard

pretrained cross-modal retrieval models to our new task and

its three modalities: images, captions and scene text (Sec-
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tion 4.1). Second, we propose an architecture to learn a joint

embedding space for cross-modal retrieval in which the im-

age embedding function learns to fuse both the visual and

the scene-text information (Section 4.2).

4.1. Re­Ranking Strategies

This subsection considers the image-to-caption retrieval

task. Note that everything can easily be rewritten to con-

sider the caption-to-image case.

For StacMR, images are multimodal objects: they con-

tain visual information as well as textual information com-

ing from scene text. On the other hand, captions contain

textual information only. This asymmetry allows decom-

posing the StacMR task into two independent retrieval prob-

lems: visual-to-caption and scene-text-to-caption. The first

visual-to-caption retrieval task performs comparisons be-

tween a purely visual descriptor of the query image and

the textual descriptor of the captions. This corresponds

to the standard cross-modal retrieval task as performed on

Flickr30K or COCO Captions. The second, scene-text-to-

caption retrieval task, performs comparisons between the

textual descriptors of the scene text from the query image

and the captions. Any textual descriptor could be used. In

our experiments, we use the textual descriptor of a cross-

modal retrieval model as it has been tailored for capturing

concepts relevant for images.

A pretrained cross-modal retrieval model relies on a met-

ric space equipped with a similarity function which can in-

distinguishably compare visual and textual descriptors and

allows to rank all database elements according to a query.

Notations. Given a query image q and a caption from

the gallery d, let sv(q, d) be the score between q and d us-

ing the image-to-caption similarity from a cross-modal re-

trieval model and st(q, d) the score between q and d using

the scene-text-to-caption similarity from that same model.

Re-Ranking Strategies. The most straightforward way

to obtain StacMR results is simply to perform a late fusion

(LF) of the ranking results obtained using both sv and st.

More formally, we compute the linear combination sLT of

the scores sv and st, using a parameter α:

sLF (q, d) = αsv(q, d) + (1− α)st(q, d). (1)

One weakness of the late fusion strategy is that it com-

bines all gallery items. Instead, we can limit the influence

of the tails to avoid misranking by using different fusion

strategies. Given k > 0, let Ik be the indicator function that

a gallery item is in the top-k ranked items according to st,

i.e. Ik(q, d) = 1 if d is in the top-k results when querying

with q and similarity st, and Ik(q, d) = 0 otherwise. Fol-

lowing [1, 12, 13], we then define the late semantic combi-

nation (LSC) and product semantic combination (PSC) with

Equations (2) and (3) respectively. Note that LSC is equiv-

alent to the late fusion if k is equal to the gallery size.

sLSC(q, d) = αsv(q, d) + (1− α)st(q, d)Ik(q, d) (2)

sPSC(q, d) = sv(q, d)st(q, d)Ik(q, d) (3)

These different reranking strategies do not require any

training and rely on existing pretrained cross-modal re-

trieval models. We simply use the part of CTC disjoint from

the two test sets to choose the hyperparameters α and k.

4.2. STARNet: A Dedicated Trimodal Architecture

All previously described approaches rely on a pretrained

cross-modal retrieval model. Here, we introduce a new ar-

chitecture able to handle the trimodality of the StacMR task.

We start from the model presented in [28] and extend it to

integrate scene text. First, we assume that scene text has

been detected within an image. Then we adapt the model

of [28] to be able to read scene-text instances. We include

a positional information encoder along with a scene-text

Graph Convolutional Network (GCN) and a customized fu-

sion module into the original pipeline. Sharing intuition

with [53], we assume that scene text acts as a modifier in

the joint embedding space, applied to the visual descriptor

of an image.

We propose the STARNet (Scene-Text Aware Retrieval

Network) model, illustrated in Figure 6. It is composed of

the following modules: a joint encoder Φ for both an im-

age and its scene text, a caption encoder Θ, and a caption

generation module Ψ. Given an image Ii and its scene-text

OCRi, the global feature encoding for both modalities is

Ifi = Φ(Ii, OCRi). The image encoder follows [3] and

uses a customized Faster R-CNN [45] to extract visual fea-

tures for all regions of interest represented by Vi. Simi-

larly, the employed OCR [18] extracts scene-text instances

as well as their bounding boxes and is represented by Ti.

For both modalities, image and scene text, we use a

GCN [24] to obtain richer representations. For notation pur-

poses we refer to the visual or textual features as Fi since

the formulation of both visual and textual GCNs are similar.

The inputs to each GCN are features Ffi ∈ Rk×D, where

D = 2048 and, k = 36 in the case of Vi and k = 15 in

the case of Ti. A zero padding scheme is employed for both

modalities if the number of features is smaller than k. We

define the affinity matrix R, which computes the correlation

between two regions and is given by: Rij = ρ(ki)
Tω(kj),

where ki, kj represent the two features being compared and

ρ(.) and ω(.) are two fully connected layers that are learned

in an end-to-end manner by back propagation.

The obtained graph can be defined by Ffi = (Fi, R), in

which the nodes are represented by the features Fi and the

edges are described by the affinity matrix R. The graph de-

scribes through R the degree of semantic relation between

two nodes. In our method, we employ the definition of

Graph Convolutional Networks given by [24] to obtain a
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“A city street sidewalk in 

front of the Westerville 

Police Division”

OCR - Text 

Features

GRU
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Samples
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Samples
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Avg
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Visual GCN
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Ti
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Caption

Generation

GC
fi

i

Figure 6: Our proposed STARNet model. Visual regions

and scene-text instances are used as input to a GCN. The

final learned representations are later combined to leverage

complementary semantic information.

richer set of features from the nodes and edges. The equa-

tion that describes a single Graph Convolution layer is:

F l
g = W l

r(R
lF l−1

i W l
g) + F l−1

i (4)

where R ∈ R
k×k is the affinity matrix , Fi ∈ R

k×D are the

input features of a previous layer, Wg ∈ R
D×D is a learn-

able weights matrix of the GCN, Wr ∈ R
k×k is a residual

weights matrix and l is the number of GCN layer. Partic-

ularly, we employ a total number of l = 4 for both GCNs

used in the proposed pipeline.

The output of the visual GCN goes through a Gated Re-

current Unit (GRU) [11] to obtain the global image repre-

sentation denoted by Vfi. Textual features from the output

of the scene-text GCN are average-pooled to obtain a final

textual representation denoted by Tfi. The final image rep-

resentation Ifi is the dot product between the visual and

final scene-text features (which act as a modifier) added to

the original visual features: Ifi = Vfi ⊙ Tfi + Vfi.

Caption Ci from the corresponding training image-

caption pair is encoded with a GRU [11, 15], leading to

Cfi = Θ(Ci). To align image features with their caption

features in a joint embedding space, we train Φ and Θ us-

ing a triplet ranking loss [15, 27] by employing the hardest

negative sample on each mini-batch.

In order to provide the model with a stronger supervi-

sion signal, the learned image representation Ifi is also

used to generate a caption as an auxiliary task. We train

the third encoder Ψ so that the generated caption equals to:

GCfi = Ψ(Ifi). This sequence to sequence model uses

an attention mechanism similarly to [52] and we optimize

the log-likelihood of the predicted output caption given the

final visual features and the previous generated word.

5. Experiments

We present results on CTC. They are split into two parts:

visual-only and scene-text-only baselines, as well as their

unsupervised re-ranking (Section 5.1), and supervised tri-

modal fusion results from STARNet (Section 5.2). Fol-

lowing cross-modal retrieval (CMR) evaluation standards,

we report performance with recall at K (R@K) for K in

{1, 5, 10} for both image-to-text and text-to-image retrieval.

5.1. Baselines and Re­Ranking Results

This section first introduces visual-only CMR models.

These allow observing how standard CMR models tackle

the StacMR task on CTC. Then, we propose scene-text-

only metric spaces, where the only information extracted

from the image is its scene text. These baselines should help

judge the semantic relevance of the scene-text with respect

to the captions. The remaining results correspond to differ-

ent combinations: a naive average of visual and scene-text

embeddings for metric spaces that allow it, and the different

re-ranking strategies introduced in Section 4.1.

Visual-only Baselines. We use two CMR models

based on global features for both images and captions,

VSE++ [15] and VSRN [28]. Both works provide public

training code, used for all models in this section, with the

exception of the VSE++ model trained on Flickr30K, for

which we use the model provided by [15]. We train these ar-

chitectures either with Flickr30K or Flickr30K + TextCaps.

As mentioned in Section 3.1, models pretrained on COCO

Captions are not considered due to the overlap between the

training set of COCO Captions and our test sets.

Results are presented in Table 2, rows (1-4). VSRN sur-

passes VSE++, mirroring their relative performance from

CMR benchmarks. Furthermore, models trained on the ad-

ditional data of TextCaps outperform models trained only

on Flickr30k. This is interesting, as TextCaps images-

captions pairs are more dependent on their scene text than

those from Flickr30k. Enlarging the dataset size with the in-

clusion of TextCaps explains this improvement to an extent,

as the training set of Flickr30k is relatively small. Moving

forward, we only report models trained on F30K+TC.

Scene-Text only Baselines. We use the textual embed-

ding part of our two previously used CMR models (de-

noted by VSE++ GRU and VSRN GRU respectively). We

also consider FastText [6] word embeddings followed by

a Fisher vector encoding [42] (denoted by FastText+FV),

which is able to deal with out-of-vocabulary words. For

these experiments, we use the ground-truth OCR annota-

tions as scene text. Results are presented in Table 2, rows

(5-7). We observe much weaker results than the purely

visual baselines. For CTC-1K, this approach can rely on

shared words between scene text and one of the captions.

For the more realistic CTC-5K, we see that scene text brings

very little in isolation. Note that the VSE++ GRU outper-
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Visual Model
Scene-text

Model

Trained on Scene-text

Source
Re-rank

CTC-1K CTC-5K

Image to Text Text to Image Image to Text Text to Image

F30K TC R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

(1) VSE++ [15] ✗ ✓ ✗ - - 20.5 42.8 54.5 15.4 35.2 48.4 13.3 30.2 40.2 8.4 21.5 30.1

(2) VSE++ ✗ ✓ ✓ - - 23.9 50.6 63.2 16.5 39.6 53.3 12.6 30.1 40.2 7.9 21.0 29.7

(3) VSRN [28] ✗ ✓ ✗ - - 27.1 50.7 62.0 19.7 42.8 55.7 19.2 38.6 49.4 12.5 29.2 39.1

(4) VSRN ✗ ✓ ✓ - - 35.6 64.4 76.0 24.1 50.1 63.8 22.7 45.1 56.0 14.2 32.1 42.6

(5) ✗ VSE++ GRU ✓ ✓ GT - 26.3 40.4 47.3 10.0 20.3 25.6 4.4 7.1 8.2 1.6 3.5 4.7

(6) ✗ VSRN GRU ✓ ✓ GT - 12.3 25.1 30.1 6.8 15.3 20.0 1.9 4.0 5.2 1.1 2.8 3.8

(7) ✗ Fasttext+FV ✗ ✗ GT - 21.7 36.5 44.3 3.2 6.6 9.0 3.5 5.9 7.5 0.6 1.3 1.7

(8)

VSE++ VSE++ GRU ✓ ✓ GT

AVG 34.6 53.1 61.0 14.5 31.0 39.4 10.0 21.5 29.5 5.0 14.1 21.4

(9) LF 31.0 60.0 72.3 20.4 44.7 57.3 13.4 30.9 41.5 7.4 20.5 29.1

(10) PSC 37.4 62.8 73.6 15.5 42.6 57.1 12.2 32.1 42.4 4.1 19.3 29.2

(11) LSC 31.6 57.8 70.2 20.3 44.7 57.8 13.7 31.7 41.6 7.7 21.0 29.6

(12)

VSRN VSRN GRU ✓ ✓ GT

AVG 36.8 62.2 72.9 18.6 40.5 52.9 15.3 33.5 44.3 6.4 18.9 28.0

(13) LF 40.3 68.5 79.9 23.9 49.9 63.4 22.6 45.0 56.3 11.8 29.5 40.0

(14) PSC 33.5 65.9 78.2 15.8 48.1 64.3 18.5 44.5 56.0 5.3 28.7 41.0

(15) LSC 38.6 67.5 78.5 24.3 50.4 64.0 23.4 45.6 56.5 12.1 30.6 41.1

(16)

VSRN VSE++ GRU ✓ ✓ GT

LF 45.8 72.7 81.4 26.5 52.7 66.1 24.2 46.1 57.1 12.9 31.0 41.2

(17) PSC 42.2 71.5 82.8 18.9 51.1 66.4 20.1 46.4 57.5 6.7 29.5 41.6

(18) LSC 45.3 71.5 80.7 26.7 53.0 66.2 24.4 46.9 57.4 13.2 31.8 42.3

(19)

VSRN VSE++ GRU ✓ ✓ OCR

LF 41.5 70.1 79.8 25.1 51.2 64.3 23.3 45.0 58.9 12.6 30.5 41.1

(20) PSC 38.5 69.6 80.6 17.9 50.1 65.1 19.8 45.7 57.2 7.0 29.8 41.7

(21) LSC 42.2 68.6 78.5 25.5 51.8 64.9 19.8 45.7 57.2 13.2 31.5 42.2

Table 2: Results on CTC for visual and scene-text baselines, and their re-ranking combinations. Visual model and Scene-

text model indicate image-caption and scene-text-caption retrieval, respectively. GT stands for ground-truth scene-text

annotations and OCR for scene-text prediction obtained from [18]. Bold numbers denote the best performances of visual,

scene-text, and re-ranking methods for each ensemble of models.

forms VSRN GRU for this task, while VSRN is better for

the purely visual case. This motivates the hybrid strate-

gies merging both models that we report later. Fasttext+FV

yields strong results on image-to-caption retrieval on CTC-

1K, but shows poor results on the other evaluated scenarios.

A discussion of several scene-text only baselines is avail-

able in the supplementary material.

Average Embedding. If an image and scene text are

represented using the same CMR model, all three modal-

ities are represented in the same embedding space. This

allows a naive combination which consists in averaging vi-

sual and scene-text embeddings to represent the image, re-

ported as AVG on the Table 2, rows (8) and (12). This brings

a non-negligible improvement on CTC-1K Image to Text

compared to their respective visual-only baseline and it is a

first proof that scene text, even naively used, improves on

some StacMR queries. However, we observe a decline on

CTC-5K in the same comparison. This hints at the fact that

scene text provides fine-grained information that should be

used selectively, and giving equal weight to both modalities

is too crude an approach.

Re-Ranking Results. Some re-ranking results are pre-

sented in Table 2, rows (9-21). We test the best pair-

ing of visual-only and scene-text-only models with three

combination strategies: late fusion (LF), product semantic

combination (PSC) and late semantic combination (LSC).

Hyper-parameters of each re-ranking strategy are chosen for

VSRN with VSE++ GRU and applied to all other combina-

tions as is. We use the part of CTC explicit which is not

used for testing as validation. For LF, α = 0.8. For PSC,

α = 0.95 and k = 3. For LSC, α = 0.8 and k = 100.

When compared to the unimodal baselines, all combina-

tions improve results on CTC-1K. Both LF and LSC match

the results of their visual baselines on CTC-5K, showing

that these methods are more robust to scene-text informa-

tion unrelated to the captions.

For the three best performing re-ranking variants, we re-

peat the experiment using OCR predictions instead of the

ground-truth scene-text annotations. Results are shown in

rows (19-21). When compared with their counterparts in

rows (16-18), we observe a R@10 loss on average of 1.7%
in CTC-1k and stable results for CTC-5k. This validates the

stability of these re-ranking strategies to loss of information

due to imperfect OCR predictions.

5.2. Supervised Results

Latest cross-modal retrieval models rely on region-based

visual features [27, 28, 54] rather than a global image rep-

resentation [15]. In this section, we include results of two

state-of-the-art models, SCAN [27] and VSRN [28] that

employ such region-based visual features. The original

cross-modal retrieval models, SCAN and VSRN are used
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Model
Uses

Scene Text

Scene-Text

Source

Trained on
CTC-1K CTC-5K

Image to Text Text to Image Image to Text Text to Image

F30K TextCaps CTC R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

SCAN [27]

✗ - ✓ ✗ ✗ 26.4 48.6 61.1 15.2 36.8 49.3 17.5 36.7 47.1 7.6 21.2 30.4

✓ OCR ✗ ✓ ✗ 19.5 43.8 57.1 10.2 28.7 42.1 7.0 20.0 29.7 3.2 11.7 18.1

✓ OCR ✓ ✓ ✗ 35.0 62.9 74.4 19.3 44.0 58.3 21.1 43.0 54.6 9.6 25.4 35.6

✓ OCR ✓ ✗ ✓ 27.5 48.9 61.9 16.5 37.7 51.1 18.6 37.3 47.6 8.1 21.6 30.6

✓ OCR ✓ ✓ ✓ 36.3 63.7 75.2 26.6 53.6 65.3 22.8 45.6 54.3 12.3 28.6 39.9

VSRN [28]

✗ - ✓ ✗ ✗ 27.1 50.7 62.0 19.7 42.8 55.7 19.2 38.6 49.4 12.5 29.2 39.1

✓ OCR ✗ ✓ ✗ 18.6 40.4 52.2 11.7 31.0 44.2 6.6 17.9 25.8 4.5 13.0 19.8

✓ OCR ✓ ✓ ✗ 35.6 64.3 76.0 24.0 50.1 63.1 22.6 45.0 55.9 14.2 32.1 42.5

✓ OCR ✓ ✗ ✓ 36.1 64.1 75.8 26.2 53.1 65.2 24.6 48.1 58.8 15.4 35.7 46.9

✓ OCR ✓ ✓ ✓ 38.2 67.4 79.1 26.6 54.2 66.2 23.7 47.6 59.1 14.9 34.7 45.5

STARNet

✗ OCR ✓ ✗ ✗ 29.4 52.3 62.6 21.8 44.3 57.2 19.9 39.6 50.1 13.4 30.7 40.4

✓ OCR ✗ ✓ ✗ 23.4 48.0 61.0 14.2 34.9 47.3 5.1 15.1 22.3 3.9 11.9 25.1

✓ OCR ✓ ✓ ✗ 39.3 65.4 76.8 25.9 52.3 65.2 21.1 41.8 52.9 13.8 31.8 42.0

✓ OCR ✓ ✗ ✓ 36.5 64.6 74.3 26.4 53.8 65.6 25.5 48.4 59.8 15.7 35.3 46.6

✓ OCR ✓ ✓ ✓ 44.1 74.8 82.7 31.5 60.8 72.4 26.4 51.1 63.9 17.1 37.4 48.3

Re-rank Comb. (21) ✓ OCR ✓ ✓ ✗ 42.2 68.6 78.5 25.5 51.8 64.9 19.8 45.7 57.2 13.2 31.5 42.2

STARNet - GT ✓ GT ✓ ✓ ✓ 45.4 74.9 83.9 32.0 61.2 73.3 26.8 51.4 64.1 17.4 37.8 48.7

Table 3: Retrieval results on the CTC-1K and CTC-5K test set of supervised models. Second-to-last row shows the re-

sult from the unsupervised re-ranking baseline described in Table 2, line 21. OCR stands for the textual features obtained

from [18], whereas GT refers to the Ground-truth annotated scene text. Results depicted in terms of Recall@K (R@K).

only when trained on Flickr30K. In order to leverage scene

text, we have modified them to include OCR features. In

both models, the OCR features are projected into the same

space as the visual features and the default hyperparameters

are employed, details are showed in the supplementary ma-

terial. All the obtained results are reported on Table 3. The

second column depicts the usage of scene-text instances by

each model, and the third column depicts the source of the

scene text. We make the following observations.

First, we see that using standard models trained on a

common cross-modal retrieval dataset, such as Flickr30k,

does not yield good performances on the StacMR task.

Second, we note the different behaviors when each

dataset is used for training and testing is done on the CTC

test sets. In particular, it is worth noting that by training

solely on TextCaps [46], the performance of any model de-

creases significantly, specially in the CTC-5K dataset. This

effect is caused by the bias in Textcaps that places a big fo-

cus on scene-text instances to describe an image, rather than

combining visual and textual features in an unbiased way.

However, all datasets provide complementary statistics

to train the STARNet model. For instance, Flickr30k fo-

cuses on relevant visual regions, whereas the combination

of TextCaps and CTC can be seen as a reciprocal set of

datasets that aim towards modeling the relevance of scene-

text from an image in a more natural manner.

It is worth pointing out that STARNet almost doubles

the performance in the CTC-1K subset when compared to

common retrieval models. We believe this effect is due to

the explicit scene-text instances that reinforce the notion of

the relevance of this modality. A smaller improvement is

achieved in the CTC-5K. This result is caused by the fact

that even though scene text does not appear explicitly in the

captions, a varying degree of semantics between image and

scene text can still be found.

Finally, we also show an upper-bound at test time as-

suming a perfect OCR (using ground truth scene-text anno-

tations in CTC), which adds a slight boost to the proposed

method. This effect shows and confirms the importance of

accurate scene-text recognizers in the StacMR task. Addi-

tional experiments regarding the performance of the base-

line supervised models have been conducted in Flickr30K

and TextCaps datasets along with qualitative results avail-

able on the supplementary material.

6. Conclusion

In this work, we highlight the challenges stemming from

including scene-text information in the cross-modal re-

trieval task. Although of high semantic value, scene text

proves to be a fine-grained element in the retrieval pro-

cess that should be used selectively. We introduce a real-

istic dataset, CTC, where annotations for both scene text

and captions are available. Contrary to datasets constructed

with scene text in mind, CTC is unbiased in terms of scene-

text content and of how it is employed in the captions. A

comprehensive set of baseline methods showcase that com-

bining modalities is beneficial, while a simple fusion cannot

tackle the newly introduced task of scene-text aware cross-

modal retrieval. Finally, we introduce STARNet a super-

vised model that successfully combines all three modalities.
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