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Abstract

Marine vessel traffic is one of the main sources of

negative anthropogenic impact upon marine environments.

The automatic identification of boats in monitoring im-

ages facilitates conservation, research and patrolling ef-

forts. However, the diverse sizes of vessels, the highly dy-

namic water surface and weather-related visibility issues

significantly hinder this task. While recent deep learn-

ing (DL)-based object detectors identify well medium- and

large-sized boats, smaller vessels, often responsible for sub-

stantial disturbance to sensitive marine life, are typically

not detected. We propose a detection approach that com-

bines state-of-the-art object detectors and a novel Detec-

tor of Small Marine Vessels (DSMV) to identify boats of

any size. The DSMV uses a short time series of images

and a novel bi-directional Gaussian Mixture technique to

determine motion in combination with context-based filter-

ing and a DL-based image classifier. Experimental results

obtained on our novel datasets of images containing boats

of various sizes show that the proposed approach comfort-

ably outperforms five popular state-of-the-art object detec-

tors. Code and datasets available at https://github.

com/tunai/hybrid-boat-detection.

1. Introduction

Anthropogenic activities in coastal areas (e.g. vessel traf-

fic, fishing, recreation) can inflict long-lasting harmful ef-

fects on oceans. Given that sound travels five times faster

in water than in air [1], noise pollution is correlated to be-

havioural disturbance in marine species [41, 40] and inter-

feres with animal vocalization [7, 23]. The ecological foot-

print from increased marine vessel traffic observed over the

last few decades [17] is clearly demonstrated [59].

Automatic Identification System (AIS) data from marine

vessels is used for estimating vessel densities as spatially

explicit proxies for stressors such as noise, disturbance,

vessel-strike, and discharge of harmful substances [4, 39].

However, AIS was not designed as a tool for research and

conservation [49], thus impact estimates based solely on it

often ignore contributions from smaller vessels (which typ-

ically do not broadcast AIS data [21]). This poses a chal-

lenge for understanding the contribution of smaller vessels

to the marine soundscape, particularly in densely populated

coastal regions like the Salish Sea.

Among the several cetacean species found in the inshore

waters of the Salish Sea are the endangered [42, 14] South-

ern Resident Killer Whales (SRKW); the majority of the

Salish Sea is currently designated as a SRKW critical habi-

tat. This area is highly trafficked by small whale-watching,

fishing, research and recreational boats. Research shows

that these vessels emit high acoustic energy in the mid- and

high-frequency ranges, and are more likely to negatively in-

teract with sensitive marine life [44]. Therefore small boat

traffic has wide-ranging ecological impacts [44, 25, 60].

Optical systems [52, 18, 30] complement well AIS-based

monitoring because of their ability to detect both AIS and

non-AIS boats, their non-invasive nature and low-cost [27].

Visual sightings might also provide additional information

such as the type of interaction a vessel engages in with the

environment. However, the interpretation of these visual

data is time-consuming [45, 48]. Large amounts of mon-

itoring data [27] require manual detection in tedious and

often error-prone routines, the reason why numerous re-

cent works offered automatic vessel detection frameworks

[10, 29, 56, 2, 55, 35, 65].

While recent DL-based object detectors [32, 6, 47] are

efficient in identifying large-sized or near-shore marine ves-

sels, they often miss small boats (either farther away from

the camera or because of their actual size) [21]. For this

reason, our study aims for the automatic detection of marine

vessels of any size in visual data obtained at two sites inside

the SRKW’s critical habitat (see 4.1). The remainder of this

article is structured as follows. Section 2 discusses works

related to the proposed system. Section 3 details our ap-

proach for the detection of boats. In Section 4 we introduce

two annotated datasets of images from monitoring sites in

the Salish Sea and use them to evaluate the proposed system
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with respect to state-of-the-art object detectors [32, 6, 47].

2. Related Works

Relevant works to our approach include custom detectors

of marine vessels and generic DL-based object detectors.

Marine Vessel Detection. Methods that perform the vi-

sual detection of boats have been proposed for a number

of monitoring configurations, such as satellites, unmanned

aerial vehicles, boat-attached cameras and fixed-position

cameras. Elvidge et al. [10] used infrared satellite images

to detect boats in the day/night band based on the assump-

tion that the lighting sources generated by fishing boats can

be identified as intensity spikes. Using a different optical

system layout, Kruger and Orlov [29] mounted a thermal

imaging system on autonomous platforms and used its data

to detect small vessels. Their method first estimates horizon

lines, then performs detection in the vicinity of these lines,

followed by tracking the identified objects.

Tran and Le [56] performed boat detection in sequences

of images from a fixed location. Their first step, temporal

attention, executes a background subtraction that isolates

only moving elements of the sequence. A parallel step, spa-

tial attention, looks for the salient regions of the image se-

quence. The final output is a weighted linear combination

of both steps. The authors note that the segmentation of

aquatic background (so that the foreground highlights only

marine vessels) on in-situ surveillance images or videos is

a challenging task, given the waters dynamic nature. Bao

et al. [2] propose to first use a graph-based segmentation

to detect water, followed by a saliency-based vessel detec-

tion. Bloisi et al. [5] offered a method that discretizes an

unknown distribution, ultimately aiming to describe highly

dynamic backgrounds (such as the surface of the water).

So far DL has been only sparsely used for marine ves-

sels detection. Tang et al. [55] used a custom neural net-

work to extract and classify candidate ship features. Liu et

al. [35] proposed rotated region convolutional neural net-

works (RR-CNN) to identify marine vessels in satellite im-

ages. RR-CNN are able to efficiently encompass rotated tar-

gets under regions of interest (RoI), but none of the vessels

in the dataset used (HRSC20161) are small (see dataset D2

in 4.1). Zhang et al. [65] extracted handcrafted vessel fea-

tures from satellite images using line segments and saliency

maps, and employed CNN to classify them.

Generic Object Detection. Object detectors perform

both localization and classification tasks. Until 2012, most

object detection methods (“traditional detection methods”

[68]) extracted and used handcrafted features such as the

Histogram of Oriented Gradients [8], multiple feature ex-

tractors [36, 3, 50], or class- and application-specific fea-

tures [57, 58]. The Deformable Part-based Model (DPM)

1www.kaggle.com/guofeng/hrsc2016

developed by Felzenszwalb et al. [11] and its further devel-

opments [12, 13] are considered the best-performing among

the traditional detection methods.

AlexNet, a CNN-based image classifier proposed by

Krizhevsky et al. [28], demonstrated the potential of using

CNNs to extract generic and highly discriminative features

from large sets of data [9]. Subsequently, a number of works

proposed CNN-based object detectors capable of delimit-

ing where target objects are, and exactly what class they

belong to: R-CNN [16], Fast R-CNN [15], Faster R-CNN

[47], Cascade R-CNN [6] and RetinaNet [32], among others

[46, 34, 19, 31]. This process typically involves the train-

ing of CNN-based modules that perform localization and

classification individually (“two-stage detectors”) or under

the same trainable network (“one-stage detectors”). Lin et

al. proposed Feature Pyramid Networks (FPN) [31], capa-

ble of integrating the representation under multiple scales of

objects during the CNN training process. When used with

end-to-end object detectors, FPN significantly increases the

final detection performance.

To the best of our knowledge, no work has used state-of-

the-art object detectors pre-trained on large datasets [33] as

part of a marine vessel detection framework. Moreover, we

propose the first system that also focuses on the identifica-

tion of small vessels observed in land-based visual data.

3. Proposed Approach

We propose a hybrid marine vessel detection system that

combines state-of-the-art object detectors and a novel De-

tector of Small Marine Vessels (DSMV). The DSMV uses

short time series of images (i.e. three images at a time)

to detect small vessels. We use the term small to re-

fer to vessels that have approximately 80 pixels of area,

while medium and large vessels are those that occupy ap-

proximately 800 and 1, 500 pixels of area, respectively

(see 4.1). The proposed system does not require a (often

most error-prone) sea-land segmentation step as so other

works [55, 2, 5]. It thus contributes not only to the environ-

mental monitoring area, but also addresses the more general

challenge of small object detection. Figure 1 visually sum-

marizes the proposed hybrid detection approach.

Figure 2 highlights a fundamental challenge for the iden-

tification of small boats: given their size and changing ap-

pearance, a regular CNN-based feature extractor and clas-

sifier might not be able to distinguish them from a highly

dynamic background that includes water surface perturba-

tions, sunlight reflection or weather elements, floating drift-

wood and kelp. Indeed, the visual structure of these back-

ground elements is nearly identical to that of boats in many

instances. We thus rely upon temporal information (i.e.

movement conveyed by multiple images/frames of the same

scene) as a cue for the presence of boats. We assume that a

boat is going to move in a roughly horizontal manner (con-
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Group of 3 images (captured 5 seconds apart)

End-to-end object 
detector 

(Faster R-CNN, 
Cascade R-CNN, 

RetinaNet)

BWD Image

MID Image

FWD Image

Top-left zoomed-in view from
BWD-FWD blended image

Bidirectional 
GMM

Brighter spots indicate best 
matches on detection band

BWD-image 
template Matching

Matching result

Horizontal (positional) 
detection band

Vertical detection band irradiates 
from the middle of the MID image

Vertical (temporal) 
detection band on TT

Match-specific image 
classification

Custom image classifier (ResNet, 
InceptionNet, ResNext, DenseNet)

End-to-end object detection results (yellow bounding boxes) displayed in the blended image. The small boat 
on the top-left is missed.

+

Integrate end-to-end
and DSMV detections

Detector of Small Marine Vessels (DSMV)
Final results of the hybrid marine vessel detection system displayed in the blended image

MID-image 
template matching

BWD-FWD blended
template

Matching result

15-second Temporal 
Tunnel (TT)

Matched templates (white) 
delimit the temporal tunnel 

MSE-based similarity 
calculation

BMBB MIBB FMBB

Figure 1: Computational pipeline of the hybrid marine vessel detector. The detection results of the end-to-end object detector

and the DSMV are combined for enhanced detection capabilities. We invite the reader to zoom-in on this and the other

images in the manuscript.

Figure 2: Examples of small marine vessels (mean area of

79 pixels) resized to 224× 224 pixels. See 4.1 for details.

sidering fixed-position cameras) and that its visual features

are not going to change during a small time window.

DSMV considers only three 5-second-apart images of

the same location (henceforth referred to as “BWD”,

“MID”, and “FWD” images) obtained from a land-mounted

camera. This temporal window is chosen so that the DSMV

can be deployed in remote sites where only limited data

storage and transmission capabilities are available. Based

on a thorough analysis of environmental monitoring data,

we define four assumptions that help distinguish small ma-

rine vessels from false positives: A1) vessels that appear

small on monitoring images are those farther away from

the camera, and thus they should only move horizontally

in a 15-second time window; A2) a boat identified in the

MID image will remain inside a sub-region of this image

bounded by the same boat identified in the BWD and FWD

images; A3) the boat in the MID image is going to be po-

sitioned roughly in the middle of the aforementioned sub-

region; A4) the boats identified in the three images present

similar visual appearance.

These four assumptions encode contextual information

acquired from the study of monitoring data. We explicitly

incorporate them in the DSMV with the use of traditional

computer vision methods, as detailed in the remainder of

this Section. In order to further refine the detection results,

we include a custom DL-based image classifier at the end

of the DSMV. As a result, DSMV performs robust detec-

tion combining specific, contextual data, and generic visual

features learned via the training of CNN-based frameworks.

Notes about the implementation of the proposed hybrid de-

tection system are concentrated in 4.3.

Bidirectional GMM. Traditional GMM-based sys-

tems [53] typically create background models based on in-

puts I ranging from I1, ..., It−1, and perform foreground

detection on the current input, It, in what we will hence-

forth refer to as forward motion. In the proposed system

we create an exclusive GMM for each group of three im-

ages (i.e. BWD, MID and FWD), allowing for systems with

low monitoring frequency to still use the proposed DSMV,

as each group of inputs is processed independently. During

the forward motion, the BWD and MID images are used to

model the background, thus detecting the foreground on the

FWD. Similarly, in our novel backward motion we use the

FWD and MID images to detect motion on the BWD.

A similar approach was proposed by Shimada et al. [51],

where two models are derived from distinct groups of “past”

and “future” frames that do not overlap. Also, Minematsu

et al. [38] uses two models derived from the same group

of past frames which are analyzed in regular and backward

chronological order. Our approach is different because we

consider all temporal information by modeling two GMM

out of an overlapping frame (i.e. MID image), and use both

forward and backward motions.

Figure 3 illustrates our bidirectional GMM approach. In

the forward motion, a set of motion-triggered connected

components indicate the pixels that deviated from the back-
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ground models created with the BWD and MID images

(Figure 3b). Since the vessels are expected to create larger

groups of quasi-connected components, we filter the results

using morphology: an opening with a 3 × 3 ellipse fol-

lowed by a dilation with a 5 × 5 ellipse. As shown in Fig-

ure 3c, this filtering eliminates small motion-triggered out-

puts (mostly noise) and combine the remaining pixels into

compact groups. Figure 3d illustrates the result from the

same process for the backward motion. The sets of con-

nected components from each motion are used to delimit

bounding boxes (BB) in the FWD and BWD images (Fig-

ure 3e), named forward-motion bounding boxes (FMBB)

and backward-motion bounding boxes (BMBB). Following

assumption A1, we set a horizontal detection band (Fig-

ure 3f) inside which the marine vessel is expected to travel

through the group of three images. The height of this band

is a product of a configurable parameter ψhdb by the height

from each FMBB (see Figure 4). Each FMBB determines a

horizontal detection band where template matching is per-

formed.

BWD MID FWD

(a) (b) (c)

(d)

BMBB FMBB

(e) (f)

Figure 3: Bidirectional GMM strategy proposed. (a)

Blended section from group of three images. (b) Forward

motion raw output. (c) Forward motion filtered output. (d)

Backward motion filtered output (BWD image). (e) Bound-

ing boxes encompassing motion-triggered results. (f) Hori-

zontal (positional) detection band.

Template matching. A FMBB verifies A1 if a BMBB

exists on the BWD image inside the horizontal (positional)

detection band set by its position, height and a given ψhdb

(see Figure 4). Template matching operations are only

performed on pairs of valid FMBB/BMBB positioned in-

side the horizontal detection band, as illustrated by BMBB

match candidates 1 and 2 of Figure 4. There are a num-

ber of approaches to follow when a query image has to

be found/matched in another image. Most commonly, one

would start by determining features using a feature extrac-

tor (e.g. SIFT [36], SURF [3], ORB [50]) and then match

features between queries and candidates. However, since 1)

we only compare each FMBB with a few potential BMBBs

placed inside a reduced detection band, and 2) small regions

representing boats often do not generate any output from

regular visual feature extractors; we use template match-

ing as in Kaehler and Bradski [26], which is simple and

fast. The dimensions of a matched BMBB are adjusted to

be equal to its template FMBB.

FMBB (query template)

FWD

BMBB (match candidate 1)

Horizontal (positional)
detection band

BMBB (match candidate 2)

BMBB (invalid match candidate)

h
hΨ𝒉𝒅𝒃

Figure 4: FWD-BWD images template matching. Each

FMBB determines a single horizontal detection band based

on their position, height h and parameter ψhdb. If one or

more BMBB are positioned inside this band, the one that

better matches the current FMBB is considered as its match.

Temporal Tunnel (TT). Once a FMBB is matched with

a BMBB, assumption A2 states that another match of that

same marine vessel exists in the MID image, placed inside

a TT delimited by the FMBB/BMBB pair (see Figure 5a).

More specifically (A3), the vessel in the MID image should

sit roughly in the middle of the TT. The width of this valid

matching area in the middle of the TT is a product of width

w from the FMBB by a configurable parameter ρvdb (see

Figure 5c). A blended template (Figure 5b) is created by

combining the BMBB and FMBB to prevent eventual oc-

clusions in either reference BB from interfering with the

MID-image matching. The blended template is used in a

matching process that covers the entire TT (not only the

valid matching area), resulting in a best match for MID-

image bounding box (MIBB). If the MIBB falls inside the

valid match region (green portion of Figure 5c), it is con-

sidered to be a valid candidate, as illustrated in Figure 5d.

Similarity Criteria. Assumption A4 is based upon the

empirical observation that within a 15-second time win-

dow all sightings of the same vessel should present sim-

ilar appearance. This helps to further distinguish valid

detection from false positives triggered by weather or in-

correct matching results (see Figure 6 right). Each group

of BMBB-MIBB-FMBB is used as the input of a Mean

Squared Error (MSE)-based similarity analysis. The MSE

between the blended FMBB/BMBB template and the MIBB

is measured, and if it does not exceed a threshold, MSEth,

this group of three bounding boxes is further analyzed by

an image classifier (see Figure 6).

Image classification. The last step of the DSMV

uses a custom-trained DL-based classifier (we evaluate six

state-of-the-art options, see 4.2) to classify each individual

bounding box in a group of BMBB-MIBB-FMBB. A group

of BMBB-MIBB-FMBB is only deemed as valid if the con-

tent of all three BBs is classified as an object of the ves-

sel class. The custom-trained DL-based system performs
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Blended BWD-MID-FWD image

Temporal Tunnel (TT)
FMBB

BMBB

ρ𝒗𝒅𝒃

(a)

ρ𝒗𝒅𝒃

(b)

Illustrative blended BWD-MID-FWD image

wρ𝒗𝒅𝒃
BMBB

Invalid match region

w

FMBB

Invalid match region

Temporal Tunnel (TT)

Valid match regionw

(c)

ρ𝒗𝒅𝒃
FMBBBMBB MIBB

(d)

Figure 5: Temporal Tunnel (TT). (a) A 15-second TT

bounded by a FMBB/BMBB pair. (b) Blended template

composed by the FMBB and BMBB contents. (c) Only the

template matching results inside a sub-region of the TT de-

limited by parameter ρvdb and width w are valid (A3). (d)

BMBB-MIBB-FMBB matching output.

MSE: 76

BMBB MIBB FMBB BMBB MIBB FMBB

MSE: 1971

Figure 6: MSE-based similarity calculation. Left: Valid

group of detection resulting in a low MSE. Right: An in-

valid group of detection candidates identified by a higher

MSE. The similarity is measured between the contents of

the blended FMBB/BMBB template and the MIBB.

a binary classification where each image patch is classi-

fied as either background or vessel. We train the DL clas-

sifiers by running the DSMV (without this last step) on

1, 644 monitoring images (Figure 7a), and manually dis-

tinguish between vessels and background in the resulting

BMBB-MIBB-FMBB groups. These manually-curated im-

age patches are resized to comply with each classifier’s

CNN layout (i.e. either 224×224 pixels or 299×299 pixels)

and used in the training routine, as shown in Figure 7b. This

training process uses images obtained off the coast of Van-

couver Island, Canada, during the years of 2019 and 2020

(see Table 1). In total we used 1, 879 vessel image patches

(1, 544 train/335 validation) and 2, 264 background image

patches (1, 633 train/629 validation). Figure 7c illustrates

a scenario where false positives are accurately classified as

background (yellow bounding boxes).

End-to-end object detection. State-of-the-art object de-

tectors are commonly trained on large datasets (e.g. COCO

(a)

Background class

Vessel class

(b)

(c)

Figure 7: Image classification. (a) Image from the training

set with vessels highlighted. (b) Resized patches used in

the training of image classifiers. (c) DSMV results with

a custom-trained ResNet-50 [20] distinguishing between

groups of vessels (red BBs) and background (yellow BBs).

[33], ImageNet [9]) that include one or more classes related

to marine vessels. Thus we use pre-trained end-to-end ob-

ject detectors (see Section 4) to find easier-to-identify boats,

represented by medium- and large-sized vessels. Given the

efficacy of such systems, we combine the output of object

detectors (medium- and large-sized boats) and the DSMV

(small-sized boats) into a robust hybrid detector capable of

identifying boats of any size (see Figure 1).

Smaller vessels represent a challenging task to end-to-

end object detectors because their feature extractors are

based on multiple layers of sequential convolutions that

generate feature maps of progressively smaller dimensions.

Small visual targets in the original image disappear during

the feature extraction process (i.e. they are represented by

less than a pixel in the feature map at a certain depth in the

CNN), preventing their localization and classification. Fig-

ure 9b shows that end-to-end object detectors can efficiently

identify bigger vessels, but often miss smaller ones.

4. Results and Discussion

This section details the experimental settings and results

from a performance evaluation where two novel datasets are

introduced and used to compare our proposed method with

five state-of-the-art end-to-end object detectors.

4.1. Datasets

The images used in this project were obtained by Uni-

versity of Victoria’s Coastal and Ocean Resource Analysis

Laboratory (CORAL)2 using optical cameras focused off-

shore to the south and west of southern Vancouver Island,

BC, Canada, during the years of 2019 and 2020. These

2www.coral.geog.uvic.ca
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monitored regions of the Salish Sea are classified as SRKW

critical habitats. A LOREX® pan-tilt-zoom (PTZ) camera

was installed at two fixed positions on a headland overlook-

ing a major vessel traffic thoroughfare and configured to

continuously capture three 1920 × 1080 pixels photos in

the first 15 seconds of each minute. This time-lapsed con-

figuration allows for the inference of vessel movement, di-

rectionality and behaviour.

We manually annotate (i.e. BBs are drawn around marine

vessels) and make publicly available3 two datasets used to

evaluate the proposed hybrid detector under two conditions:

D1) 633 images containing boats of various sizes (mean

vessel area of 953 pixels); D2) 138 images presenting only

small boats with a mean area of 79 pixels. D2 highlights

the capabilities of the DSMV, as most of its marine vessels

are missed by the state-of-the-art object detectors. While

creating both D1 and D2 we selected images under differ-

ent weather conditions (see Figure 8a) and vessel layouts,

so that all monitoring scenarios are well represented. Note

that a dataset of vessel patches, D3, is also created exclu-

sively for training the DSMV (see Figure 7b). Samples from

the training and testing datasets are never obtained from the

same day (see Table 1), avoiding any data contamination

during evaluation.

(a) Hazy-day image from D1 showing two medium-sized

vessels.

(b) Clear-day image from D2 containing only a small vessel.

Figure 8: Datasets used for testing.

4.2. Experimental results

The performance evaluation uses D1 and D2 and starts

by employing five state-of-the-art end-to-end object detec-

tors: Cascade R-CNN [6], Faster R-CNN [47] (with three

different feature extraction networks), and RetinaNet [32].

All detectors used employ FPN [31] in their feature extrac-

tion routines. These detectors are pre-trained on the COCO

[33] dataset, and since one of its 80 classes represents ma-

rine vessels (“boats” class), the initial set of experiments

3https://github.com/tunai/hybrid-boat-detection

takes advantage of the pre-trained weights of these object

detectors (see Table 2, configurations 1-5), looking only at

detection of this class. Transfer learning experiments where

we re-trained only part of these detectors using our cus-

tom detasets could not surpass the performance of the pre-

trained weights. Thus the following results for end-to-end

object detectors reflect the use of such weights.

The second part of the experiments (“hybrid” layout)

evaluates the performance of the hybrid detector proposed.

Given that numerous smaller vessels are missed by the

object detectors, combining their output with those from

DSMV greatly enhances the detection performance, espe-

cially for D2 (where the vessels are particularly small).

We report the average precision (AP) in range [0, 1] for

three different intersection-over-union (IoU) thresholds ∈

[0.2 : 0.1 : 0.4] (see Table 2). The decision of using lower-

than-usual thresholds is based on the fact that the moni-

toring systems expected to use the proposed hybrid detec-

tor do not prioritize a precise fit around the visual targets,

but rather a robust identification of their presence. Each

hybrid layout explores the performance of the DSMV us-

ing one of six custom-trained image classifiers: ResNet-50

[20], Inception-V3 [54], DenseNet-201 [24], ResNext-50

and ResNext-101 [62], and Wide ResNet 50-2 [64]. The

detection time per image using a PC equipped with an In-

tel® Core i7-9700 CPU, 32 GB of RAM memory and a

GeForce® GTX 1660 Ti GPU is approximately 0.2 seconds

when using only end-to-end object detectors, and roughly

0.4 seconds for the entire hybrid approach.

Table 2 presents the detection results for D1 and D2 for

both end-to-end object detectors and the proposed hybrid

approach. Due to space constraints we present only the

best-performing results out of the 35 configurations tested.

The first five configurations use only object detectors, and

among these RetinaNet performed significantly better for

vessels of various sizes (D1). The best-performing ob-

ject detector for IoU thresholds 0.3 and 0.4 using D2 was

Faster R-CNN, showing that the dataset composition and

IoU threshold must be considered when choosing to use a

pre-trained object detector. Since D2 presents boats on av-

erage 12 times smaller than those in D1, the detection task

becomes much more challenging, as reflected by the lower

performance of the pre-trained object detectors in D2.

The proposed hybrid approach (i.e. configurations 6-26

on Table 2) improved the performance from all state-of-the-

art object detectors when corresponding stand-alone and hy-

brid layouts are compared. For example, the performance

on dataset D1 of Cascade R-CNN using ResNet-50 and IoU

threshold 0.2 (configuration 4) was boosted in 16.45% by

the addition of the DSMV employing ResNext-101 as back-

bone (configuration 14). Although a better performance is

always provided by the proposed hybrid approach in D1, the

detection gains are smaller than those observed in D2 be-

448



Dataset Purpose Description Images Vessels count Dimensions Dates

D1 Testing BBs around vessels of various sizes 633 1056 1920 × 1080 2019: Sep 1,2,4-5,20 Aug 18

D2 Testing BBs around small vessels 138 165 1920 × 1080 2019: Jul 30-31

D3 Training/Validation Square vessel patches for training 3, 177/964 3, 177 CNN-dependent† 2019: Jul 27-29 Sep 6-11,16-19 2020: Jan 1

†: Patches of 299 × 299 pixels for Inception [54], 224 × 224 pixels for DenseNet [24], ResNet [20], ResNext [62] and Wide ResNet [64] (see Figure 7b and Figure 2).

Table 1: Datasets for training the DSMV image classifier and evaluating the overall hybrid detection system proposed.

cause, as mentioned, the end-to-end object detectors work

well for detecting medium- and large-sized vessels.

The potential of the DSMV is more explicit when us-

ing dataset D2, where the improvement in AP of the best-

performing configurations for IoU threshold 0.3 (configu-

rations 2 and 14) is 112.1%. On average, the boost in

performance when considering best-performing configura-

tions for all three IoU thresholds and D2 is 89.28%. The

AP drops significantly on all configurations when the IoU

threshold is increased because the small vessels of D2 are

hard to precisely encompass in either manual annotation or

autonomous detection, as their visual limits are often blurry

(see Figure 2).

Figure 9 illustrates detection results under different lay-

outs. On the second row of Figure 9a, the output of Faster

R-CNN using ResNext-101 show that the object detector

missed all the small boats contained in these six excerpts

from images of D2. The output from the proposed hybrid

approach (first row of Figure 9a) highlight the ability of

DSMV to identify extremely small vessels that were ini-

tially missed. Results in D2 also show that the proposed de-

tector is robust to non-horizontal movements (i.e. assump-

tion A1), given that some boats in it display a mostly con-

cave trajectory. The results of the proposed system shown

on Figure 9b distinguish between detection made by the

DSMV (red BBs) and otherwise (yellow BBs). Note that

the object detector (Faster R-CNN with ResNext-101) cor-

rectly identified medium- and large-sized boats, while most

of the small-sized boats are identified only by the DSMV.

4.3. Implementation Details

We implemented the proposed system on Python and Py-

Torch 4 using pre-trained weights and object detector imple-

mentations from Detectron2 [61]. When using our system,

the user can set an x− and y−axis range of valid detection.

This one-time setting allows regions of the image with static

content (e.g. manufacturer logo and date on Figure 9b) to

be ignored during the detection process. The y−axis range

set for D1 and D2 tests were, respectively, [281, 850] and

[650, 896]. Additionally, an x−axis range of [132, 1920] is

set on D2 tests to ignore a ladder (see Figure 8b).

The vertical (temporal) band is delimited by a ρvdb of 2,

while the horizontal (positional) band is set by a ψhdb of

1.4. Once a BMBB candidate is associated with a FMBB,

its content is removed from further template matching tasks,

thus the content of a BMBB can only be matched with a

4www.pytorch.org

single FMBB. The MSE threshold (MSEth) used in the ex-

periments is 600. In order to avoid a large group of invalid

candidates in the initial phases of the DSMV (sometimes

triggered by sunlight reflections), we limit the maximum

number of FMBB considered. We start with a GMM thresh-

old (squared Mahalanobis distance [37] between a pixel and

the Gaussian distributions) of 120, and if the initial num-

ber of FMBB obtained is higher than 18, we increase this

threshold by 100 and calculate the group of FMBB again.

Given that vessels typically create more pronounced de-

viations from background distributions, the progressively

higher thresholds of the proposed algorithm eventually fil-

ters the invalid FMBB. We use Zivkovic’s [66, 67] back-

ground subtraction method as implemented in OpenCV5 as

a basis for our bidirectional GMM.

We prioritize the detection output (i.e. BB dimensions,

position and score) of the object detectors when there exists

an overlap with the output of the DSMV. Moreover, we set

a standard detection score (for AP calculation purposes) for

the DSMV of 0.91. Changing this value modifies the rele-

vance assigned to DSMV detection, and marginally changes

the overall AP of each configuration.

5. Conclusion

Our hybrid marine vessel detector uses short time se-

ries to identify boats of any size, shape, and under dif-

ferent viewing conditions. The proposed DSMV uses a

combination of a novel bidirectional GMM strategy, classi-

cal computer vision methods and custom-trained DL-based

classifiers for identifying challenging small vessels. Ex-

tensive experiments show that our hybrid approach outper-

forms five state-of-the-art object detectors on two datasets

we make publicly available.

The proposed detector fulfills real-world automated pro-

cessing needs of data managers and governance [43], in par-

ticular in critical habitats such as the Salish Sea. Its fast

(approximately 0.4 seconds per image) and efficient detec-

tion enables the timely interpretation of monitoring data to

support conservation and research efforts. We also provide

novel visual datasets of AIS and non-AIS vessel fleets in

important ecological areas to promote further research.

Our approach is based on a set of four assumptions that

might not be representative of all monitoring layouts, thus

one must be aware of them before employing our proposed

system. Small adaptations (e.g. camera tilting, image pre-

5www.opencv.org
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Dataset D1 (various vessel sizes) Dataset D2 (small vessels)

# Configuration DSMV Backbone AP @ 0.2 AP @ 0.3 AP @ 0.4 AP @ 0.2 AP @ 0.3 AP @ 0.4

1 End-to-end: F-RCNN R-101 1 N/A 0.680 0.675 0.653 0.297 0.248 0.179
2 End-to-end: F-RCNN R-50 2 N/A 0.654 0.634 0.621 0.283 0.256 0.164
3 End-to-end: F-RCNN X-101 3 N/A 0.703 0.689 0.659 0.337 0.232 0.186

4 End-to-end: Cascade R-CNN R-50 4 N/A 0.699 0.680 0.662 0.271 0.229 0.151
5 End-to-end: RetinaNet R-101 5 N/A 0.787 0.761 0.704 0.359 0.240 0.134
6 Hybrid: F-RCNN R-101 ResNet-50 0.787 0.772 0.738 0.541 0.462 0.217
7 Hybrid: F-RCNN X-101 ResNet-50 0.774 0.756 0.720 0.570 0.457 0.295
8 Hybrid: Cascade R-CNN R-50 ResNet-50 0.798 0.771 0.736 0.553 0.487 0.242
9 Hybrid: RetinaNet R-101 ResNet-50 0.809 0.780 0.714 0.557 0.438 0.210
10 Hybrid: F-RCNN R-50 Inception-V3 0.750 0.730 0.700 0.445 0.408 0.241
11 Hybrid: F-RCNN X-101 Inception-V3 0.765 0.752 0.716 0.499 0.398 0.293
12 Hybrid: Cascade R-CNN R-50 Inception-V3 0.791 0.774 0.735 0.462 0.403 0.234
13 Hybrid: F-RCNN X-101 ResNext-101 0.785 0.767 0.729 0.619 0.506 0.341

14 Hybrid: Cascade R-CNN R-50 ResNext-101 0.814 0.787 0.749 0.608 0.543 0.282
15 Hybrid: RetinaNet R-101 ResNext-101 0.833 0.804 0.736 0.608 0.489 0.261
16 Hybrid: F-RCNN R-50 ResNext-50 0.747 0.726 0.701 0.464 0.420 0.224
17 Hybrid: F-RCNN X-101 ResNext-50 0.765 0.751 0.718 0.525 0.409 0.269
18 Hybrid: Cascade R-CNN R-50 ResNext-50 0.791 0.773 0.739 0.480 0.409 0.210
19 Hybrid: RetinaNet R-101 ResNext-50 0.826 0.800 0.736 0.514 0.389 0.201
20 Hybrid: F-RCNN X-101 Wide ResNet 50-2 0.779 0.761 0.723 0.619 0.506 0.341

21 Hybrid: Cascade R-CNN R-50 Wide ResNet 50-2 0.808 0.781 0.743 0.602 0.536 0.290
22 Hybrid: RetinaNet R-101 Wide ResNet 50-2 0.822 0.793 0.725 0.608 0.489 0.261
23 Hybrid: F-RCNN R-50 DenseNet-201 0.766 0.745 0.713 0.508 0.465 0.261
24 Hybrid: F-RCNN X-101 DenseNet-201 0.777 0.763 0.725 0.557 0.442 0.302
25 Hybrid: Cascade R-CNN R-50 DenseNet-201 0.804 0.786 0.747 0.526 0.457 0.251
26 Hybrid: RetinaNet R-101 DenseNet-201 0.832 0.807 0.738 0.533 0.408 0.224
1,2,3: Pre-trained Faster R-CNN [47] using FPN [31] with Resnet-101 [20], Resnet-50 [20] and ResNext-101 [62] as feature extractors, respectively.
4,5: Pre-trained Cascade R-CNN [6] and RetinaNet [32] using FPN [31] with Resnet-50 [20] and Resnet-101 [20] as feature extractors, respectively.

Table 2: Average Precision results for configurations combining pre-trained end-to-end object detectors, DSMV with custom-

trained image classifiers, and different intersection-over-union thresholds (see 4.2 for details). Best results for each layout and

dataset are highlighted in bold. Our hybrid approach outperforms all corresponding stand-alone pre-trained object detectors.

174 px

89 px

BWD MID FWD

F-RCNN
ResNext-101

Proposed 
DSMV with 
ResNext-101

219 px

128 px

BWD MID FWD

(a) Detection results on dataset D2 for end-to-end object detector (second row) and proposed hybrid layouts (first row). Red BBs highlight DMSV detection.

(b) Detection results on dataset D1 for the proposed hybrid approach (i.e. pre-trained object detector output combined with the DSMV output) using Faster

R-CNN and ResNext-101. Yellow BBs indicate object detector-only results while red BBs show the DSMV-generated output.

Figure 9: Detection results of our hybrid detection system and stand-alone object detectors (second row of (a)).

processing) can assist in ensuring that these assumptions are

valid for the visual data being processed. Different image

frame rates can be employed by enlarging the time window

considered by the bidirectional GMM. Boats that move to-

wards the camera or are partially occluded (e.g. by other

vessels) might result in false negatives from the DSMV.

Future work will involve ablation studies and the use of

different background modelling strategies (e.g. Bloisi et al.

discrete distribution [5]) in the first stages of the DSMV.

Other methods to encode temporal information (e.g. Long

Short-Term Memory networks [22]) and object tracking

strategies [63] are also going to be considered.
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