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Abstract

Neural networks are highly effective tools for pose esti-

mation. However, as in other computer vision tasks, robust-

ness to out-of-domain data remains a challenge, especially

for small training sets that are common for real-world ap-

plications. Here, we probe the generalization ability with

three architecture classes (MobileNetV2s, ResNets, and Ef-

ficientNets) for pose estimation. We developed a dataset of

30 horses that allowed for both “within-domain” and “out-

of-domain” (unseen horse) benchmarking—this is a cru-

cial test for robustness that current human pose estimation

benchmarks do not directly address. We show that better

ImageNet-performing architectures perform better on both

within- and out-of-domain data if they are first pretrained

on ImageNet. We additionally show that better ImageNet

models generalize better across animal species. Further-

more, we introduce Horse-C, a new benchmark for common

corruptions for pose estimation, and confirm that pretrain-

ing increases performance in this domain shift context as

well. Overall, our results demonstrate that transfer learn-

ing is beneficial for out-of-domain robustness.

1. Introduction

Pose estimation is an important tool for measuring be-

havior, and thus widely used in technology, medicine and

biology [5, 39, 30, 34]. Due to innovations in both deep

learning algorithms [17, 7, 11, 24, 38, 8] and large-scale

datasets [29, 4, 3] pose estimation on humans has become

very powerful. However, typical human pose estimation

benchmarks, such as MPII pose and COCO [29, 4, 3], con-

tain many different individuals (> 10k) in different con-

texts, but only very few example postures per individual. In

real world applications of pose estimation, users often want

to create customized networks that estimate the location

of user-defined bodyparts by only labeling a few hundred

frames on a small subset of individuals, yet want this to gen-
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Figure 1. Transfer Learning boosts performance, especially on

out-of-domain data. Normalized pose estimation error vs. Ima-

geNet Top 1% accuracy with different backbones. While training

from scratch reaches the same task performance as fine-tuning, the

networks remain less robust as demonstrated by poor accuracy on

out-of-domain horses. Mean ± SEM, 3 shuffles.

eralize to new individuals [39, 30, 34, 42]. Thus, one natu-

rally asks the following question: Assume you have trained

an algorithm that performs with high accuracy on a given

(individual) animal for the whole repertoire of movement—

how well will it generalize to different individuals that have

slightly or dramatically different appearances? Unlike in

common human pose estimation benchmarks, here the set-

ting is that datasets have many (annotated) poses per indi-

vidual (>200) but only a few individuals (≈ 10).

To allow the field to tackle this challenge, we developed

a novel benchmark comprising 30 diverse Thoroughbred

horses, for which 22 body parts were labeled by an expert

in 8, 114 frames (Dataset available at http://horse10.

deeplabcut.org). Horses have various coat colors and

the “in-the-wild” aspect of the collected data at various

Thoroughbred farms added additional complexity. With

this dataset we could directly test the effect of pretraining
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Figure 2. Horse Dataset: Example frames for each Thoroughbred horse in the dataset. The videos vary in horse color, background, lighting

conditions, and relative horse size. The sunlight variation between each video added to the complexity of the learning challenge, as well

as the handlers often wearing horse-leg-colored clothing. Some horses were in direct sunlight while others had the light behind them,

and others were walking into and out of shadows, which was particularly problematic with a dataset dominated by dark colored coats. To

illustrate the Horse-10 task we arranged the horses according to one split: the ten leftmost horses were used for train/test within-domain,

and the rest are the out-of-domain held out horses.

on out-of-domain data. Here we report two key insights:

(1) ImageNet performance predicts generalization for both

within domain and on out-of-domain data for pose estima-

tion; (2) While we confirm that task-training can catch up

with fine-tuning pretrained models given sufficiently large

training sets [10], we show this is not the case for out-of-

domain data (Figure 1). Thus, transfer learning improves

robustness and generalization. Furthermore, we contrast the

domain shift inherent in this dataset with domain shift in-

duced by common image corruptions [14, 35], and we find

pretraining on ImageNet also improves robustness against

those corruptions.

2. Related Work

2.1. Pose and keypoint estimation

Typical human pose estimation benchmarks, such as

MPII pose and COCO [29, 4, 3] contain many different in-

dividuals (> 10k) in different contexts, but only very few

example postures per individual. Along similar lines, but

for animals, Cao et al. created a dataset comprising a few

thousand images for five domestic animals with one pose

per individual [6]. There are also papers for facial keypoints

in horses [41] and sheep [47, 16] and recently a large scale

dataset featuring 21.9K faces from 334 diverse species was

introduced [20]. Our work adds a dataset comprising multi-

ple different postures per individual (>200) and comprising

30 diverse race horses, for which 22 body parts were labeled

by an expert in 8, 114 frames. This pose estimation dataset

allowed us to address within and out of domain general-

ization. Our dataset could be important for further testing

and developing recent work for domain adapation in animal

pose estimation on a real-world dataset [28, 42, 36].

2.2. Transfer learning

Transfer learning has become accepted wisdom: fine-

tuning pretrained weights of large scale models yields best

results [9, 48, 25, 33, 27, 49]. He et al. nudged the field

to rethink this accepted wisdom by demonstrating that for

various tasks, directly training on the task-data can match

performance [10]. We confirm this result, but show that on

held-out individuals (“out-of-domain”) this is not the case.

Raghu et al. showed that for target medical tasks (with

little similarity to ImageNet) transfer learning offers little

benefit over lightweight architectures [40]. Kornblith et al.

showed for many object recognition tasks, that better Im-

ageNet performance leads to better performance on these

other benchmarks [23]. We show that this is also true for

pose-estimation both for within-domain and out-of-domain

data (on different horses, and for different species) as well

as for corruption resilience.
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Figure 3. Transfer Learning boosts performance, especially on out-of-domain data. A: Illustration of normalized error metric, i.e.

measured as a fraction of the distance from nose to eye (which is 30 cm on a horse). B: Normalized Error vs. Network performance

as ranked by the Top 1% accuracy on ImageNet (order by increasing ImageNet performance: MobileNetV2-0.35, MobileNetV2-0.5,

MobileNetV2-0.75, MobileNetV2-1.0, ResNet-50, ResNet-101, EfficientNets B0 to B6). The faint lines indicate data for the three splits.

Test data is in red, train is blue, grey is out-of-domain data C: Same as B but with 50% training fraction. D: Example frames with human

annotated body parts vs. predicted body parts for MobileNetV2-0.35 and EfficientNet-B6 architectures with ImageNet pretraining on

out-of-domain horses.

What is the limit of transfer learning? Would ever larger

data sets give better generalization? Interestingly, it appears

to strongly depend on what task the network was pretrained

on. Recent work by Mahajan et al. showed that pretraining

for large-scale hashtag predictions on Instagram data (3.5

billion images) improves classification, while at the same

time possibly harming localization performance for tasks

like object detection, instance segmentation, and keypoint

detection [32]. This highlights the importance of the task,

rather than the sheer size as a crucial factor. Further cor-

roborating this insight, Li et al. showed that pretraining on

large-scale object detection task can improve performance

for tasks that require fine, spatial information like segmen-

tation [27]. Thus, one interesting future direction to boost

robustness could be to utilize networks pretrained on Open-

Images, which contains bounding boxes for 15 million in-

stances and close to 2 million images [26].

2.3. Robustness

Studying robustness to common image corruptions based

on benchmarks such as ImageNet-C [14, 35, 44] is a fruitful

avenue for making deep learning more robust. Apart from

evaluating our pose estimation algorithms on novel horses

(domain-shift), we also investigate the robustness with re-

spect to image corruptions. Hendrycks et al. study robust-

ness to out-of distribution data on CIFAR 10, CIFAR 100

and TinyImageNet (but not pose estimation). The authors

report that pretraining is important for adversarial robust-

ness [15]. Shah et al. found that pose estimation algorithms

are highly robust against adversarial attacks [45], but nei-

ther directly test out-of-domain robustness on different in-

dividuals, nor robustness to common image corruptions as

we do in this study.

3. Data and Methods

3.1. Datasets and evaluation metrics

We developed a novel horse data set comprising 8, 114
frames across 30 different horses captured for 4 − 10 sec-

onds with a GoPro camera (Resolution: 1920×1080, Frame

Rate: 60 FPS), which we call Horse-30 (Figure 2). We

downsampled the frames by a factor of 15% to speed-up

the benchmarking process (288 × 162 pixels; one video

was downsampled to 30%). We annotated 22 previously

established anatomical landmarks for equines [31, 2]. The

following 22 body parts were labeled in 8, 114 frames:

Nose, Eye, Nearknee, Nearfrontfetlock, Nearfrontfoot, Of-

fknee, Offfrontfetlock, Offfrontfoot, Shoulder, Midshoul-

der, Elbow, Girth, Wither, Nearhindhock, Nearhindfet-

lock, Nearhindfoot, Hip, Stifle, Offhindhock, Offhindfet-

lock, Offhindfoot, Ischium. We used the DeepLabCut 2.0

toolbox [37] for labeling. We created 3 splits that con-

tain 10 randomly selected training horses each (referred to

as Horse-10). For each training set we took a subset of

5% (≈ 160 frames), and 50% (≈ 1, 470 frames) of the

frames for training, and then evaluated the performance on

the training, test, and unseen (defined as “out-of-domain”)

horses (i.e. the other horses that were not in the given split

of Horse-10). As the horses could vary dramatically in size

across frames, due to the “in-the-wild” variation in distance

from the camera, we normalized the raw pixel errors by the

eye-to-nose distance and report the fraction of this distance

(normalized error) as well as percent correct keypoint met-

ric [4]; we used a matching threshold of 30% of the head

segment length (nose to eye per horse; see Figure 3A).

For the generalization experiments, we also tested on the

Animal Pose dataset [6] to test the generality of our find-
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ings (Figure 4). We extracted all single animal images from

this dataset, giving us 1091 cat, 1176 dog, 486 horse, 237

cow, and 214 sheep images. To note, we corrected errors in

ground truth labels for the dog’s (in about 10% of frames).

Because nearly all images in this dataset are twice the size

of the Horse-10 data, we also downsampled the images by

a factor of 2 before training and testing. Given the lack

of a consistent eye-to-nose distance across the dataset due

to the varying orientations, we normalized as follows: the

raw pixel errors were normalized by the square root of the

bounding box area for each individual. For training the var-

ious architectures, the best schedules from cross validation

on Horse-10 were used (see Section 3.2).

We also applied common image corruptions [14] to the

Horse-10 dataset, yielding a variant of the benchmark which

we refer to as Horse-C. Horse-C images are corrupted with

15 forms of digital transforms, blurring filters, point-wise

noise or simulated weather conditions. All conditions are

applied following the evaluation protocol and implementa-

tion by Michaelis et al. [35]. In total, we arrived at 75 vari-

ants of the dataset (15 different corruptions at 5 different

severities), yielding over 600K images.

3.2. Architectures and Training Parameters

We utilized the pose estimation toolbox called DeepLab-

Cut [33, 37, 18], and added MobileNetV2 [43] and Ef-

ficientNet backbones [46] to the ResNets [13] that were

present, as well as adding imgaug for data augmenta-

tion [19]. The TensorFlow [1]-based network architec-

tures could be easily exchanged while keeping data loading,

training, and evaluation consistent. The feature detectors in

DeepLabCut consist of a backbone followed by deconvolu-

tional layers to predict pose scoremaps and location refine-

ment maps (offsets), which can then be used for predicting

the pose while also providing a confidence score. As previ-

ously, for the ResNet backbones we utilize an output stride

of 16 and then upsample the filter banks with deconvolu-

tions by a factor of two to predict the heatmaps and location-

refinement at 1/8th of the original image size scale [18, 33].

For MobileNetV2 [43], we configured the output-stride as

16 (by changing the last stride 2 convolution to stride 1).

We utilized four variants of MobileNetV2 with different

expansion ratios (0.35, 0.5, 0.75 and 1) as this ratio mod-

ulates the ImageNet accuracy from 60.3% to 71.8%, and

pretrained models on ImageNet from TensorFlow [1, 43].

The base EfficientNet model was designed by Tan et

al. [46] through a neural architecture search to optimize for

accuracy and inverse flops. From B0 to B6, compound scal-

ing is used to increase the width, depth, and resolution of

the network, which directly corresponds to an increase in

ImageNet performance [46]. We used the AutoAugment

pretrained checkpoints from TensorFlow as well as adapted

the EfficientNet’s output-stride to 16 (by changing the (oth-

erwise) last stride 2 convolution to stride 1).

The training loss is defined as the cross entropy loss

for the scoremaps and the location refinement error via a

Huber loss with weight 0.05 [33]. The loss is minimized

via ADAM with batch size 8 [21]. For training, a cosine

learning rate schedule, as in [23] with ADAM optimizer

and batchsize 8 was used; we also performed augmenta-

tion, using imgaug [19], with random cropping and rota-

tions. Initial learning rates and decay target points were

cross-validated for MobileNetV2 0.35 and 1.0, ResNet-

50, EfficientNet B0, B3, and B5 for the pretrained and

from scratch models (see Supplementary Material). For

each model that was not cross validated (MobileNetV2 0.5
and 0.75, ResNet-101, EfficientNet B1, B2, B4, B6), the

best performing training parameters from the most simi-

lar cross validated model was used (i.e. the cross vali-

dated EfficientNet-B0 schedule was used for EfficientNet-

B1; see Supplementary Material). For MobileNetV2s, we

trained the batch normalization layers too (this had little

effect on task performance for MobileNetV2-0.35). Pre-

trained models were trained for 30k iterations (as they con-

verged), while models from scratch were trained for 180k

iterations. From scratch variants of the architectures used

He-initialization [12], while all pretrained networks were

initialized from their ImageNet trained weights.

3.3. Cross Validation of Learning Schedules

To fairly compare the pose estimation networks with dif-

ferent backbones, we cross-validated the learning sched-

ules. For models with pretraining and from scratch, we

cross validated the cosine learning rate schedules by per-

forming a grid search of potential initial learning rates and

decay targets to optimize their performance on out of do-

main data. Given that our main result is that while task-

training can catch up with fine-tuning pretrained models

given sufficiently large training sets on within-domain-data

(consistent with [10]), we will show that this is not the

case for out-of-domain data. Thus, in order to give models

trained from scratch the best shot, we optimized the perfor-

mance on out of domain data. Tables in the Supplementary

Material describe the various initial learning rates explored

during cross validation as well as the best learning sched-

ules for each model.

3.4. Similarity Analysis

To elucidate the differences between pretrained models

and models trained from scratch, we analyze the represen-

tational similarity between the variants. We use linear cen-

tered kernel alignment (CKA) [22] to compare the image

representations at various depths in the backbone networks.

The results were aggregated with respect to the similarity

of representations of within domain images versus out of

domain images, and averaged over the three shuffles.
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4. Results

To test within and out-of-domain performance we cre-

ated a new dataset of 30 different Thoroughbreds that are

led by different humans, resulting in a dataset of 8, 114 im-

ages with 22 labeled body parts each. These videos differ

strongly in horse appearance, context, and background (Fig-

ure 2). Thus, this dataset is ideal for testing robustness and

out-of-sample generalization. We created 3 splits contain-

ing 10 random horses each, and then varied the amount of

training data from these 10 horses (referred to as Horse-10,

see Methods). As the horses could vary dramatically in size

across frames, due to the “in-the-wild” variation in distance

from the camera, we used a normalized pixel error; i.e. we

normalized the raw pixel errors by the eye-to-nose distance

and report the fraction within this distance (see Methods).

Table 1. average PCK@0.3 (%)

MODELS WITHIN DOMAIN OUT-OF-D.

MOBILENETV2-0.35 95.2 63.5

MOBILENETV2-0.5 97.1 70.4

MOBILENETV2-0.75 97.8 73.0

MOBILENETV2-1 98.8 77.6

RESNET-50 99.8 81.3

RESNET-101 99.9 84.3

EFFICIENTNET-B0 99.9 81.6

EFFICIENTNET-B1 99.9 84.5

EFFICIENTNET-B2 99.9 84.3

EFFICIENTNET-B3 99.9 86.6

EFFICIENTNET-B4 99.9 86.9

EFFICIENTNET-B5 99.9 87.7

EFFICIENTNET-B6 99.9 88.4

4.1. ImageNet performance vs task performance

To probe the impact of ImageNet performance on pose

estimation robustness, we selected modern convolutional

architectures as backbones with a wide range of ImageNet

performance (see Methods; 13 models spanning from 60%

to 84% ImageNet performance). To fairly compare the Mo-

bileNetV2, ResNet and EfficientNet backbones, we cross

validated the learning schedules for each model (see Meth-

ods). In total, we found that all ImageNet-pretrained archi-

tectures exhibited strong performance on Horse-10 within

domain, i.e. low average errors, and high average percent

correct key points (aPCK; Figure 3, Table 1). Performance

on Horse-10 within domain also closely matched perfor-

mance on Horse-30 (see Supplementary Material). Next,

we directly compared the ImageNet performance to their

respective performance on this pose estimation task. We

found Top-1% ImageNet accuracy correlates with pose es-

timation test error (linear fit for test: slope −0.33%, R2 =

0.93, p=1.4× 10−7; Figure 3). Results for different body-

parts are displayed in Table 2.

Figure 4. Generalization Across Species. Normalized pose esti-

mation error vs. ImageNet Top 1% accuracy with different back-

bones (as in Figure 1), but for 10 additional out-of-domain tests.

Training on either a single species or four species while holding

one species (either cow or sheep) out.

4.2. Generalization to novel horses

Next, we evaluated the performance of the networks on

different horses in different contexts, i.e. out-of-domain

horses (Figures 3A-C). Most strikingly, on out-of-domain

horses, the relationship between ImageNet performance and

performance on Horse-10 was even stronger. This can be

quantified by comparing the linear regression slope for out-

of-domain test data: −0.93% pose-estimation improvement

per percentage point of ImageNet performance, R2 = 0.93,

p = 9× 10−8 vs. within-domain test data −0.33%, R2 =

0.93, p = 1.4× 10−7 (for 50% training data). Results for

several different bodyparts of the full 22 are displayed in Ta-

ble 3, highlighting that better models also generalized better

in a bodypart specific way. In other words, less powerful

models overfit more on the training data.

4.3. Generalization across species

Does the improved generalization to novel individuals

also hold for a more difficult out-of-domain generaliza-

tion, namely, across species? Thus, we turned to a pose-

estimation dataset comprising multiple species. We eval-

uated the performance of the various architectures on the
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Table 2. PCK@0.3 (%) for several bodyparts and architectures on within domain horses (FF=front foot; HF = Hind foot; HH = Hind Hock).

Nose Eye Shoulder Wither Elbow NearFF OffFF Hip NearHH NearHF OffHF

MobileNetV2 0.35 90.7 94.1 97.6 96.9 96.7 92.3 93.7 96.4 94.1 94.2 92.5

MobileNetV2 1.0 97.7 98.8 99.7 99.1 99.0 97.6 97.3 99.4 98.4 98.5 98.9

ResNet 50 99.9 100.0 99.8 99.9 99.8 99.8 99.6 99.9 99.9 99.6 99.8

ResNet 101 99.9 100.0 99.9 99.8 99.9 99.8 99.7 99.8 99.9 99.7 99.9

EfficientNet-B0 99.7 99.9 100.0 99.9 100.0 99.6 99.5 100.0 99.9 99.7 99.7

EfficientNet-B3 99.9 99.9 99.9 99.9 99.9 99.7 99.6 99.7 99.8 99.6 99.9

EfficientNet-B6 99.9 99.9 99.9 99.8 100.0 99.8 99.9 99.8 99.8 99.7 99.8

Table 3. PCK@0.3 (%) for several bodyparts and architectures on out-of-domain horses (FF=front foot; HF = Hind foot; HH = Hind Hock).

Nose Eye Shoulder Wither Elbow NearFF OffFF Hip NearHH NearHF OffHF

MobileNetV2 0.35 45.6 53.1 65.5 68.0 69.1 56.4 57.6 65.9 65.9 60.5 62.5

MobileNetV2 1.0 59.0 67.2 83.8 79.7 84.0 70.1 72.1 82.0 79.9 76.0 76.7

ResNet 50 68.2 73.6 85.4 85.8 88.1 72.6 70.2 89.2 85.7 77.0 74.1

ResNet 101 67.7 72.4 87.6 86.0 89.0 79.9 78.0 92.6 87.2 83.4 80.0

EfficientNet-B0 60.3 62.5 84.9 84.6 87.2 77.0 75.4 86.7 86.7 79.6 79.4

EfficientNet-B3 71.7 76.6 88.6 88.7 92.0 80.4 81.8 90.6 90.8 85.0 83.6

EfficientNet-B6 74.7 79.7 90.3 89.8 92.8 83.6 84.4 92.1 92.1 87.8 85.3

Animal Pose dataset from Cao et. al [6]. Here, images and

poses of horses, dogs, sheep, cats, and cows allow us to test

performance across animal classes. Using ImageNet pre-

training and the cross validated schedules from our Horse-

10 experiments, we trained on individual animal classes or

multiple animal classes (holding out sheep/cows) and ex-

amined how the architectures generalized to sheep/cows,

respectively (Figure 4). For both cows and sheep, better

ImageNet architectures, trained on the pose data of other

animal classes performed better, in most cases. We mused

that this improved generalization could be a consequence

of the ImageNet pretraining or the architectures themselves.

Therefore, we turned to Horse-10 and trained the different

architectures directly on horse pose estimation from scratch.

4.4. Task­based training from scratch

To assess the impact of ImageNet pretraining we also

trained several architectures from scratch. Thereby we

could directly test if the increased slope for out-of-domain

performance across networks was merely a result of more

powerful network architectures. He et al. demonstrated

that training Mask R-CNN with ResNet backbones directly

on the COCO object detection, instance segmentation and

key point detection tasks, catches-up with the performance

of ImageNet-pretrained variants if training for substantially

more iterations than typical training schedules [10]. How-

ever, due to the nature of these tasks, they could not test this

relationship on out-of-domain data. For fine-tuning from

ImageNet pretrained models, we trained for 30k iterations

(as the loss had flattened; see Figure 5). First, we searched

for best performing schedules for training from scratch

while substantially increasing the training time (6X longer).

We found that cosine decay with restart was the best for out-

of-domain performance (see Methods; Figure 5).

Using this schedule, and consistent with He et al. [10],

we found that randomly initialized networks could closely

match the performance of pretrained networks, given

enough data and time (Figure 5). As expected, for smaller

training sets (5% training data; 160 images), this was not the

case (Figure 5). While task-training could therefore match

the performance of pretrained networks given enough train-

ing data, this was not the case for novel horses (out-of-

domain data). The trained from-scratch networks never

caught up and indeed plateaued early (Figure 5; Figure 1).

Quantitatively, we also found that for stronger networks

(ResNets and EfficientNets) generalization was worse if

trained from scratch (Figure 1). Interestingly that was not

the case for the lightweight models, i.e. MobileNetV2s

(cf. [40]).

4.5. Network similarity analysis

We hypothesized that the differences in generaliza-

tion are due to more invariant representations in networks

with higher ImageNet-performance using Centered Kernel

Alignment (CKA) [22]. We first verified that the repre-

sentations change with task training (Supplementary Mate-

rial Figure 1). We compared the representations of within-

domain and out-of-domain images across networks trained

from ImageNet vs. from scratch. We found that early blocks

are similar for from scratch vs transfer learning for both

sets of horses. In later layers, the representations diverge,

but comparisons between within-domain and out of domain

trends were inconclusive as to why e.g., EfficientNets gen-

eralize better (Supplementary Material Figure 2).

4.6. Horse­C: Robustness to image corruptions

To elucidate the difficulty of the Horse-10 benchmark,

we more broadly evaluate pose estimation performance un-
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Figure 5. Training randomly initialized networks longer cannot rescue out-of-domain performance. Top Row: Best performing

(cross-validated) learning schedules used for training. Middle: Normalized error vs. training iterations for MobileNetV2-0.35, ResNet-50

and EfficientNet-B0 using 50% of the training data. Test errors when training from scratch (solid lines) closely match the transfer learning

(dashed lines) performance after many iterations. Crucially, out-of-domain testing does not approach performance for pretrained network

(stars). Bottom Row: Same as Middle but using 5% of the training data; note, however, for just 5% training data, the test errors do not

approach the test error of pretrained models for larger models.

der different forms of domain shift (Figure 6). Recently,

Schneider, Rusak et al. demonstrated that simple unsu-

pervised domain adaptation methods can greatly enhance

the performance on corruption robustness benchmarks [44].

We therefore settled on a full adaptation evaluation proto-

col: We re-trained MobileNetV2 0.35 and 1.0, ResNet50,

as well as EfficientNet B0 and B3 with batch normalization

enabled. During evaluation we then re-computed separate

batch norm statistics for each horse and corruption type.

We use batch norm adaptation [44] during our evalu-

ation on Horse-C. On clean out-of-domain data, we see

improvements for MobileNetV2s and ResNets when using

pre-trained networks, and for all models when training mod-

els from scratch (Figure 7). On common corruptions, uti-

lizing adaptation is crucial to final performance (see full re-

sults in Supplementary Material). In the batch norm adapted

models, we compared four test conditions comprised of

within-domain and out-of domain for both original (clean)

and corrupted images (Figure 6). First, we find that even

with batch norm adapted models, Horse-C is as hard as

Horse-10; namely performance is significantly affected on

corrupted data (Figure 8). Secondly, we find the corruption

plus “out-of-domain” identity, is even harder—the perfor-

mance degradation induced by different horse identities is

on the same order of magnitude as the mean error induced

on the corrupted dataset. Finally, and consistent with our

other results, we found a performance gain by using pre-

trained networks (Figure 8).

5. Discussion and conclusions

We developed a novel pose estimation benchmark for

out-of-domain robustness (Horse-10), and for testing com-

mon image corruptions on pose estimation (Horse-C). The

data and benchmarks are available at http://horse10.

deeplabcut.org. Furthermore, we report two key find-

ings: (1) pretrained-ImageNet networks offer known advan-

tages: shorter training times, and less data requirements,

as well as a novel advantage: robustness on out-of-domain

data, & (2) pretained networks that have higher ImageNet

performance lead to better generalization. Collectively, this

sheds a new light on the inductive biases of “better Ima-

geNet architectures” for visual tasks to be particularly ben-

eficial for robustness.
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Figure 6. Measuring the impact of common image corruptions on pose estimation (Horse-C): We adapt the image corruptions consid-

ered by Hendrycks et al. and contrast the impact of common image corruptions with that of out of domain evaluation.
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Figure 7. Impact of test time normalization. Models trained with

adaptive BN layers slightly outperform our baseline models for

the MobileNetV2 and ResNet architecture out-of-domain evalua-

tion. Lines with alpha transparency represent fixed models (vs.

adapted). Mean ± SEM is shown.
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Figure 8. Impact of distribution shift introduced by horse iden-

tities and common corruptions. We tested within identity (i.e.,

equivalent to within-domain in Horse-10 (left), or out-of-domain

identity (right). Lines with alpha transparency represent corrupted

images, whereas solid is the original (clean) image. Mean ± SEM

is shown.

We introduced novel DeepLabCut model variants,

part of https://github.com/DeepLabCut/

DeepLabCut, that can achieve high accuracy, but with

higher inference speed (up to double) than the original

ResNet backbone (see Supplementary Material for an

inference speed benchmark).

In summary, transfer learning offers multiple advan-

tages. Not only does pretraining networks on ImageNet

allow for using smaller datasets and shorter training time

(Figure 5), it also strongly improves robustness and gener-

alization, especially for more powerful, over-parameterized

models. In fact, we found a strong correlation between

generalization and ImageNet accuracy (Figure 3). While

we found a significant advantage (>2X boost) of using

pretrained networks vs. from scratch for out-of-domain

robustness, there is still a 3-fold difference in performance

between within domain and out of domain (Figure 1). We

believe that this work demonstrates that transfer learning

approaches are powerful to build robust architectures,

and are particularly important for further developing

performance improvements on real-world datasets, such

as Horse-10 and derived benchmarks such as Horse-C.

Furthermore, by sharing our animal pose robustness

benchmark dataset, we also believe that the community can

collectively work towards closing the gap.
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