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Abstract

Colorization involves the synthesis of colors while pre-

serving structural content as well as the semantics of the

target image. This problem has been well studied for 2D

photographs with many state-of-the-art solutions. We ex-

plore a new challenge in the field of colorization where we

aim at colorizing multi-modal 3D medical data using 2D

style exemplars. To the best of our knowledge, this work

is the first of its kind and poses challenges related to the

modality (medical MRI) and dimensionality (3D volumetric

images) of the data. Our approach to colorization is moti-

vated by modality conversion that highlights its robustness

in handling multi-modal data.

1. Introduction

Image colorization enables transferring radiometric

characteristics of one image onto another. From an artistic

perspective, it has opened new horizons in content creation

and has seen rapid strides with the advent of digital me-

dia. The problem of colorization has been extensively ex-

plored for 2D photographs, however, the same approaches

do not work well for 3D medical images. Our current re-

search aims at finding a robust approach to apply coloriza-

tion in the 3D domain for multi-modal medical data. Au-

tomatic and realistic colorization of 3D medical data is re-

quired to improve the volume visualization capabilities of

current systems. Our approach aims at automating coloriza-

tion in medical imaging visualizations that are mostly man-

ually controlled currently. Furthermore, what makes this

problem setting more unique is the ability of our approach

to generate photorealistic 3D volumes that can be used for

better visualizations compared with existing approaches.

We view our approach as a suitable replacement to the

current colorization methods prevalent in the volume visu-

alization community such as transfer functions (TF) based

methods that are heavily used in the visualization of 3D CT

and MRI modalities. A TF maps intensity values to col-

1∗ indicates equal contribution

ors, however the creation of such a mapping is mostly man-

ual making it cumbersome and time-consuming. Automatic

and semi-automatic synthesis of TFs have been explored in

the volume visualization community and many such ideas

are summarized by Ljung et al. [18], however, these ap-

proaches still rely on the creation of a TF. Colorization can

be seen as an effective alternative to using a transfer func-

tion but it is an ill-posed problem since MRI or CT medical

data is a different modality compared to a photograph.

In this work, we propose a framework to perform modal-

ity conversion of a 3D MRI to a photographic volume.

While doing so, we also address the challenges of handling

3D data in medical deep learning. We show multi-modal

volume colorization using only a single 2D style image.

Such a colorization can be used to create better 3D visual-

izations without the need of creating time-consuming trans-

fer functions. Our approach can be used to colorize other

modalities like 3D CT as well.

2. Related Work

We address the problem of multi-modal colorization

where the source and the target images belong to differ-

ent modalities, which are 3D MRI scans and photographic

volumes in our case. There are many approaches for col-

orization of grayscale images and they mostly differ in the

additional input required along with a grayscale image for

generating results.

Classical approaches to colorization

Several classical methods look into solving color transfer

by treating it as a texture transfer problem. Welsh et al. [30]

propose a patch matching algorithm that requires a source

image from which color information has to be transferred

to the target image. Their approach performs a jittered sam-

pling on the source image to get color patches, finds the

closest matching patch from the sampled data, and transfers

colors onto the target image. Levin et al. [13] view coloriza-

tion as an optimization problem where given some hints in

the form of scribbles, colorization is performed with the

constraint that similar intensities should have similar colors.
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Nie et al. [19] develop on the above idea and use quad-tree

image decomposition for cost function minimization.

Automatic Colorization

With the advent of Convolutional Neural Networks (CNNs),

visual tasks have seen rapid strides. Iizuka et al. [9] lever-

age the estimation capability of CNNs and perform col-

orization using both local and global information present

in an image. Their approach relies on the classification of

an image to generate global priors in the form of class labels

that are added to the colorization network for better results.

Zhang et al. [34] propose an automatic colorization algo-

rithm where colorization is treated as a multinomial classi-

fication problem. The authors employ a CNN to perform

colorization in the CIELab color space by predicting only

the chroma channel. Zhang et al. [35] propose an interactive

colorization algorithm that utilizes user-generated hints and

demonstrate the generation of different results for the same

grayscale image. Yang et al. [33] propose GANs for col-

orizing 3D objects. They perform voxel colorization using

a GAN consisting of a 3 component architecture. The first

part learns a compressed representation, the second compo-

nent decompresses and adds information from the latent z

vector to generate colors. The last component uses a mask

for refinement and generates final colorized volume.

Exemplar Colorization

Exemplar colorization involves the transfer of colors from

a source image to a target grayscale image. These meth-

ods rely on CNNs and make use of the semantic context

in the source and target images to produce meaningful and

coherent colored images. In one of the recent works He

et al. [6] present a deep exemplar-based colorization in

which they use a similarity sub-net and a colorization sub-

net to perform exemplar colorization. The similarity sub-

net computes the bidirectional similarity maps and aligned

chrominance channels for the input and reference images

which are then passed to the colorization network. Li et al.

[14] present a cross-scale texture matching method using a

multi-label graph-cut algorithm. Xiao et al. [31] propose a

novel pyramidal network to perform exemplar colorization

as a multinomial classification problem. They propose a hi-

erarchical encoder-decoder filter to pass color distributions

from lower to higher levels. Xu et al. [32] propose a styl-

ization based approach for fast deep exemplar colorization.

They achieve this with the help of a transfer sub-net to ex-

tract coarse chrominance information referred to as ab map

for target gray image using WCT [16]. For faster feature

matching they use Adaptive Instance Normalization pro-

posed by Huang et al. [7]. They use this generated ab map

for subsequent colorization using a colorization net which

is optimized using Huber Loss [8].

Style transfer as a generalization

Style transfer forms an integral part of our proposed method

to generate hints for colorizing a volume. Prior to the ap-

pearance of neural style transfer, a number of approaches

on artistic stylization and non-photorealistic rendering were

explored. Gatys et al. [3] perform style transfer by min-

imizing reconstruction losses for feature and style with a

pre-trained VGG network [26]. Their seminal work demon-

strated that CNNs are capable of extracting content infor-

mation from a photograph and style information from an

artwork image to produce a stylized image. Li et al. [16]

perform image reconstruction along with whitening and

coloring transforms (WCT). The authors use VGG convolu-

tions as an encoder and train a decoder symmetrical to VGG

to produce photorealistic stylizations. Jamriška et al. [10]

propose a non deep learning based approach for stylizing

videos. For an input video, they require some hand-crafted

frames as stylization hints. A patch-based optimization uses

a mask guide for an object of interest, a color guide for cap-

turing color information, and a positional guide to capture

structural information.

Modality conversion

For a more realistic colorization, we perform modality con-

version on the input MRI volume. GANs have been ex-

plored for converting the modality of medical volumes,

commonly known as medical image synthesis. Nie et al.

[20] propose a method to convert MRI to CT using GANs.

Their method takes an MRI image and generates the corre-

sponding CT image using a fully convolutional network and

use a gradient difference loss function. This work is fur-

ther extended by Nie et al. in [21] where they combine this

approach with Auto-Context [28] and create context-aware

GAN to generate 7T MRI from 3T MRI and CT from MRI.

In a two-step approach, Guibas et al. [5] use a DCGAN to

generate synthetic segmentation maps and teach a GAN to

generate photorealistic images.

3. Our approach

Our approach enables us to bypass designing a transfer

function for color volume visualization. The colorization of

MRI volume shows the capability of our approach in han-

dling multi-modal data. In our three-step approach, we use

a Generative Adversarial Networks (GANs) [4] to convert

the modality of the input MRI volume to a corresponding

gray cryosection (cryo) volume. This is followed by style

transfer on selected slices in the generated gray volume, and

a subsequent colorization of the entire volume. Figure 1

shows an overview of our colorization approach.

2848



Colorization

as

Optimization

Input MRI

Colorised MRI

Grayscale

Slice

Selection

Neural Style Transfer

Hints

Stylized

Slices

Poisson Reconstruction

Volume

Input

Volume

Multimodal 3D GAN

Upsampling

SRGAN

Style

Image

High resolution

Colorized MRI

Figure 1. Our colorization framework is based on the modality conversion of input MRI. The first stage uses 3D GANs to remap the MRI

intensities allowing for a more flexible colorization. Some of the selected slices from the produced output are stylized. These stylized

slices serve as hints in the final stage where volumetric colorization takes place.

3.1. Dataset

We use the Visible Human 2 [1] dataset which contains

unregistered 16-bit MRI and 24-bit color cryo imaging data

of the human head. It is necessary to perform the registra-

tion between the two modalities in order to get correspon-

dence between the two. We perform a rigid registration of

MRI with cryo volume using fiducial markers. We also per-

form a marker-based segmentation of the MRI volume into

foreground and background. The binary background seg-

mentation mask is used in removing background for visual-

ization purposes.

3.2. MRI to grayscale conversion

A direct colorization from MRI to color will not yield

good results given substantial differences in the radiomet-

ric characteristics of MRI imaging and photographs. An

MRI response of tissue is different than it is for visible light

i.e. the tissues in an MRI will look different than they will

in a photograph. Therefore, the first step of colorization is

to convert a given MRI to a corresponding grayscale pho-

tographic volume (hereafter referred to as a grayscale vol-

ume). In essence, this step performs modality conversion

and predicts how the grayscale intensity of the same tissue

will appear under visible light.

3.2.1 MRI aligned grayscale volume for training

In a real scenario a cryo volume for an MRI will not be

available, therefore to generalize our method we train a neu-

ral network that learns to convert an MRI to a grayscale

volume. In order to train such a network, both an MRI

and a corresponding grayscale volume are needed. Unfortu-

nately, a grayscale cryo volume is not suitable for this pur-

pose making the problem non-trivial due to the following

reasons:

• Even after careful registration, the features in cryo and

MRI do not align perfectly, and there are errors of few

voxels at some places, and

• The MRI volume has a lower level of detail in compar-

ison with the cryo volume that manifests as ambiguity

in the tissue boundaries.

Poisson volume synthesis To create a grayscale volume

that matches the features and scale of the input MRI vol-

ume, we perform a Poisson reconstruction [24]. Here, we

reconstruct a volume Igray from gradients of the MRI vol-

ume Imri treating intensities from grayscale cryo volume

Icryo as boundary condition by solving the following Pois-

son equation:

∆Igray = ∇ ·∇Imri, s.t. Igray|∂Ω = Icryo|∂Ω.
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This helps us obtain the radiometry of cryo volume while

maintaining the geometry of the structures in MRI thus

creating a new modality of photo-realistic MRI (see Fig-

ure 2(a)). However, in a real-life scenario, such correspon-

dence might not be available thus, we require a method that

can learn this conversion of modality. We achieve this with

the help of 3D GAN. This modality plays a key role in con-

tributing to the visual perception and greater stability of the

GANs by providing a tighter structural correspondence to

the MRI, thus reinforcing the preservation of structures in

the MRI.

Segmentation mask generation For visualization, back-

ground removal is usually required. Therefore, we remove

the background of the Poisson volume using a segmenta-

tion mask. The segmentation is performed by the graph cut

algorithm given by Jirik et al. [11] which uses the region

and boundary properties of the image to perform segmenta-

tion. The segmentation is performed using manual hints for

internal and external sections of the volume.

Training data We generate about 3000 sub-volumes of

size 32 × 32 × 32 for training the network. These vol-

umes are taken from the MRI and the Poisson grayscale

volumes by performing random rotations and translations to

augment the training dataset. The final results and illustra-

tions are generated by passing the complete volume of size

128× 128× 88 from the trained network. We further com-

pute the metrics from the generated Poisson volume w.r.t to

the MRI volume as shown in Table 1 which serves as the up-

per bound for our GAN outputs. Since the Poisson volume

contains the radiometry corresponding to the cryo volume

and gradients from the MRI, it serves as the ideal candidate

for realistic ground truth.

3.2.2 GAN network for modality conversion

We use the sub-volumes generated from the MRI and Pois-

son grayscale volume to train a GAN intended to perform

modality conversion of any MRI volume. The GAN learns

to generate a grayscale volume corresponding to an input

MRI. The generator is based on 3D-FCN (Fully Convo-

lutional Network) without any max-pooling layers. This

plays an important role in the selection of architecture for

our method since the MRI and grayscale volume have a

strict geometric correspondence. Avoiding the use of max-

pooling layers helps the network essentially to learn the

remapping of the intensity values without distorting the

structures. The generator architecture consists of 8 3D con-

volutional layers, each subsequent convolution is followed

by an activation function, in our case it being Leaky ReLU

with a negative slope of 0.01 except for the last layer where

sigmoid activation is used. The generator architecture can

be summarized in the table below.

Layer Filter Stride kernel activation

size size

Conv3D 1× 64 1 3 LeakyReLU

Conv3D 64× 128 1 3 LeakyReLU

Conv3D 128× 256 1 3 LeakyReLU

Conv3D 256× 512 1 3 LeakyReLU

Conv3D 512× 256 1 3 LeakyReLU

Conv3D 256× 128 1 3 LeakyReLU

Conv3D 128× 64 1 3 LeakyReLU

Conv3D 64× 1 1 3 Sigmoid

In order to ensure better structures we use Structural

Similarity (SSIM) loss [29] and an L1 loss term. The SSIM

loss enables the network to learn corresponding cryo struc-

tures more robustly while the L1 loss helps in further im-

proving the intensities of the generated voxels. The SSIM

loss Ls between two volumes I1 and I2 is given by,

Ls(I1, I2) = 1−
(2µ1µ2 + c1)(2σ1,2 + c2)

(µ2
1 + µ2

2 + c1)(σ2
1 + σ2

2 + c2)
,

where µ1 and σ2
1 are the mean and variance of I1, µ2 and σ2

2

are the mean and variance of I2 and σ1,2 is the covariance

of I1 and I2. c1 and c2 are constants to prevent overflow

in case of small denominators based on the dynamic range

of voxel values. The complete generator loss can be formu-

lated as,

LG = Ls(G(Imri), Igray) + ||G(Imri)− Igray||1

+ log(1−D(G(Imri))), (1)

where Imri is the input MRI subvolume, Igray is the

corresponding ground truth Poisson grayscale subvolume,

log(1−D(G(Imri))) [4] is the generator loss as described

in equation (1) for generator G and discriminator D for in-

put volume. The discriminator loss can be formulated as,

LD = log(D(G(Imri))). Our discriminator architecture is

as follows:

Layer Filter Stride kernel

size size

Conv3D + Batchnorm 1× 256 2 3

Conv3D + Batchnorm 256× 256 1 3

Conv3D + Batchnorm 256× 128 2 3

Conv3D + Batchnorm 128× 64 4 3

The last layer being linear of size 512×1 with Leaky ReLU

as an activation function for all layers except last where sig-

moid is used. The results of MRI to grayscale conversion

are shown in Figure 2(a). The performance of our network

can be seen by its ability to generate a grayscale volume

that is as close as possible to the ground truth (GT) Poisson

grayscale volume.
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(a) MRI to grayscale conversion. (b) Hint generation via stylization.

Figure 2. Modality conversion and hint slice generation for colorization.

3.3. Style transfer for generating hints

For generating planar hints, we use the style transfer

method proposed by Gatys et al. [3]. The objective is to

minimize the style loss and content loss, for which convo-

lution layers of a pre-trained VGG19[26] are used. We use

the features from the first five convolutions to characterize

the style and content loss. Figure 2(b) shows sample col-

orization.

Since the VGG is not trained on medical data, it is not

aware of the tissue structures present in our data. This re-

sults in subsequent irregularities in colors and color bleed-

ing. To control this to some extent we further penalize

the construction of color channels by using total variation

loss [25]. This is done by converting the resultant image

to Y UV colorspace and applying total variation loss over

the color channels U and V . This additional loss is com-

bined with the content and style losses of the style transfer

method.

When we apply Gatys style transfer on the complete vol-

ume slice by slice, it leads to incoherent results because the

loss function is defined for images and it ignores the con-

tent and style information along the third dimension in the

volume. Therefore, as explained next we utilize a separate

colorization step that completely preserves the MRI struc-

tures while propagating colors from the hints.

3.4. Volume colorization using hints

To perform colorization we refer to the work by Levin et

al. [13] that performs colorization using optimization with

hints given by the user. We extend this method to 3D vol-

ume colorization and use the stylized images as 2D hints

for colorization in 3D. To select slices as hints, we choose

the slices along any of the axes with a high standard devia-

tion to ensure good contrast. The colorization is solved as

a constrained optimization problem where two neighboring

voxels in a volume, p and q should have the same colors if

their intensities are similar. The colorization is performed

in the Y UV color space where the Y channel is the same

as the one generated using GAN and the cost function for

U and V is defined as

J(U) =
∑

p

(

U(p)−
∑

q∈N(p)

wpqU(q)

)2

where N(p) is a set of all voxels that lie in a 3 × 3 × 3
window around p. wpq is a weighting function which is

large for similar values of Y (p) and Y (q). Here we used

wpq = e−(Y (p)−Y (q))2/2σ2

p , where σp is the the variance

along N(p). Given the quadratic cost function subject to the

defined constraints, we minimize J(U) and J(V ). Since the

optimization problem creates a large system of sparse equa-

tions, we use multi-grid solver [22] to obtain an optimal
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Figure 3. Colorization result with a cryo style image.
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Figure 4. 3D rendering of the synthesised volume generated with the style image. RGBA volume visualized using Inviwo renderer [27].

2852



solution.

3.5. Upsampling

Due to hardware restrictions, the maximum cube size

that the GAN in our case could process is 128× 128× 88.

Therefore, we separately train an SRGAN [12] to upscale

the slices from the output and obtain the high-resolution

volume from the output. The SRGAN is trained to perform

8x upsampling of the image patches of cryo images of size

128 × 128. The final colorized volume is upsampled in a

slice by slice manner along the axial view.

4. Results and comparisons

We train our method using the Visible Human 2 [1] 16-

bit MRI and color cryo dataset. Our code is written in

Python where we use PyTorch [23] for training the GAN

and PyAMG [22] for solving the optimization problem to

generate the colorized volume. Our computational setup

consisted of an Intel Xeon 2.4 GHz processor with 128 GB

memory and Nvidia Quadro P6000 GPU with 24 GB mem-

ory. Our code will be made available for research purposes.

Once our network is trained with 32 × 32 × 32 sized

sub-volumes, we pass the complete 128 × 128 × 88 MRI

volume for colorization at test-time, which is the maximum

size of the volume that our 3D GAN network can handle

due to available GPU memory resource. It took 0.165 sec

for the modality conversion on the content volume of size

128× 128× 88 by the GAN and upsampling takes approx-

imately 1.5 seconds per image on our hardware. The high-

resolution samples in the paper are of size 512 × 352 ob-

tained by the trained SRGAN and the overall size of the

resulting high-resolution color volume is 512× 512× 352.

In Figure 3 and Figure 6(e), it can be seen that the tissue in-

tensities in MRI have been correctly mapped to tissue col-

ors of the cryo style image, and structures of input MRI

are maintained very well. In general MRI intensities do

not map to cryo intensities due to the difference in the cap-

turing methods, while cryo images are captured by camera

containing an RGB array sensor, the MRIs are captured by

magnetic fields and magnetic field gradients and our col-

orization takes care of such differences in the two modali-

ties.

To the best of our knowledge, there are no existing meth-

ods that can be compared directly with our method. Most

existing colorization methods work on 2D photographs and

none on medical images. We first compare these methods

with state-of-the-art exemplar colorization methods since

that is similar to our objective. However, we observe that

the modality of the data poses a major challenge for these

state-of-the-art methods. In Figure 5 we show the results

of exemplar colorization and observe that the results of col-

orization are not visually perceptive. We suspect that this

is due to the different intensity distribution of MRI (w.r.t

a photograph) and the dependence of these methods on

a feature extraction network such as VGG. Further, these

methods generate only the chroma channels without any

changes to the luminosity channel which is not suitable for

our objective. Hence we are motivated to compare our ap-

proach with four state-of-the-art methods for style transfer

after suitable modifications needed to be applied for med-

ical imaging data (see Figure 6). All of these methods re-

quire 2D images as input and therefore we process the MRI

volume slice-by-slice along the axial plane. In practice, we

suggest a full 3D processing as with our algorithm since

that leads to a better coherency in the volume compared to

a slice-by-slice approach.

In the comparisons, it can be seen that Huang et al. [7]

is unable to maintain coherency across different slices and

also adds undesirable artifacts. Li et al. [17] also do not

maintain such a coherency. In addition, they perform pho-

torealistic smoothening on the stylized image that blurs the

structures of the input volume. Since Li et al. [15] op-

erates on a video sequence, it preserves coherency across

slices but does not fully transfer the style details. Results

of Jamriška et al. [10] are best at reproducing the style but

the method requires hints that are completely aligned with

the input slices that may not be available for every style

image. It also fails to preserve the structures in the input

frames. We also perform a quantitative comparison of the

generated images with respect to the input MRI and RGB

Poisson volume. Table 1 shows average SSIM, PSNR, and

MSE metrics computed for the entire volume and averaged

over RGB color channels. SSIM is calculated between the

generated volume and the input MRI volume to ensure that

the structures present in the MRI are preserved. PSNR and

MSE are calculated between the generated volume and the

RGB Poisson volume to measure the color consistency and

overall coherency across the volume. Please see the supple-

mentary material for additional results.

Table 1. Quantitative comparison with recent style transfer meth-

ods. The comparisons were done on a 128 × 128 × 88 cubic

volume generated using each method before any upsampling and

segmentation mask are applied for sake of a uniform comparison.

Method SSIM ↑ PSNR ↑ MSE ↓

Li et al. [17] 0.313 7.57 0.177

Huang et al. [7] 0.313 7.02 0.201

Jamriška et al. [10] 0.314 6.03 0.255

Li et al. [15] 0.314 7.97 0.163

Ours 0.319 9.72 0.144

5. Discussion and Challenges

The unique setting of our problem brings forward sev-

eral key challenges in medical data colorization. The 3D
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Style Image Input MRI Levin et al. [13] Xiao et al. [31] Xu et al. [32] He et al. [6] Ours

Figure 5. Comparison with exemplar colorization methods. For a particular style image, our method results in a much better visual

perception. This demonstrates that exemplar colorization that cannot be performed on the MRI directly due to the nature of image modality.

Style image Input MRI Li et al. [17] Huang et al. [7] Jamriška et al. [10] Li et al. [15] Ours

Figure 6. Comparison with style transfer methods. Our method results in the most photorealistic colors while preserving the structures of

the input data. This balance of structural and radiometric reconstruction is lacking in most other methods that mostly focus on only one of

these aspects.

nature of the data places severe restrictions on computa-

tional resources. The difference in modality leads to a lack

of direct translation between MRI and cryo volume, thus

requiring the need for grayscale synthesis. A key limita-

tion of our method is that of the lack of semantic informa-

tion for MRI volume that prevents context-aware stylization

of hints. Gatys style transfer method and other stylization

techniques are not suitable for medical data and do not seem

to perform well leading to issues such as patchy colors and

color bleeding due to lack of semantic information. Further,

the lack of suitable colorization metrics for medical images

make comparison and evaluation difficult.

6. Conclusion

Automatic colorization of 3D imaging datasets has not

been much explored and is still dependent on highly man-

ual methods. The lack of methods for 3D volumetric col-

orization can be attributed to the absence of a model such

as VGG that is trained on datasets such as ImageNet [2]

which provides an important backbone for a myriad of vi-

sual computing tasks. Our primary contribution is to pro-

pose a framework with the aim that it could be used on

multi-modal data in 3D for performing colorization keep-

ing in view the photorealism of the generated outputs. To do

so we demonstrated how we can create a synthetic dataset

to create a different modality that is much more suited to

visual perception. Then we extend this method on newer

unseen data using the generalization capabilities of a GAN.

Overall, we build a framework that could allow us to per-

form colorization from contextual images and extend it to

3D. We also demonstrate how several state-of-the-art meth-

ods in 2D fail considerably on medical imaging data due to

its multi-modal and 3D nature. Our approach takes into ac-

count all these factors and shows robustness both in terms of

metrics and visual perception. Though our method has been

demonstrated to work on 3D medical volumes, the overall

framework is general enough to operate on other 3D multi-

modal data. Our approach opens up many broad aspects

of multi-modal colorization that has applications in high-

fidelity photorealistic visualization and colorization.
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