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Abstract

In this paper, we propose a novel approach for general-

ized zero-shot learning in a multi-modal setting, where we

have novel classes of audio/video during testing that are not

seen during training. We use the semantic relatedness of text

embeddings as a means for zero-shot learning by aligning

audio and video embeddings with the corresponding class

label text feature space. Our approach uses a cross-modal

decoder and a composite triplet loss. The cross-modal de-

coder enforces a constraint that the class label text features

can be reconstructed from the audio and video embeddings

of data points. This helps the audio and video embeddings

to move closer to the class label text embedding. The com-

posite triplet loss makes use of the audio, video, and text

embeddings. It helps bring the embeddings from the same

class closer and push away the embeddings from different

classes in a multi-modal setting. This helps the network to

perform better on the multi-modal zero-shot learning task.

Importantly, our multi-modal zero-shot learning approach

works even if a modality is missing at test time. We test our

approach on the generalized zero-shot classification and re-

trieval tasks and show that our approach outperforms other

models in the presence of a single modality as well as in the

presence of multiple modalities. We validate our approach

by comparing it with previous approaches and using vari-

ous ablations.

1. Introduction

Deep learning methods have become extremely popular

in language processing as well as in computer vision tasks

on images, videos, and sounds. Traditional deep learning

methods involve training the network on massive amounts

of data, with each category/class having a large number

of data points. However, in many real-life settings, data

may not be available for all the classes. In such cases, the

standard deep learning training methods cause the model

to overfit to the classes seen during training and fail mis-

erably in classifying the test data points from classes not

seen during training. Humans, on the other hand, can per-

form much better in such a setting. Given the description

of a category/class, such as a cat, a person can identify pic-

tures of cats with a high probability of success. Further, if

the person has already seen similar animals such as tigers,

leopards, he/she will be even better at identifying cats. We

want deep learning models to also work well in similar set-

tings. Zero-shot learning is an area of machine learning that

deals with this problem setting.

Zero-shot learning involves specialized training of net-

works in order to enable them to classify unseen classes at

test time using only basic class information such as class

name, description, or attributes [9, 18, 26]. Zero-shot learn-

ing methods help networks to learn good semantic repre-

sentations such that they can easily transfer the knowledge

gained from seen classes to the unseen classes. In the stan-

dard zero-shot learning setting, at test time, the data is only

from the unseen classes [16]. Recently, a more practical set-

ting, namely generalized zero-shot learning, is being used,

where the test data comes from both seen and unseen classes

[15]. This setting is harder because the model is biased to-

wards the seen classes.

Researchers have extensively applied zero-shot learning

to images, videos, and sounds. Very recently, the authors in

[21] dealt with a multi-modal setup where each data point

consisted of a video and corresponding audio. It applies

zero-shot learning to this setup and shows how audio in-

formation can help to better classify videos under the zero-

shot setting, e.g., honking of a car even if it is not visible

(occluded) in the video.

We propose a novel approach to address the generalized

multi-modal zero-shot learning problem in the audio-visual

setting. We use a cross-modal decoder to optimize the au-

dio and video embeddings in such a way that we can re-

construct the class label text feature from them. This forces

the projection networks to include class-level information

in the audio and visual embeddings. We also use a com-

posite triplet loss with audio, video, and text anchors to
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force audio/video embeddings to move closer to the label

text embedding of their corresponding classes and farther

away from other classes. We provide a detailed description

of our method in Sec. 3.

At test time, the data points (audio or video or both) get

projected to our learned embedding space where we per-

form the nearest neighbor classification. We predict the

class label embedding that is closest to the multi-modal em-

bedding of the test data point as the output class. We per-

form experiments for the generalized zero-shot classifica-

tion and retrieval tasks on the AudioZSL [21] dataset to

show the efficacy of our method. We validate the com-

ponents of our method through extensive ablation exper-

iments. We compare our approach with state-of-the-art

methods.

Our contributions can be summarized as follows:

• We propose a novel method to address the Audio-

Visual Generalized Zero-Shot Learning problem by

using a cross-modal decoder and a composite triplet

loss.

• We experimentally show that our method outperforms

the state-of-the-art method for both generalized zero-

shot audio-visual classification and retrieval.

• We empirically show that our method performs well

even when only audio or video data is present for the

test data point.

2. Related Works

Zero-Shot Learning: Zero-shot learning [23, 24, 2, 26,

6, 9, 22, 16, 18, 1, 15, 13] involves training a network in

a specialized way so that it can reasonably classify unseen

classes. A common training approach is to push the fea-

ture embeddings of data close to the semantic embedding

of their class. Semantic embedding of their class are gen-

erally obtained by using the class label text [9, 18, 26] or

description/attributes [16, 22, 26]. Some methods [1, 24, 2]

use both kind of class information. At test time, the query

data can be from the unseen classes only [16] or from both

seen and unseen classes. The latter setting is called the gen-

eralized zero-shot learning [6].

Audio-Visual Learning: Several works combine au-

dio and video data to improve network performance in

various tasks such as audio-visual correspondence learn-

ing [4, 20, 3, 19], audio-visual source separation [27, 10]

and others. The method proposed in [20] utilizes self-

supervision to detect the temporal alignment between audio

and video. Features learned from this setting can be ap-

plied to several downstream tasks like source localization

and action recognition. The authors in [8] propose to use

an audio-visual setting to train a model to perform speaker-

independent speech source separation. The work in [27]

Figure 1: AVGZSLNet Training. Input data is in the form

of tuples containing video, audio and class label. Pretrained

networks for video/audio/text extract the video features xv
i ,

audio features xa
i and text features xt

i from the video, au-

dio and class label data, respectively. Projection networks

FV , FA and FT project video, audio and text features to the

embeddings vi, ai and ti respectively. The complete net-

work (AVGZSLNet) is optimized on a combination of the

cross-modal decoder (CMD) loss and the composite triplet

(CT) loss.

uses self-supervision to perform pixel-level audio source lo-

calization. The authors in [21] propose CJME and experi-

mentally show how adding audio information to video data

can improve the model performance for zero-shot classifi-

cation and retrieval.

3. Proposed Method

3.1. Problem Setting

In the audio-visual generalized zero-shot learning prob-

lem, each training data point consists of a tuple containing

audio, video, and class label from the seen classes S. At the

time of testing, the network has to predict the class label for

the query data. The query data can belong to both seen (S)

and unseen (U ) classes. Query data can have either audio or

video or both. The objective is to predict the output class for

each query data by using the text embedding of each class

label and the audio/video/both embedding of the query data.

3.2. Method Description

We describe our proposed Audio-Visual Generalized

Zero-Shot Learning Network (AVGZSLNet) in detail in this

section.

Each input data point i consists of video, audio, and

class label (yi). We use pre-trained networks for video, au-

dio, and text to extract the corresponding video features xv
i ,

audio features xa
i , and class label text features xt

i for the

ith data point. During training, for each mini-batch, we

randomly sample multiple tuples of multi-modal features.

Each tuple consists of audio, video, and class label text fea-

tures. Let (xa
p, x

v
p, x

t
p) and (xa

q , x
v
q , x

t
q) be two tuples of

multi-modal features, where xa
p, x

a
q represent the audio fea-

tures; xv
p, x

v
q represent the video features; xt

p, x
t
q represent
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the class label text features for the class labels yp and yq
(yp 6= yq). Our method is trained on such tuples. For train-

ing, we first obtain the embeddings for audio, video, and la-

bel text features using the embedding/projection networks

(Fig. 1).

ap, vp, tp = FA(x
a
p), FV (x

v
p), FT (x

t
p) (1)

aq, vq, tq = FA(x
a
q ), FV (x

v
q), FT (x

t
q) (2)

Where FA, FV , FT are embedding/projection networks for

audio, video and text features. ap, vp, tp are the generated

audio, video and text embeddings for xa
p, x

v
p, x

t
p. aq, vq, tq

are the generated audio, video and text embeddings for

xa
q , x

v
q , x

t
q .

Our goal is to train these embedding networks in such a

way that the audio and video embeddings are close to the

class label text embedding of the same class and are away

from the class label text embeddings of different classes. To

achieve this objective, we train the embedding networks on

a combination of cross-modal decoder loss and composite

triplet loss (Fig. 1). We explain both the losses in detail

below.

We would like to point out that, in our method, the em-

bedding and feature terms are not interchangeable. Audio

(xa
i ) / video (xv

i ) / class label text (xt
i) features are extracted

by the pre-trained network from the audio/video/class la-

bel text data. Audio (ai) / video (vi) / class label text (ti)

embeddings are generated by the embedding/projection net-

works from the audio (xa
i ) / video (xv

i ) / class label text (xt
i)

features.

3.2.1 Cross-Modal Decoder Loss

In order to have a better cross-modal semantic alignment,

the audio or video embeddings should contain the class la-

bel information encoded in some form. Therefore, projec-

tion networks should produce audio and video embeddings

that contain information about the text features of that class.

To achieve this, we propose a cross-modal decoder (Fig. 2)

that is trained to reconstruct the class label text features

from the video embeddings, audio embeddings and text em-

beddings separately. This will force the embedding net-

works to include the class information in the video, audio

embeddings (Eq. 3). We also use a triplet loss to ensure

that the reconstructed text feature from the text embedding

is close to the reconstructed text features from the audio and

video embeddings of the same class (Eqs. 4, 5).

LREC(ap, vp, tp, x
t
p) = d(FDEC(tp), x

t
p)

+ d(FDEC(ap), x
t
p) + d(FDEC(vp), x

t
p) (3)

LCTA(ap, tp, x
t
p, aq) = [d(FDEC(tp), FDEC(ap))−

d(FDEC(tp), FDEC(aq)) + δ]+ (4)

Figure 2: Proposed Cross-Modal Decoder. (xa
p, x

v
p, x

t
p)

and (xa
q , x

v
q , x

t
q) are two data points with class labels yp

and yq (yp 6= yq) from the training set where xa
p, x

a
q rep-

resent audio features; xv
p, x

v
q represent video features; and

xt
p, x

t
q represent text label features. FA, FV , FT are embed-

ding networks for audio, video and text features; ap, vp, tp
represent the audio, video and text embeddings generated

by the projection/embedding networks from xa
p, x

v
p, x

t
p re-

spectively; and aq, vq, tq represent the audio, video and text

embeddings generated by the projection/embedding net-

works from xa
q , x

v
q , x

t
q respectively. FDEC projects each

type of embeddings to the text feature of the data point.

xtt
p , x

tv
p , xta

p refer to the reconstructed text feature from

ap, vp, tp. xtt
q , x

tv
q , xta

q refer to the reconstructed text fea-

ture from aq, vq, tq . The LDEC , LCTV , LCTA losses are

applied to these outputs to obtain the cross-modal decoder

loss LCMD.

LCTV (vp, tp, x
t
p, vq) = [d(FDEC(tp), FDEC(vp))−

d(FDEC(tp), FDEC(vq)) + δ]+ (5)

LCMD = LREC + LCTA + LCTV (6)

Where FDEC is the shared decoder network for text, au-

dio and video embeddings that is used to re-construct the

label text features from the video, audio and text embed-

dings; LREC is the reconstruction loss for the text features

generated from the audio, video and label text embeddings;

LCTA is the triplet loss with text feature reconstructed from

text embedding as the anchor, the text feature reconstructed

from ap as the positive input and the text feature recon-

structed from aq as the negative input; LCTV is the triplet

loss with text feature reconstructed from text embedding as

the anchor, the text feature reconstructed from vp as the pos-

itive input and the text feature reconstructed from vq as the

negative input; LCMD is the cross-modal decoder loss, δ

is the margin value, d is the distance metric. We use mean

square error (MSE) for the distance metric.
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Figure 3: Composite triplet loss. Four types of triplets are

formed using either the label text embedding, audio embed-

ding and video embedding as the anchor.

In the process of minimizing LCMD, the projection net-

works learn to produce audio and video embeddings that

contain the class information. We experimentally show that

this improves the performance of the network.

3.2.2 Composite Triplet Loss

In order to help the network bring audio and video embed-

dings closer to the text embedding of their corresponding

class and push embeddings of different classes further away,

we use a composite triplet loss. Triplet loss generally in-

volves comparing a base input/anchor to a positive input

and a negative input. We formulate multiple cross-modal

triplet losses by using either text, audio and video data as

the anchor input (Fig. 3, Eqs. 7, 8, 9, 10).

LTA(ap, tp, aq, tq) = [d(ap, tp)− d(aq, tp) + δ]+ (7)

LAT (ap, tp, aq, tq) = [d(tp, ap)− d(tq, ap) + δ]+ (8)

LTV (vp, tp, vq, tq) = [d(vp, tp)− d(vq, tp) + δ]+ (9)

LV T (vp, tp, vq, tq) = [d(tp, vp)− d(tq, vp) + δ]+ (10)

LCT = LTV + LV T + LTA + LAT (11)

Where LTA and LTV are the triplet loss on audio and video

embeddings respectively with the class label text embed-

ding as the anchor. LAT and LV T are the triplet loss on the

class label text embeddings with the audio and video em-

beddings as the respective anchors. LCT denotes the total

composite triplet loss.

Figure 4: AVGZSLNet Testing. Query data can have either

audio or video or both modalities. The trained projection

networks are used to obtain the audio and/or video embed-

dings of the query data and the class label text embeddings

of all the seen and unseen classes. The nearest class label

text embedding to the audio or video or both embedding is

predicted as the output class. The query data can be from

both seen and unseen classes.

3.2.3 Total Loss

We have defined the cross-modal decoder loss (LCMD) in

Sec. 3.2.1 and the composite triplet loss (LCT ) in Sec.

3.2.2. Therefore, the full loss function can be defined as

follows:

L = LCMD + LCT (12)

3.2.4 Testing

During testing (Fig. 4), we first obtain the label text embed-

ding for all the classes using FT . Next, for each query data

point, we obtain the embeddings for audio, video features

using FA, and FV , respectively. Then, we calculate the dis-

tance of the audio and video embeddings of each query data

point from every class label text embedding. We find the

mean of the audio and video distances to obtain the final

distance between the query and each class label text embed-

dings. Using this distance, we predict the nearest class text

embedding as the output class. If one of the modalities (au-

dio or video) is missing, then we calculate the distance only

for the available modality and find the nearest class label

text embedding. We provide further details on the testing

modality in Sec. 4.2.1.

4. Experiments

4.1. Dataset

We use the AudioSetZSL dataset [21] for the audio-

visual generalized zero-shot learning. It is a subset of the

AudioSet [11] dataset. AudioSet consists of segments from

YouTube videos along with the audio. The videos have

different audio event labels, such as different types of hu-

man/animal/environmental sounds and sounds of musical
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instruments. Each video segment can have multiple audio

event labels, and there are 527 labels in total.

In order to select videos for AudioSetZSL1 from Au-

dioSet, the authors in [21] discard highly correlated classes

to obtain a total of 33 classes. Next, they discard all video

segments containing more than one of the selected classes

to create a multi-class classification setting. Finally, they

select 1,56,416 video segments from the AudioSet dataset

for the AudioSetZSL dataset. All the videos are of the same

duration as defined in AudioSet [11]. Statistics on the Au-

dioSetZSL dataset are given in [21]. The 33 classes con-

sist of 23 seen and 10 unseen classes. The unseen classes

have minimal overlap with the Kinetics dataset [5] training

classes.

For the audio-visual zero-shot learning task, we train the

network on the seen class training examples and evaluate it

on the test examples from both seen and unseen classes.

4.2. Implementation Details

We use the audio network proposed in [14] as the pre-

trained network to extract audio features from the audio

data. We train it on the audio data spectrogram in the train-

set of AudioSetZSL. We extract the audio features from this

network after the seventh convolution layer and obtain a

1024 dimension vector by averaging. For video features,

we use an inflated 3D CNN network pre-trained on the Ki-

netics action recognition dataset [5]. The video feature is

obtained in the same way, i.e., from the layer before the

classification layer and averaged to a 1024 dimension vec-

tor. For the text features, we use the word2vec network that

has been pre-trained on the Wikipedia dataset to obtain 300

dimension features [17]. We use a δ value of 1.

The projection network for audio and video embeddings

are 2 layer fully connected networks. The text embedding

network is a 1 layer fully connected network. The output

dimension of all the 3 projection networks is 64. The cross-

modal decoder network in our method is a 2 layer fully con-

nected network with an output dimension of 300, which is

the same as the text features produced by word2vec.

4.2.1 Testing Modality

We report the experimental results for three settings based

on the testing modality, i.e., test data point has a) only audio

or b) only video or c) both data. When the query data point

contains only audio or only video data, we can directly cal-

culate the distance of the query data point from all the class

label embeddings using the audio or video embedding, re-

spectively. Using this distance, we can find the nearest class

label embedding, which is the predicted class.

When the query data point contains both audio and video

data, we calculate the distance from all the class label

1https://github.com/krantiparida/AudioSetZSL

embeddings for both audio and video data. We compute

the average of the audio and video distances and use the

mean distance to find the nearest class label text embed-

ding (AVGZSLNet (eq wt)). We show experimentally that

AVGZSLNet (eq wt) significantly outperforms all the base-

lines and the compared methods.

The authors in [21] perform a weighted addition of the

audio and video distances and use it to find the nearest

neighbor class in the text embedding space. They use an

attention module to learn the attention weights for the audio

and video distances. We provide an additional result us-

ing this attention mechanism (AVGZSLNet (w/ attn)). We

would like to point out that our method, AVGZSLNet (eq

wt), outperforms the state-of-the-art attention-based method

CJME, even though we do not use attention.

4.2.2 Base-lines and Compared methods

We compare our generalized zero-shot classification and re-

trieval results with several base-line models, namely, the

audio-only model, the video-only model, the audio-video

model, and the concatenation model. The audio-only model

consists of a single projection/embedding network project-

ing audio features to the embedding space, and it trains

to push the audio embeddings closer to the correspond-

ing class label embedding. The video-only model is sim-

ilar, but it uses only video data. The audio-video concate-

nation model also trains only one projection network, but

it uses the audio-video concatenated features as input. It

needs both audio and video data to perform training or test-

ing. Therefore, this model cannot work when only audio or

video modality is present. For the retrieval experiments, we

also report the results for a base-line referred to as the pre-

trained model. This model uses the features produced by

the pre-trained networks (used to extract the initial features

for our method) to perform retrieval. It can use only audio

or video features at a time.

We also compare our results with other methods in this

setting. Coordinated Joint Multimodal Embeddings [21]

makes use of pair-wise cross-modal similarity loss between

audio and video embeddings of the same data-point and

triplet loss with text embedding as anchor and audio/video

embeddings as the positive and negative inputs. Gener-

alized Canonical Correlation Analysis [12] is a standard

method for maximizing the correlation between example

pair-wise data. In this setting, GCCA is used to maxi-

mize the correlation between audio, video, and text for ev-

ery data-point. We report the retrieval results for GCCA.

We also compare our method with zero-shot learning ap-

proaches, namely, CONSE, DEVISE, SAE, ESZSL, ALE.

The results for the audio-only, video-only, pre-trained,

CONSE, DEVISE, SAE, ESZSL, ALE, CJME models are

the same as reported in [21].
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Model Test Modality S U HM

audio only model [21] audio 28.35 18.35 22.22

CJME [21] audio 25.58 20.30 22.64

AVGZSLNet (ours) audio 33.29 20.43 25.32

video only model [21] video 43.27 27.11 33.34

CONSE [21, 18] video 48.50 19.60 27.90

DEVISE [21, 9] video 39.80 26.00 31.50

SAE [21, 13] video 29.30 19.30 23.20

ESZSL [21, 22] video 33.80 19.00 24.30

ALE [21, 1] video 47.90 25.20 33.00

CJME [21] video 41.53 28.76 33.99

AVGZSLNet (ours) video 48.05 30.71 37.47

audio-video concat model both 45.83 27.91 34.70

CJME (eq wt) [21] both 30.29 31.30 30.79

AVGZSLNet (ours) (eq wt) both 46.04 33.80 38.98

CJME [21] (w/ attn) both 41.07 29.58 34.39

AVGZSLNet (ours) (w/ attn) both 50.96 32.73 39.86

Table 1: Generalized zero-shot classification mean class ac-

curacy (% mAcc) achieved with audio or video or both (au-

dio and video) data during testing.

4.3. Metrics

We use the mean class accuracy (% mAcc) metric for

classification and the mean average precision (% mAP) met-

ric for retrieval [25]. We perform classification/retrieval for

all classes and then report the performance for seen (S) and

unseen (U) classes.

HM =
2× U × S

U + S
(13)

We focus on the harmonic mean (HM) of the perfor-

mances on seen and unseen classes and try to achieve higher

HM for our method as it is not biased towards the seen or

unseen classes. This is a general practice in generalized

zero-shot learning classification. We have used the same

metric for both classification and retrieval.

4.4. Generalized Zero­Shot Classification

Table 1 reports the performance of our method for gen-

eralized zero-shot classification. When only audio or video

data is present at test time, our model significantly outper-

forms the audio-only and video-only base-line models. This

shows that training on both audio and video has helped our

model to generalize better than training on only audio or

video. Our model also significantly outperforms CJME by

an absolute margin of 2.68% and 3.48% in the HM metric

for the cases when the test modality is only audio and only

video, respectively.

When both audio and video modalities are present in

the query data points, AVGZSLNet (eq wt) outperforms

CJME (eq wt) by an absolute margin of 8.19% (HM) and

CJME (w/ attn) by an absolute margin of 4.49% (HM).

AVGZSLNet (eq wt) also outperforms the audio-video con-

catenation model by an absolute margin of 4.28% (HM).

AVGZSLNet (w/ attn) outperforms CJME (w/ attn) by a

Model Test S U HM

pre-trained model [21] T → A 3.83 1.66 2.32

GCCA [21, 12] T → A 49.84 2.39 4.56

audio only model [21] T → A 43.16 3.34 6.20

CJME [21] T → A 48.24 3.32 6.21

AVGZSLNet (ours) T → A 51.55 3.85 7.17

pre-trained model [21] T → V 3.83 2.53 3.05

GCCA [21, 12] T → V 57.67 3.54 6.67

video only model [21] T → V 48.62 5.25 9.47

CJME [21] T → V 59.39 5.55 10.15

AVGZSLNet (ours) T → V 62.20 6.39 11.60

CJME (eq wt) [21] T → AV 65.45 5.40 9.97

AVGZSLNet (ours) (eq wt) T → AV 72.25 6.91 12.61

CJME (w/ attn) [21] T → AV 62.97 5.67 10.41

AVGZSLNet (ours) (w/ attn) T → AV 68.94 7.08 12.84

Table 2: Generalized zero-shot retrieval mean average pre-

cision (% mAP) achieved with only audio, only video, and

both (audio and video) data during testing.

margin of 5.47% in the HM value. The results clearly in-

dicate that our method AVGZSLNet (eq wt) significantly

outperforms CJME (w/ attn) without even using attention.

This shows the effectiveness of our method.

4.5. Generalized Zero­Shot Retrieval

Table 2 shows generalized zero-shot retrieval results

from the class label text, i.e., retrieving data points from the

dataset in the order of how close they are to the class label

text in the embedding space. The results for unseen classes

for all cases are very low. We can attribute this observation

to the bias of the trained models towards seen classes in gen-

eralized zero-shot learning. We can address this problem

in classification by reducing the scores of the seen classes.

However, we cannot make this correction here as there is no

concept of class or scores in retrieval. We use HM as a met-

ric for zero-shot retrieval for a fair comparison with [21].

Other zero-shot retrieval approaches have used a mean of

seen and unseen class accuracy as the metric. Such a metric

will give higher results but will not give a clear picture of

seen and unseen accuracy.

From Table 2, we can see that when performing retrieval

from class label text embedding using only audio or only

video embedding, our method AVGZSLNet performs better

than CJME, the base-line audio-only model, the pre-trained

model, and GCCA.

When both audio and video data is present for each data-

point, AVGZSLNet (eq wt) outperforms CJME (eq wt) by a

margin of 2.64% in HM value. It should be noted again that

our method AVGZSLNet (eq wt) significantly outperforms

CJME (w/ attn) without even using attention. AVGZSLNet

(w/ attn) outperforms CJME (w/ attn) by a margin of 2.43%

in HM value. We provide some qualitative results in Fig 5

comparing our method and CJME for the generalized zero-

shot retrieval task on the AudioSetZSL dataset. The re-

trieval experiments use the class label texts as anchor.
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Figure 5: Generalized Zero-Shot Retrieval Qualitative Results.

LCT LREC LCTA LCTV S U HM

Y N Y Y 42.76 32.88 37.17

Y Y N Y 46.40 31.84 37.77

Y Y Y N 45.87 31.54 37.38

Y Y Y Y 46.04 33.80 38.98

Table 3: Ablation study to verify the contribution of LREC ,

LCTA and LCTV components of LCMD on AVGZSLNet

(eq wt) for generalized zero-shot classification (% mAcc).

5. Ablations

5.1. Significance of the components of LCMD

We perform ablation experiments to verify the contribu-

tion of LREC , LCTA and LCTV components of our cross-

modal decoder loss (LCMD). From Table 3, we observe

that removing any of these three components impacts the

network performance negatively. Therefore, LREC , LCTA,

and LCTV are important components, and consequently,

cross-modal decoder loss is also significant.

LCMD LTA LAT LTV LV T S U HM

Y N Y Y Y 48.91 27.65 35.33

Y Y N Y Y 44.28 29.96 35.74

Y Y Y N Y 51.27 28.54 36.67

Y Y Y Y N 45.91 27.90 34.71

Y Y Y Y Y 46.04 33.80 38.98

Table 4: Ablation study to verify the contribution of LTA,

LAT , LTV and LV T components of LCT on AVGZSLNet

(eq wt) for generalized zero-shot classification (% mAcc).

5.2. Significance of the components of LCT

We perform ablation experiments to verify the contri-

bution of LAT , LTA, LV T and LTV components of our

composite triplet loss (LCT ). The results in Table 4 indi-

cate that if we drop any of these four components, then the

network performance drops significantly. Therefore, LAT ,

LTA, LV T , and LTV are important components, and con-

sequently, composite triplet loss is also a significant com-

ponent of our method.
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Figure 6: t-SNE plots of video/audio embeddings along with the class label text embeddings of the test samples of 5 randomly

chosen seen classes of AudioSetZSL and each class is represented by one color. Stars indicate the class label text embedding

of each class. Both audio and video embeddings, produced by AVGZSLNet are significantly closer to the respective class

label text embedding (same color) as compared to CJME. For AVGZSLNet, the stars (class label text embeddings) are

surrounded by audio/video embeddings of the same class.

6. Visualizations

We provide t-SNE plots in Fig. 6 of video and audio em-

beddings along with the class label text embeddings of 40

randomly chosen query samples from 5 randomly chosen

seen classes of AudioSetZSL for CJME and AVGZSLNet.

Please note that we used the same query data points for

both AVGZSLNet and CJME models for a fair compari-

son. The t-SNE plots for both audio and video embeddings

show that AVGZSLNet audio/video embeddings are signif-

icantly closer to the class label text embedding as compared

to CJME. Therefore, CMD loss and CT loss have helped our

projection networks to produce embeddings that are closer

to the text embedding of the same class.

7. Statistical Significance

We studied the statistical significance [7] for our method

AVGZSL against CJME. If the difference in the rank of the

two methods lies within Critical Difference, then they are

not significantly different. Fig. 7 visualizes the post hoc

analysis using the CD diagram for generalized zero-shot

classification. We observe in Fig. 7 that the statistical differ-

ence between AVGZSLNet and CJME is almost twice the

Figure 7: Statistical significance test to show that

AVGZSLNet is statistically different from CJME with a sig-

nificance level of 0.05.

Critical Difference (CD=0.3412). Therefore, AVGZSLNet

is statistically different from CJME.

8. Conclusion

We propose a method for audio-visual generalized zero-

shot learning in a multi-modal setting using a combination

of cross-modal decoder loss and composite triplet loss to

improve the performance. Training on these losses helps

the audio and video embeddings to move closer to the text

embeddings of the corresponding class labels. We empiri-

cally show that our method outperforms the state-of-the-art

method on audio-visual generalized zero-shot classification

and retrieval. Through ablation experiments, we validate

the choice of the losses that we propose.

3097



References

[1] Zeynep Akata, Florent Perronnin, Zaid Harchaoui, and

Cordelia Schmid. Label-embedding for image classification.

IEEE transactions on pattern analysis and machine intelli-

gence, 38(7):1425–1438, 2015.

[2] Zeynep Akata, Scott Reed, Daniel Walter, Honglak Lee, and

Bernt Schiele. Evaluation of output embeddings for fine-

grained image classification. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2927–2936, 2015.

[3] Relja Arandjelovic and Andrew Zisserman. Look, listen and

learn. In Proceedings of the IEEE International Conference

on Computer Vision, pages 609–617, 2017.

[4] Yusuf Aytar, Carl Vondrick, and Antonio Torralba. Sound-

net: Learning sound representations from unlabeled video.

In Advances in neural information processing systems, pages

892–900, 2016.

[5] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 6299–6308, 2017.

[6] Wei-Lun Chao, Soravit Changpinyo, Boqing Gong, and Fei

Sha. An empirical study and analysis of generalized zero-

shot learning for object recognition in the wild. In European

Conference on Computer Vision, pages 52–68. Springer,

2016.
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