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Abstract

Learning from a few examples is an important practi-

cal aspect of training classifiers. Various works have ex-

amined this aspect quite well. However, all existing ap-

proaches assume that the few examples provided are always

correctly labeled. This is a strong assumption, especially

if one considers the current techniques for labeling using

crowd-based labeling services. We address this issue by

proposing a novel robust few-shot learning approach. Our

method relies on generating robust prototypes from a set

of few examples. Specifically, our method refines the class

prototypes by producing hybrid features from the support

examples of each class. The refined prototypes help to clas-

sify the query images better. Our method can replace the

evaluation phase of any few-shot learning method that uses

a nearest neighbor prototype-based evaluation procedure to

make them robust. We evaluate our method on standard

mini-ImageNet and tiered-ImageNet datasets. We perform

experiments with various label corruption rates in the sup-

port examples of the few-shot classes. We obtain significant

improvement over widely used few-shot learning methods

that suffer significant performance degeneration in the pres-

ence of label noise. We finally provide extensive ablation

experiments to validate our method.

1. Introduction

Consider that you need to train a robot on a new concept

of spectacles. You ideally would like to do so by providing

a few examples. However, you make a mistake and provide

an example of sunglasses as spectacles instead of using its

original class. What will your robot do now? Will it re-

trieve your spectacles when you ask it to do so? Most prob-

ably not if your robot is trained using existing deep learning

techniques. Through this paper, we address this issue and

provide a method to perform robust prototype-based classi-

fication on a limited data setting.

Deep learning methods need vast amounts of annotated

data for training, which can be very difficult and costly to

obtain. Such models are unable to perform well for cat-

egories having very few training samples. On the other

hand, humans can quickly learn new categories by sim-

ply looking at a few samples and can perform very well

in identifying them. We need to reduce this gap between

deep learning and humans. Few-shot learning algorithms

address this shortcoming of deep learning. Few-shot learn-

ing involves training networks in such a way that they can

achieve good results for classes that have very few training

data (few-shot classes). Researchers have proposed several

methods to deal with this problem [19, 2, 17, 12, 21, 4, 26].

However, it is possible that these few-shot classes contain

some support examples with corrupted labels. This makes

the few-shot learning problem even more challenging. In

this paper, we deal with the problem of few-shot learning,

where the few-shot classes contain support examples with

corrupted labels. In the few-shot learning setting, the net-

work receives one episode at a time, and each episode con-

tains a set of support examples and a set of query examples.

Each episode contains a few classes and has very few sup-

port examples per class. The query examples also belong

to one of the classes present in the episode. In this setting,

the task of the network is to use the limited support data

present in an episode to classify the query data points in the

episode.

During the base class (defined in Sec. 3.1) training phase,

the model trains on episodes containing classes from the

base class set only. During the novel class (defined in

Sec. 3.1) evaluation phase (testing), the model receives

episodes from novel/few-shot classes (not part of the base

class set), and it has to successfully classify the query exam-

ples of the novel class episode using the support examples

in that episode only. Since the number of support exam-

ples per class is very low, standard classification training

makes the network overfit to the limited training data in the

episode and fail miserably in classifying the query data. A

large number of few-shot learning methods perform few-

shot testing by applying the nearest neighbor prototype-

based testing approach (NNP) [19, 12, 30, 29, 24, 8], i.e.,

for each class, they learn a prototype, and for each query ex-
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ample, they calculate the distance of the query feature from

the prototypes. They predict the class prototype closest to

the query example in the feature space as the output class.

In the above setting, during the novel class evaluation

phase, if some of the support examples of the novel/few-

shot classes have corrupted labels, then the few-shot learn-

ing algorithms will suffer from significant performance

degradation. We propose a novel method to address the loss

in performance (due to corrupted support examples) of few-

shot learning methods that use the NNP testing approach.

This work focuses specifically on the novel class evalua-

tion phase (testing) of few-shot learning algorithms. Several

methods deal with corrupted labels in the full-shot settings

(with a huge number of samples per class) [18, 5, 10, 3, 31].

However, these methods are training-based and do not per-

form well when trained on the few support examples in the

novel class episode due to overfitting, as shown in Sec. 5.9.

Therefore, there is an urge to make few-shot learning robust

to label corruption.

The support examples with corrupted labels (in a novel

class episode) corrupt the prototypes computed for each

class and harm the performance. Our method refines the

prototypes in order to reduce the level of label corruption in

them. It produces hybrid features from the features of the

support examples extracted by the network and performs a

soft k-means clustering on the support features and hybrid

features in order to refine the prototypes. Since the cor-

rupt support examples are relatively closer to the other sup-

port examples of their actual class, the clustering procedure

helps correct the labels for many such support examples.

This, in turn, helps reduce the influence of the corrupt sup-

port examples in the class prototypes of the wrong class.

Consequently, the refined class prototypes perform better in

classifying the query data points of that episode. We call our

method the Robust Nearest Neighbor Prototype-based test-

ing approach (RNNP) (depicted in Fig. 1). Our method can

replace the testing process of any few-shot learning algo-

rithm that uses the nearest neighbor prototype-based evalu-

ation. Our method does not make use of any external data or

additional labels of any form. In order to demonstrate the

efficacy of our method, we replace the testing process of

a state-of-the-art few-shot learning method FEAT [30] and

a very popular few-shot learning method prototypical net-

work [19]. Our experiments show that our testing strategy

works for multiple datasets and few-shot learning methods.

To the best of our knowledge, this is the first work that

tries to make the testing strategy of few-shot image clas-

sification algorithms robust to any label corruption in the

support examples. Our major contributions are as follows:

• We propose a novel approach called Robust Near-

est Neighbor Prototype-based testing (RNNP) that

makes the few-shot evaluation process robust to

noisy/corrupted labels in the novel class episodes.

• We experimentally show that our method significantly

improves the performance of few-shot learning meth-

ods that use a nearest neighbor prototype-based testing

strategy, in the presence of noisy labels.

• We validate the different components of our method

using extensive ablation studies.

2. Related Works

2.1. Few­Shot Classification

Researchers have proposed several approaches to deal

with the problem of few-shot classification. Siamese Neural

Network [6] trained models to learn to discriminate between

pairs of images. This training strategy helped the network

to even discriminate between images from previously un-

seen classes at test time. Prototypical Network [19] pro-

duces class prototypes by averaging the features of support

examples of that class and then uses the nearest neighbor

approach to find the nearest prototype to the query feature

in order to predict its class. Model Agnostic Meta Learn-

ing [2] method trains the network to quickly adapt to new

data by taking an average gradient step that benefits mul-

tiple non-similar tasks at once.RelationNet [20] trains the

network to generate a similarity score between a query im-

age and support examples of a class.

PFA [14] tries to predict the parameters for adapting a

network to the new class by using the activations for new

images. TADAM [12] uses task-based embedding as atten-

tion to the network to produce better features for the images

in the episode. MetaOptNet [7] trains the network to learn

features that work well with linear classifiers when used for

few-shot classification. CTM [8] trains a module to select

important dimensions in the features that help improve the

classification performance. Simple Shot [23] optimizes the

representations to perform better on the nearest neighbor

classifier.

FEAT - Few-shot Embedding Adaptation with Trans-

former [30] uses multi-headed attention to adapt the class

prototypes to draw them away from each other. This helps

the nearest neighbor classification further. PARN [27] trains

a position-aware relation network (PARN) that tries to make

the relation module invariant to changes in the spatial posi-

tion of the object. MetaMG [28] trains a network to perform

fast few-shot incremental learning

2.2. Learning with Noisy Labels

Researchers have proposed various methods to helps the

network learn better in the presence of noisy labels. Some

methods focus on estimating the latent noisy transition ma-

trix [9, 11, 18, 13]. Co-teaching [3], involves training two

networks simultaneously, and each network provides sam-

ples with possibly clean labels from each mini-batch to the

other network for training.
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(a) (b) (c)

Figure 1: (a) Green, red, and magenta refer to support examples of 3 classes, say A, B, and C, respectively. Let us assume

that due to label corruption, 1 support example of each class is corrupted (marked with the color of a different class). Stars

represent the prototype for each class (marked with the color of the corresponding class) computed by averaging the support

features. Standard nearest neighbor prototype-based classification (NNP) results in wrongly predicting class A for query data

point Q. (b, c) Triangles represent the unlabeled hybrid features produced from the support example features. RNNP produces

unlabeled hybrid features from the support examples and performs clustering on the hybrid features, support features, and

the query feature. It updates the cluster centers and rectifies the labels of the support examples. The newly computed class

prototypes (depicted as stars marked with the color of the corresponding class and surrounded by an orange circle) result in

correctly predicting class B for the query data point Q. The arrow points to the class prototype closest to Q.

Methods like Decoupling [10] use a “Disagreement"

strategy of training, where the network updation is based on

the level of disagreement between two different networks

on the same data point. Co-teaching+ [31] combines the

“Disagreement" strategy with Co-teaching to improve the

robustness of the model. However, there is no guarantee

that the examples chosen for the “Disagreement" strategy

have the correct labels. Another approach of tackling this

problem is to utilize regularization from peer networks to

improve the generalization ability of networks by encour-

aging agreement between them. However, these methods

still suffer from the memorization of the noisy labels [33].

JoCoR (Joint Training with Co-Regularization) [25] trains

two networks with a conventional supervised loss and a co-

regularization loss. It also employs an example selection

strategy, which chooses examples with a lower total loss for

training the networks. This minimizes the flow of erroneous

information.

Our few-shot setting has corrupt labels only in the novel

class episodes, which have very few samples. These meth-

ods require a large number of labeled data for training, and

therefore, they overfit to the scant data in the few-shot set-

ting. We experimentally show in Sec. 5.9 that such methods

do not perform well and are not suitable for the few-shot

setting.

3. Proposed Method

3.1. Problem Setting

In the few-shot learning setting, there are two sets of

classes of images, i.e., the base class set and the novel class

set. The unique nature of this setting is that these two sets of

classes do not share any common classes. The base classes

Cbase have many labeled data points, but the novel/few-shot

classes Cfew only have a few labeled examples.

An episodic formulation is generally followed in the

few-shot learning setting. In this setting, the network

receives 1 episode at a time and each episode con-

tains a set of support examples and a set of query ex-

amples. In an episode, there are N classes and each

class has K support examples per class i.e. S =
{(x1, y1), (x2, y2)...(xK×N , yK×N )}. The query exam-

ples also belong to one of the N classes i.e. Q =
{(x∗

1
, y∗

1
), (x∗

2
, y∗

2
)...(x∗

q , y
∗

q}. Here xi are images and yi ∈
{1..N} are labels. Such an episode is referred to as a K-shot

N-way episode. The number of support examples per class

is very low (e.g. K=1,5,10).

There are two phases in this setting: the base class train-

ing phase and the novel class evaluation (testing) phase.

During the base class training phase, the network trains on

episodes of the base classes. Each such episode contains a

few classes from the base class set. The network trains on

the support examples per class (S) present in each episode.

During this phase, the network can carry over the knowl-

edge gained from one episode to the next.

During the novel class evaluation phase, the network re-

ceives episodes of the novel classes. The network has to

use the few support examples per class (S) present in an

episode to classify the query data points (Q) in the episode.

During this phase, the network cannot carry over the knowl-

edge gained from one episode to the next. In the novel class

episodes, some of the support examples labels are incorrect.

This type of corruption makes the few-shot classification of

2666



the novel classes challenging. The distribution of label cor-

ruption is uniform across the classes in each episode. The

objective of the network is to deal with this corruption and

classify query examples in each novel class episode.

3.2. Method Overview

In the few-shot learning problem setting with label cor-

ruption (in novel class episodes), since there are a limited

number of support examples per class and some support

examples may also be corrupted (belonging to a different

class), the computed class prototypes are not correct. We

propose a novel method (RNNP) to improve the robustness

of the few-shot learning method when used for few-shot

testing on episodes that contain support examples with cor-

rupted labels (Fig. 1). Since RNNP is a testing method,

it can replace the testing process of any few-shot learn-

ing method that utilizes a nearest neighbor prototype-based

(NNP) few-shot testing mechanism.

Let us assume that we have a base network B already

trained on the episodes from the base classes. During the

novel class evaluation phase (testing), given a novel class

episode, we first extract features for the support images and

query images using the trained base network (B).

zi = B(xi) (1)

where xi refers to the support or query image, and zi is the

extracted feature of that image.

Next, we calculate the prototypes of each class using the

support image features of that class. Many methods use

simple averaging to get the mean prototype per class [19].

Some methods adjust this mean prototype to further help in

classifying the query examples [30].

pn =

K∑

i=1

zni
K

(2)

where pn is the prototype for the nth class and zn
1
, zn

2
, ...znK

are the features of the support examples of the nth class.

The computation process of the prototypes unknowingly

utilizes the support examples with corrupted labels too.

Therefore, the class prototypes are not fully correct and

need refinement. In order to refine them, we first create

unlabeled hybrid features by combining the support images

features from the same class using proportion hyperparam-

eter α. For each support image feature, we generate β unla-

beled hybrid features.

zu = α ∗ zni + (1− α) ∗ znj (3)

where zu is the generated unlabeled hybrid feature, zni , z
n
j

are features of support examples of class n ∈ Cfew and

i 6= j. α ∈ (0, 1) is the proportion hyper-parameter.

Next, for each query image, we perform soft k-means

clustering on the combined set of the support image fea-

tures, the hybrid features, and the corresponding query im-

age feature. We use the class prototypes computed in Eq.

2 as the initial cluster centers for the clustering algorithm.

Using the current cluster centers, we assign soft labels to the

support and hybrid features and the single query feature. We

update the cluster centers using these soft labels. We repeat

this process a few times and use the final cluster centers

as the refined class prototypes. Since the corrupt support

features are relatively closer to the features of the support

examples of their actual classes, the clustering process can

correctly assign many of them to their actual classes. This

process serves two purposes. Firstly, it reduces the influence

of the corrupted labels on the class prototypes. Secondly,

this process also reduces the problem of overfitting in the

prototypes because we compute the refined prototypes us-

ing both hybrid and support features.

After obtaining the refined prototypes, we find the dis-

tance from each of refined class prototypes in the feature

space to the query image. Next, we apply a softmax func-

tion over the negative values of the distances so that refined

class prototypes at smaller distances from the query exam-

ple get higher softmax probabilities.

W i
q =

exp(−d(zq, p
∗

i ))

ΣN
j=1

exp(−d(zq, p∗j ))
(4)

where W i
q is the class probability for qth query example for

the ith class, d(.,.) is the distance metric, p∗i is the refined

class prototype for the ith class, zq is the feature for the

qth query example. N is the total number of classes in the

episode.

The class for which the above probability is highest, is

predicted as the output class for that query image.

ŷq = argmaxnW
n
q (5)

where n ∈ {1, 2, ..., N} refers to the nth class, ŷq refers to

the predicted class for the qth query example.

3.3. Different from Transductive and Semi­
Supervised FSL

Our method should not be confused with transductive

few-shot learning. Transductive few-shot learning makes

use of all the query points simultaneously to help in classi-

fying themselves by making use of the structure of this bulk

data. However, our setting is the standard few-shot setting,

and we cannot use the query images to help classify other

query images. Instead, we utilize hybrid features to help in

classifying the query images better.

Our method also does not fall under the semi-supervised

few-shot learning setting. Semi-supervised few-shot learn-

ing uses unlabeled real data from the same dataset, either
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belonging to the classes in that episode or to other classes

in the dataset. These data are used for training and also

for testing. However, our method does not use extra real

data and only uses an interpolation of support features of

the same class.This makes our method very efficient. We

consider them as unlabeled data points and use them in our

clustering algorithm only during testing.

4. Experiments

4.1. DataSets

We perform few-shot classification experiments on 2

few-shot classification datasets, namely, mini-ImageNet

[22] and tiered-ImageNet [15].

mini-ImageNet [22] is the most popular few-shot learn-

ing dataset. It is derived from the ImageNet dataset [16].

It has 100 classes and 600 images of size 84 × 84 pixels

for each class. The classes consist of 64 train classes, 16

validation classes, and 20 test classes.

tiered-ImageNet [15] is larger subset of the ImageNet

[16] dataset. It has 608 classes divided into 351 train, 97

validation, and 60 test classes. It groups similar classes

into higher-level classes. In tiered-ImageNet, the training

classes differ significantly from the testing classes as com-

pared to mini-ImageNet.

4.2. Implementation Details

Since the mini-ImageNet and tiered-ImageNet datasets

do not contain corrupted labels, we manually corrupt the

support image labels for the novel classes during the novel

class evaluation phase. We perform experiments with 0%,

20%, and 40% label corruption rates in the support exam-

ples of the novel classes. 20% label corruption rate refers

to the setting where 20% of the support examples in an

episode have incorrect labels. The distribution of label cor-

ruption is uniform across all the classes in each episode. For

each novel class episode, we assume that the support im-

age with corrupted labels belongs to another class from the

same episode. We use this assumption so that the episodic

formulation holds, i.e., all the examples in an episode are

from the classes in the episode. For fairness, we perform

all the experiments in this setting. We perform experiments

in this corrupted label setting for 5-shot 5-way and 10-shot

5-way episodes.

We replace the testing process of two few-shot learning

methods (ProtoNet and FEAT) with our proposed method,

RNNP, and perform few-shot testing experiments on the

trained models. We do not retrain the models. The first

method is the prototypical network (ProtoNet)[19], which

is a very popular few-shot learning method. It trains and

tests the network on episodes and predicts the output class

using the nearest neighbor prototype-based (NNP) approach

to find the closest class prototype to the query feature. We

also perform experiments on the recent state-of-the-art few-

shot learning method FEAT - (Few-shot Embedding Adap-

tation with Transformer) [30]. FEAT adapts the class proto-

types using a multi-headed self-attention based transformer

to increase the gap between them. It also uses NNP for test-

ing. We use ResNet-12 [30] as the backbone architecture.

We follow the testing protocol that we have defined ear-

lier. Whenever we calculate/re-calculate the class proto-

types (cluster centers), we use the mechanism proposed by

the respective method (FEAT or ProtoNet) for each case.

For the prototypical network (ProtoNet), we compute the

class prototypes by averaging the support image features of

the corresponding class. For FEAT, we compute the class

prototypes by averaging the support image features of the

corresponding classes and adapting them using a trained

transformer.

We can choose the proportion hyper-parameter α be-

tween 0 and 1. We use α = 0.8 for our experiments and val-

idate this choice through ablation experiments. In the 5-shot

episodes, for each support example, we have 4 other sup-

port examples of the same class. Similarly, in the 10-shot

episodes, for each support example, we have 9 other support

examples of the same class. For each support example in the

5-shot episodes, we generate β = 4 hybrid features using

the 4 other support examples of the same class. Similarly,

for each support example in the 10-shot episodes, we gen-

erate β = 9 hybrid features. For our experiments, we repeat

the clustering and label assignment process for three times.

We validate these choices using ablation experiments. We

evaluate both the models with and without RNNP. We eval-

uate the models for 1000 episodes and report the best out

of 5 runs for each method. The above-mentioned methods

(FEAT, ProtoNet) with the traditional testing protocol form

our baseline for those methods.

Since there are no previous works that make the few-

shot evaluation procedure robust to noisy support examples

of novel classes, we compare our method with two pop-

ular full-shot noisy label training methods in our setting

(Sec. 5.9).

4.3. mini­ImageNet Results

Table 1 reports the results for few-shot classification on

5-shot 5-way episodes of mini-ImageNet with various lev-

els of corruption. The results indicate that for both FEAT

and ProtoNet, the performance drops significantly with the

increase in the level of corruption of the support image la-

bels when using the standard nearest neighbor prototype-

based testing process (NNP). For 20% label corruption, the

performance of FEAT drops by absolute margins of 5.38%

and 2.8% for 5-shot and 10-shot 5-way episodes, respec-

tively. Similarly, for 20% label corruption, the performance

of ProtoNet drops by absolute margins of 4.96% and 2.7%

for 5-shot and 10-shot 5-way episodes, respectively. When
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Table 1: Performance of FEAT and ProtoNet with NNP/RNNP on the mini-ImageNet dataset over 5/10-shot 5-way episodes

with 0%, 20%, 40% label corruption.

Corruption Testing FEAT (CVPR’20) ProtoNet (NIPS’17)

Rate Method 5-shot 10-shot 5-shot 10-shot

0% NNP 82.05 ± 0.14 % 85.03 ± 0.44% 80.53 ± 0.14 % 83.61 ± 0.45%

0% RNNP (Ours) 82.76 ± 0.42% 85.52 ± 0.46% 81.62 ± 0.45% 83.63 ± 0.47%

20% NNP 76.67 ± 0.44% 82.23 ± 0.47% 75.57 ± 0.45% 80.91 ± 0.43%

20% RNNP (Ours) 78.98 ± 0.42% 83.68 ± 0.43% 76.72 ± 0.42% 81.69 ± 0.46%

40% NNP 65.07 ± 0.58% 74.37 ± 0.60% 64.63 ± 0.55% 73.27 ± 0.57%

40% RNNP (Ours) 70.97 ± 0.57% 79.72 ± 0.54% 69.02 ± 0.60% 77.52 ± 0.58%

Table 2: Performance of FEAT and ProtoNet with NNP/RNNP on the tiered-ImageNet dataset over 5/10-shot 5-way episodes

with 0%, 20%, 40% label corruption.

Corruption Testing FEAT (CVPR’20) ProtoNet (NIPS’17)

Rate Method 5-shot 10-shot 5-shot 10-shot

0% NNP 84.79 ± 0.16% 87.72 ± 0.46% 84.03 ± 0.16% 87.25 ± 0.45%

0% RNNP (Ours) 85.57 ± 0.45% 88.35 ± 0.43% 84.77 ± 0.45% 87.25 ± 0.47%

20% NNP 80.07 ± 0.43% 85.35 ± 0.45% 80.23 ± 0.44% 84.95 ± 0.42%

20% RNNP (Ours) 81.69 ± 0.44% 86.52 ± 0.43% 81.25 ± 0.46% 85.79 ± 0.45%

40% NNP 69.57 ± 0.58% 79.17 ± 0.55% 69.08 ± 0.54% 78.61 ± 0.59%

40% RNNP (Ours) 73.04 ± 0.59% 84.55 ± 0.54% 72.35 ± 0.58% 82.54 ± 0.55%

Figure 2: Performance of FEAT with RNNP on the mini-

ImageNet dataset over 5/10-shot 5-way episodes with 40%

label corruption for different values of α.

our method RNNP replaces the testing process of FEAT and

ProtoNet, their performances improve significantly. Specif-

ically, for FEAT, using RNNP improves the performance

in the 20% label corruption setting by absolute margins of

2.31% and 1.45% for 5-shot and 10-shot 5-way episodes,

respectively. The performance in the 40% label corruption

setting improves by absolute margins of 5.9% and 5.35%

for 5-shot and 10-shot 5-way episodes, respectively. As the

level of corruption increases, the performance improvement

due to our method also increases. Even when the label cor-

ruption rate is 0%, our method does not have any side effect

on the performance. In fact, it increases the performance in

some cases.

4.4. tiered­ImageNet Results

Table 2, reports the results for few-shot classification on

5-shot 5-way episodes of tiered-ImageNet with various lev-

els of corruption. For 20% label corruption, the perfor-

mance of FEAT drops by absolute margins of 4.72% and

2.37% for 5-shot and 10-shot 5-way episodes, respectively.

Similarly, for 20% label corruption, the performance of Pro-

toNet drops by absolute margins of 3.8% and 2.3% for 5-

shot and 10-shot 5-way episodes, respectively. When our

Figure 3: Performance of FEAT with RNNP on the mini-

ImageNet dataset over 5/10-shot 5-way episodes with 40%

label corruption for different values of β.

method RNNP replaces the testing process of FEAT and

ProtoNet, their performances improve significantly. Specif-

ically, for FEAT, the performance in the 40% label corrup-

tion setting improves by absolute margins of 3.47% and

5.38% for 5-shot and 10-shot 5-way episodes, respectively.

5. Ablation

5.1. Value of α

Fig. 2 depicts the performance of FEAT with our pro-

posed RNNP for different values of α. Since we combine

the support features using α and 1 − α, therefore, we per-

form ablation experiments with α values from 0.5 to 0.9.

We observe the best results for α = 0.8 for both 5-shot 5-

way and 10-shot 5-way episodes. We use this value of α for

all our experiments.

5.2. Value of β

Fig. 3 depicts the performance of FEAT with our pro-

posed RNNP for different values of β. We observe the best

results for β = 4 and β = 9 in the 5-shot and 10-shot 5-way

episodes, respectively, which are also the maximum possi-

ble value for β in the respective cases.
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Figure 4: Performance of FEAT with RNNP on the mini-

ImageNet dataset over 5/10-shot 5-way episodes with 40%

label corruption for different number of iterations of the

clustering process.

Table 3: Performance of FEAT with RNNP on the mini-

ImageNet dataset over 5/10-shot 5-way episodes with 40%

label corruption using hard/soft k-means.

K-means FEAT

5-shot 10-shot

Hard 70.63 ± 0.55% 79.23 ± 0.55%

Soft 70.97 ± 0.57% 79.72 ± 0.54%

5.3. Number of Iterations

Fig. 4 depicts the performance of FEAT with our pro-

posed RNNP for different numbers of iterations of the clus-

tering process used in our method. We observe the best

results for 3 iterations of our process for both 5-shot and

10-shot settings.

5.4. Labeled vs. Unlabeled Hybrid Features

In our method, we keep the hybrid features as unla-

beled. The hybrid features may not necessarily belong to

the class of the parent features since classification bound-

aries are usually non-linear, and in such cases, points that

lie between 2 features from the same class may not neces-

sarily belong to that class. Further, because of the presence

of noisy labels, the hybrid features may have been created

by combining features of two different classes. To validate

this point, we performed an experiment using the FEAT w/

RNNP model with 40% label corruption, assuming that the

hybrid features belonged to the class of the parent features

and directly updated the class prototypes without using soft

k-means. The resulting model performed similarly to the

FEAT model without RNNP. This is why we keep the hy-

brid features as unlabeled.

5.5. Hard Clustering vs. Soft Clustering

In our experiments, we use a soft k-means algorithm for

performing clustering on the features. Hard k-means clus-

tering assigns points to a single cluster, whereas in soft k-

means clustering, the points do not fully belong to any one

cluster. We perform an ablation to check whether hard k-

means clustering performs better than soft k-means cluster-

ing when used in our method. From Table 3, we can see

that RNNP based on soft k-means clustering performs bet-

Table 4: Performance of FEAT with RNNP on the mini-

ImageNet dataset over 5/10-shot 5-way episodes with 40%

label corruption by creating hybrid features from the same

class or from different classes.

Same/Different class 5-shot 10-shot

Different 70.63 ± 0.60 % 79.21 ± 0.56%

Same 70.97 ± 0.57% 79.72 ± 0.54%

Table 5: Performance of FEAT with RNNP on the mini-

ImageNet dataset over 5/10-shot 5-way episodes with 40%

label corruption by using noise, hybrid features, features of

new images generated using Mixup or CutMix data aug-

mentation.

New features 5-shot 10-shot

Noise 58.63 ± 0.59 % 67.89 ± 0.60%

Mixup [34] (ICLR’17) 66.34 ± 0.55 % 75.92 ± 0.58%

CutMix [32] (ICCV’19) 69.23 ± 0.57 % 78.45 ± 0.53%

Hybrid (Ours) 70.97 ± 0.57% 79.72 ± 0.54%

ter than RNNP based on hard k-means clustering. Soft k-

means clustering allows the features to refine multiple clus-

ters (based on their distance from the cluster centers), and

this helps it to perform better than the hard k-means algo-

rithm in this case.

5.6. Hybrid Features from Different Classes

Table 4 depicts the performance of FEAT with our pro-

posed RNNP using hybrid features produced by combining

support features from the same or different classes. The

results indicate that we achieve better results when we use

support features from the same class rather than from dif-

ferent classes for 5-shot and 10-shot episodes.

5.7. Hybrid Features vs. Noise

Table 5 depicts the performance of FEAT with our pro-

posed RNNP using random Gaussian noise in place of hy-

brid features. This ablation experiment involves randomly

sampling noise from a Gaussian distribution as unlabeled

features instead of generating hybrid features from the sup-

port examples for our method. The results indicate that us-

ing noise significantly hurts the performance for both 5-shot

and 10-shot episodes.

5.8. Effect of using CutMix and Mixup

In our method, we generate hybrid features from the sup-

port image features. Since we have very limited support

examples per class, we cannot use the data generation tech-

niques such as generative adversarial networks and varia-

tional auto encoders, which require a huge amount of data

for training. We can also use data augmentation techniques

such as CutMix [32] or MixUp [34] to produce hybrid im-

ages for our method. We can use the features of these hybrid

images as unlabeled features for our method.
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Table 6: Performance of FEAT with RNNP/JoCoR/Co-

Teaching+ on the mini-ImageNet dataset over 5/10-shot 5-

way episodes with 40% label corruption.

Noise Correction 5-shot 10-shot

Co-Teaching+ [31] (ICML’19) 59.34 ± 0.56 % 68.23 ± 0.57%

JoCoR [25] (CVPR’20) 59.89 ± 0.55 % 68.56 ± 0.59%

RNNP (Ours) 70.97 ± 0.57% 79.72 ± 0.54%

Table 5 depicts the performance of FEAT with our pro-

posed RNNP using CutMix [32] or MixUp [34] to produce

hybrid images from the support images. We use the features

extracted from these hybrid images in place of the hybrid

features generated by our approach. The results indicate

that when we use mixup in our method, the resulting perfor-

mance is significantly lower than our method’s performance

using hybrid features. When we use CutMix in our method,

the results are better than that of mixup but still lower than

our method’s performance with hybrid features. A possible

reason for this is that both these methods are used for in-

creasing the training data (data augmentation), and in this

case, we do not train the base network B.

5.9. Comparison with Noisy Label Approaches

As discussed in Sec. 2.2, there are many approaches for

learning from data with noisy labels. However, these meth-

ods require large amounts of data for training. In our set-

ting, the novel classes, which contain the corrupted labels,

have very few support examples. Therefore, these meth-

ods suffer from overfitting and do not perform well. To

validate this point, we experimented with JoCoR [25] and

Co-Teaching+ [31] in this setting. For every novel class

episode, we trained the base network B on the support ex-

amples using JoCoR and Co-Teaching+. Both methods re-

quire two networks for training, and so we make two copies

of the base network for each episode. We do not carry for-

ward the knowledge from one episode to the next, as man-

dated during the novel class evaluation phase. Table 6 re-

ports the results for these experiments. The results indicate

that the network cannot perform well using these methods

because of the extremely limited training data.

6. Analysis

6.1. Effect of Prototype Refinement

We perform experiments to analyze how our method

RNNP rectifies the incorrectly labeled support examples.

Fig. 5 depicts the change in the number of support examples

that have correct labels after RNNP is applied (on FEAT

backbone) for four randomly chosen 5-shot 5-way episodes

with 40% label corruption. The figure indicates that our

method consistently corrects many incorrectly labeled sup-

port examples in each episode. Our method is able to rectify

the labels of support examples and thereby refine the class

prototypes. The refined prototypes help to achieve better

Figure 5: Effect of FEAT with RNNP on the support ex-

amples with noisy labels in the novel class 5-shot 5-way

episodes of mini-ImageNet with 40% label corruption.

(a) (b)

Figure 6: Statistical significance test to show that FEAT w/

RNNP is statistically different from FEAT for 5-shot 5-way

novel class episodes of mini-ImageNet dataset with (a) 20%

label corruption rate (b) 40% label corruption rate with a

significance level of 0.05.

performance in this setting.

6.2. Statistical Significance

We studied the statistical significance [1] for FEAT with

our method RNNP against FEAT. If the difference in the

rank of the two methods lies within Critical Difference [1],

then they are not significantly different. Fig. 6 visualizes the

post hoc analysis using the CD diagram for few-shot classi-

fication with noisy support labels. We observe in Fig. 6 that

the statistical difference between FEAT with our method

RNNP (FEAT w/ RNNP) and FEAT is more than the Criti-

cal Difference (CD=0.062) for both 20% and 40% label cor-

ruption rates. Therefore, FEAT with RNNP is statistically

different from FEAT.

7. Conclusion

We propose a novel approach called Robust Nearest

Neighbor Prototype-based testing (RNNP) that makes the

few-shot testing process robust to noisy labels in the novel

class episodes. Our approach does not require any ad-

ditional training and can replace the testing process of

any few-shot learning method that uses a nearest neighbor

prototype-based testing strategy. We empirically show that

our method improves the performance of multiple few-shot

learning methods in the presence of noisy labels. Through

extensive validation experiments, we validate the different

components of our method.
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