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Figure 1: Left: Unsupervised hyperspectral reconstruction for hazy aerial images. Right: Once trained, features derived from

reconstructed hyperspectral images serve as a catalyst to dehaze aerial images

Abstract

Haze removal in aerial images is a challenging problem

due to considerable variation in spatial details and vary-

ing contrast. Changes in particulate matter density often

lead to degradation in visibility. Therefore, several ap-

proaches utilize multi-spectral data as auxiliary informa-

tion for haze removal. In this paper, we propose SkyGAN

for haze removal in aerial images. SkyGAN consists of 1) a

domain-aware hazy-to-hyperspectral (H2H) module, and 2)

a conditional GAN (cGAN) based multi-cue image-to-image

translation module (I2I) for dehazing. The proposed H2H

module reconstructs several visual bands from RGB images

in an unsupervised manner, which overcomes the lack of

hazy hyperspectral aerial image datasets. The module uti-

lizes task supervision and domain adaptation in order to

create a “hyperspectral catalyst” for image dehazing. The

I2I module uses the hyperspectral catalyst along with a 12-

channel multi-cue input and performs effective image de-

hazing by utilizing the entire visual spectrum. In addition,

this work introduces a new dataset, called Hazy Aerial-

Image (HAI) dataset, that contains more than 65,000 pairs

of hazy and ground truth aerial images with realistic, non-

homogeneous haze of varying density. The performance of

SkyGAN is evaluated on the recent SateHaze1k dataset as

well as the HAI dataset. We also present a comprehensive

evaluation of HAI dataset with a representative set of state-

of-the-art techniques in terms of PSNR and SSIM.

1. Introduction

Aerial imagery refers to photographs taken from aircraft

such as helicopters and UAVs. Such images are advanta-

geous as they have rich information content. Hence, they

have been widely utilized in various fields such as remote

sensing [22], earth sciences [35], agriculture [17] and ge-

ology [7]. The aerial images and video data facilitate nu-

merous applications such as aerial surveillance [28, 29, 30],

search and rescue, event recognition [34], urban and ru-

ral scene understanding [45, 12]. As the aerial images are

perceived from a considerable distance, these images often

suffer from low visibility, color shift, and blurriness due to

changes in the atmospheric path. Such atmospheric effects,

especially non-homogeneous clouds, fog, and haze, degrade

the quality of input images. Therefore, there is a need to

address visibility improvement before aerial images can be
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Figure 2: Illustration of corresponding clean and hazy images from the proposed HAI dataset which consists of 5 different

degrees of haze, represented in different columns.

used in aerial vision-based systems.

Researchers have used several different techniques to

remove haze in aerial images. Zhang et al. [49] used a

correction technique using a correlation between the high-

frequency and the low-frequency color bands. Such meth-

ods quantify the amount of haze using different spectral

bands in the visible region. Liu et al. [23] present a vir-

tual cloud point method based on relative haze thickness

for haze removal. Long et al. [25] removed haze in re-

mote sensing images by adapting the DCP proposed by He

et al. [18] for natural scene images. Similarly, Shen et al.

[40] suggested a gradient-based spectral adaptive approach

to exploit the wavelength-dependent transmission informa-

tion. Makarau et al. [27] have used NIR and multispectral

images to exploit the multi-sensor information for accurate

haze removal. However, the use of hyperspectral images

(HSI) in deep learning-based haze removal has been lim-

ited. HSI consists of spectral reflectance information from

a substantial number of wavebands. The high cost of HSI

acquisition devices and the lack of large-scale HSI datasets

are some of the impediments in wide-scale acceptance of

HSI in general computer vision. Acquisition of full spec-

tral signatures using a HSI camera is a costly endeavor, not

only in terms of hardware but it also hampers the viability

of UAVs and other radio-controlled aerial vehicles.

In this work, the input hazy RGB image is used to

reconstruct a domain-aware HSI using a modified cycle-

consistent framework. The proposed framework is a low-

cost and efficient approach to generate HSI in an unsuper-

vised manner. Further, we present the practical applicabil-

ity of reconstructed HSI for aerial image dehazing. The

key motivation to use HSI for dehazing is to utilize the en-

tire visual spectrum which provides rich information con-

tent in comparison to three primary bands: red, green and

blue. Since the perception of an object depends on its na-

ture to absorb different wavelengths, this work proposes to

enhance the visual contrast of an image by acquiring infor-

mation from different spectral regions.

The key contributions of this work are as follows:

1. A novel GAN framework named SkyGAN is presented

which incorporates HSI guidance in image-to-image

translation network for image dehazing. To the best of

our knowledge, it is the first attempt to use HSI in a

GAN framework for aerial image dehazing.

2. SkyGAN reconstructs HSI from RGB images in an un-

paired manner, which addresses the lack of hazy HSI

datasets.

3. The architecture utilizes task supervision in conjunc-

tion with learning closed set domain adaptation by

combining two techniques, adversarial distribution

discrepancy alignment [11] and cycle-consistency con-

straint [51], to reconstruct domain-aware HSI from a

set of natural scene HSI.

4. A residual network is used to alleviate data distribution

discrepancy from reconstructed HSI, thereby generat-

ing a hyperspectral catalyst (HSC) which is fed along

with a 12-channel multi-cue input to the proposed con-

ditional GAN (cGAN) for haze removal.

5. Further, we introduce a large-scale hazy aerial image

dataset HAI, consisting of over 65 thousand pairs of

hazy and ground truth (haze-free) aerial images. The

images in HAI contain realistic, non-homogeneous

haze of varying density.

6. The proposed SkyGAN outperforms the existing state-

of-the-art approaches on the benchmark SateHaze1k

[19] and the new large-scale HAI dataset. We also

present an extensive ablation study of the different

components of SkyGAN.

2. Related Work

The existing dehazing approaches can be categorized

into radiative transfer (RT) models which require atmo-

sphere ambience related parametric information, and sta-

tistical information (SI) methods which rely on image
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Figure 3: Architecture for the proposed SkyGAN. The corresponding discriminators Dx, Dh and Dz for generators Gx, Gh

and Gz respectively are not displayed for brevity of the diagram.

characteristics for haze removal. RT models build upon

some assumption or a physical prior such as contrast [42],

dark channel [18], color-attenuation [53], and non-local

prior [5]. On the other hand, there have been several SI

approaches that typically learn the transmission map [6] or

a direct end-to-end mapping between hazy and clean im-

ages [20, 31, 36, 2]. With advancements in deep learning,

researchers have employed GANs for image dehazing task

by learning the transmission map [47, 9, 37, 8].Researchers

have also used hyperspectral images with GANs for super-

resolution [16], classification [52] and natural scene dehaz-

ing [32].

The existing techniques use standard RGB images for

dehazing. HSI can be utilized to enhance segmentation and

classification by using rich information from the entire vi-

sual spectrum. The use of HSI has been restricted primarily

due to its high acquisition cost. Therefore researchers have

developed techniques such as multiplexed illumination [13]

and sparse dictionary prior [3] to reconstruct HSI from RGB

images which alleviate the need for costly acquisition de-

vices. Despite the advantages of using HSI, it has not been

accepted in general vision tasks due to a lack of large scale

HSI datasets. Thus, we propose an unsupervised approach

for HSI reconstruction from RGB using domain adaptation.

3. Proposed Method

The proposed approach benefits from rich information

obtained from different bands in HSI reconstructed from

standard RGB images. HSI reconstruction have been

achieved via prior-based techniques. However, such an ap-

proach is infeasible as the existing aerial image datasets are

restricted to infrared, synthetic aperture radar or multispec-

tral images. Therefore, we adopt an approach built upon un-

supervised domain adaptation to reconstruct haze-invariant

HSI for aerial images.

Given a 3-channel image, ai ∈ IR3 as input, we solve

the problem of hallucinating a plausible spectral signature

of the input image. As the problem is under-constrained, we

re-formulate the reconstruction task as a spectral reflectance

interpolation problem. To achieve this, the individual chan-

nels of the input images are spanned to form a 31-channel

input. Let an input image ai ∈ IRh×w×3. The individual

channels in ai are spanned to form a spanned image matrix

xi ∈ IRh×w×31 where h,w denote the image dimensions.

The spanned image xi is used in turn for generating the HSI.

3.1. Hazy­to­Hyperspectral Reconstruction (H2H)

Given {hi}
ns

i=1 of HSI sampled from the source domain

of natural scenes H, and {xj}
nt

j=1 of standard RGB images

sampled from the target domain of aerial images X , the ob-

jective of proposed unsupervised domain adaptation frame-

work is to learn how to translate between these domains

without paired image examples. The algorithm is based on

the assumption that there is a rich underlying HSI dictio-

nary that can be used to reconstruct novel images from the

distribution of hyperspectral signatures in natural images.

The proposed methodology makes use of several guiding

principles such as domain adaptation, task supervision and

domain classifier.

Unsupervised Domain Adaptation. First of all, we lack

supervision in the form of paired examples. To address the

problem, the proposed algorithm exploits supervision at the

level of sets. Given a set of HSI and a set of standard RGB

images, we train a mapping Gx(·) : X → H such that the

spectral response of the output ĥ = Gx(x), x ∈ X is indis-

tinguishable from spectral response of h ∈ H by an adver-

sary trained to classify ĥ apart from h. In addition, we also

train a mapping Gh(·) : H → X which introduces cycle-

consistency, thus adding more structure in the proposed al-
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gorithm. In context to adversarial losses, the proposed net-

work minimizes the following objective:

Lx(Gx, Dx, x, h) = Ex∼X [log(1−Dx(Gx(x)))]

+ Eh∼H[log(Dx(h))]
(1)

Lh(Gh, Dh, h, x) = Eh∼H[log(1−Dh(Gh(h)))]

+ Ex∼X [log(Dh(x))]
(2)

LGAN = Lx + Lh (3)

Task Supervision. If we consider 3-channel RGB images

in comparison to 31-channel hyperspectral images, halluci-

nating a plausible spectral response seems daunting. Com-

paratively, the RGB image has lost 90% of information. Al-

though, the semantics of images and the textural cues pro-

vide ample guidance to reconstruct hyperspectral counter-

parts they are not sufficient to retrieve the actual ground

truth. Thus, we aim at learning a plausible HSI image for

a given input RGB image by modelling the latent hyper-

spectral space for image derived from a set of hyperspectral

images.

Due to lack of hyperspectral images for dehazing, we

adopt an unpaired approach for hyperspectral reconstruc-

tion. For each iteration, an input x is mapped to h by means

of a stochastic mapping x ∼ pH,X (ĥ|x). The objective is

to learn a plausible spectral response of given RGB image

by learning a latent hyperspectral space. Thus, it can be

inferred that the Gx(·) can be learned efficiently if Gx(·)
is stochastic in nature. This is required to build an out-

put distribution over ĥ that reconciles with original distri-

bution pH(h). However, with limited variation in small

HSI datasets, it is problematic to learn an output distribu-

tion over ĥ that matches its underlying hyperspectral space.

In general, existing approaches address the issue of dis-

tributional discrepancy by a form of maximum-mean dis-

crepancy. Rather than relying on a minimax optimiza-

tion scheme for obtaining aerial HSI, we use our origi-

nal dehazing task as a self-supervised auxiliary task [41].

Jointly training the HSI reconstruction task along with

dehazing task supervision aligns the domains in a sub-

space specifically for image dehazing.We modify the cycle-

consistency loss [50] to incorporate dehazing task supervi-

sion. The modified loss encourages y ≈ Gh(Gx(x)) and

h ≈ Gx(Gh(h)).

Lcyc =‖y −Gh(Gx(x))‖
2
2 + ‖h−Gx(Gh(h))‖

2
2. (4)

where (x, y) refers to hazy and dehazed/clean RGB images

respectively, and h refers to HSI.

Domain Classifier. As the primary task of the framework

is to produce natural dehazed images, we incorporate a do-

main classifer [11] to learn a mapping Gx(·) which is in-

herently haze invariant. The motivation is to induce align-

ment between hazy and clean images by learning a domain

classifier as an approximation to the total variation distance.

This is achieved by jointly optimizing the algorithm with a

domain classifier that discriminates between hazy and clear

images during training. By maximizing the loss of domain

classifier, the algorithm encourages haze-invariant HSI i.e.

ĥ in the course of parameter optimization such that the ex-

pected target risk E(xt)∼X is low for loss function Lcls(·),

Lcls =E(xt)∼X ‖h−Gx(Gh(h))‖
2
2 (5)

where (x, h) refers to hazy RGB image and HSI respec-

tively.

Implementation Details. The generators in Gx, Gh and

Gz adopt a U-Net with skip connections while PatchGAN

is adopted for the corresponding discriminators. Although

the RGB and HSI have considerable difference in the pixel

domain, the underlying structure must remain intact. Thus,

we use L2 cycle consistency losses and identity losses [51]

to further improve the reconstructed HSI. Finally, a ResNet-

based architecture is used to extract relevant features from

reconstructed HSI, referred to as hyperspectral catalyst,

which is further fed into a modified cGAN for efficient de-

hazing.

3.2. Multi­Cue Image­to­Image Translation (I2I)

To achieve dehazed image outputs in an efficient man-

ner, we use an enhanced cGAN which produces final de-

hazed output images by utilizing a 12-channel multi-cue

color space image as input along with the hyperspectral cat-

alyst.

Multi-cue Color Space. The multi-cue color space is

constructed using different color models such as HSV,

YCrCb, and LAB concatenated together with RGB which

results in a 12-channel input image.

The HSV color model is a cylindrical transformation of

RGB Cartesian space in terms of hue, saturation, and lumi-

nance value. HSV provides a practical advantage as it sepa-

rates saturation and luminance, and it has been used exten-

sively in computer vision. Zhang et al. [48] argues that the

HSV color space can be used to preserve hue [44] and re-

duce computational complexity. The hypothesis is based on

the fact that HSV specifically models visuals as perceived

by human eye which helps in suppressing halo effects.

The YCbCr represents the luminance, blue-difference,

and red-difference chroma constituents, respectively. It pro-

vides a practical approximation for color processing and
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Method SSIM PSNR

DCP [18] 0.5430 14.777

CAP [53] 0.6342 10.582

AOD [20] 0.6499 10.227

GFN [38] 0.5340 16.787

CycleGAN [51] 0.5950 15.707

GridDehazeNet [24] 0.8915 22.543

SkyGAN 0.8466 24.560

Table 1: Comparative results on HAI dataset

perceptual uniformity. The key motivation behind using a

YCbCr color space is its robustness towards haze and color

distortion [48, 44]. The use of multi-channel color space

enhances the naturalness of the dehazed images [15, 46].

The LAB color space defines a color model that is more

perceptually linear than any other color model approximat-

ing human perceptual vision. The advantage is especially

significant in applications addressing visual degradation as

it provides balance corrections to adjust lightness and con-

trast. Guo et al. [15] and Xie et al. [46] used the Retinex

algorithm on the luminance component of the color space

to generate the transmission map from a single hazy image.

The proposed method allows the learning algorithm to

use different color spaces simultaneously being pivoted on

attaining optimal dehazed outputs.

Hyperspectral Catalyst (HSC). It is difficult for the

learning algorithm to alleviate problems such as occlu-

sion caused by haze in aerial images. The reconstructed

HSI contains spectral information from several wavebands

which can mitigate this problem and finally achieve clean

aerial images. However, the distribution of values in an HSI

vary drastically from that of RGB images. Thus, the recon-

structed HSI cannot be directly used for mapping to RGB

images.

Therefore, we train a ResNet-based architecture on the

reconstructed HSI to obtain relevant feature distribution,

which fits the distribution of clean dehazed RGB images.

As an analogy to physical-chemical reactions, we refer to

the obtained features as a Hyperspectral Catalyst. The HSC

is attached with the 12-channel multi-cue input image as ad-

ditional three channels to form a 15-channel input to cGAN.

The ResNet uses the following loss Lr for parameter opti-

mization:

Lr =‖y −Gr(Gh(Gx(x)))‖ (6)

where (x, y) refers to hazy RGB image and clean RGB im-

age respectively. Gr denotes the ResNet generator.

4. Dataset and Evaluation

Hazy Aerial Image (HAI) Dataset There has been

tremendous development in the area of image restoration

and enhancement, especially with the advent of deep learn-

ing. Standardized dataset benchmarks allow fair evaluation

of different methodologies under similar evaluation criteria.

Several datasets such as Fattal’s dataset [10], FRIDA [43],

D-Hazy [1], and the Foggy Cityscapes datasets [39] have

been proposed for natural scene image dehazing. Apart

from these, the RESIDE Dataset [21] is a benchmark large-

scale image dehazing for natural scene images. However, a

standard large-scale benchmark for aerial images has been

long expected. Recently, Huang et al. [19] proposed the

SateHaze1k dataset, which consists of 1200 hazy aerial im-

ages.

The HAI Dataset is built upon the Inria Aerial Image La-

belling (AIL) Dataset [26]. The AIL Dataset consists of

180 images each in train and test datasets. We crop these

images using a sliding overlap with resolution 500 × 500,

which results in ∼ 65,000 images in the training set. The

HAI dataset is a large-scale dataset for fair evaluation and

comparison for aerial image dehazing algorithms. The HAI

dataset contains over 65 thousand pairs of synthetic hazy

images, generated using 360 high-resolution aerial images.

For every image, we create synthetic haze using diamond-

square algorithm which generates a plasma fractal or the

cloud fractal [33]. The algorithm generates varying de-

gree of vertical and horizontal perturbations. We imple-

ment five degrees of simulated haze using a varying grid

size.Similarly, we create a test set of 600 images cropped

from the AIL test partition.

To corroborate our results, we also evaluate on the recent

SateHaze1k dataset [19]. The dataset contains 1200 pairs

of hazy images. The images are divided into three levels of

fog, namely thin, moderate, and thick fog.

CVPRW NTIRE '18 and NTIRE '20 datasets For HSI

reconstruction task, we train our H2H module (Section 3.1)

using NITRE 2018 (also known as BGU iCVL dataset)

[3, 4] and NITRE 2020 hyperspectral datasets. The NTIRE

2018 dataset consists of 201 images, from both indoor and

outdoor scenes. Along with RGB, they provide 31-channel

HSI bands, separated by 10 nm for each image. Similarly,

the NTIRE 2020 dataset consists a total of 360 images. For

training purposes, the images were augmented by flipping

and cropping randomly to generate a total of 6000 images.

4.1. Quantitative Analysis

For evaluating our model quantitatively, we use the test

sets from the proposed HAI dataset and SateHaze1k [19]

dataset. The results in terms of Peak Signal-to-Noise Ra-

tio (PSNR) and Structural Similarity Index Measure (SSIM)
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Method
Thin Fog Moderate Fog Thick Fog

SSIM PSNR SSIM PSNR SSIM PSNR

Original 0.7241 12.771 0.7399 12.587 0.4215 8.589

DCP [18] 0.7246 13.152 0.5735 9.783 0.5850 10.251

SAR-Opt-cGAN [14] 0.8419 20.195 0.7941 21.662 0.7573 19.655

Huang et al. [19] w/o SAR 0.8168 21.474 0.8274 22.095 0.7842 22.121

Huang et al. [19] SAR 0.9061 24.164 0.9264 25.311 0.8640 25.073

DehazeNet [6] 0.8950 19.753 0.8552 18.125 0.7064 14.332

SkyGAN 0.9248 25.381 0.9035 25.583 0.8925 23.430

Table 2: Comparative results of the proposed method and existing dehazing methods over SateHaze1k [19]

Hazy Input DCP [18] CAP [53] AOD [20] Cycle-

GAN [51]

GridDe-

hazeNet [24]

GFN [38] SkyGAN Ground Truth

Figure 4: Qualitative comparison on aerial images from HAI Dataset with a city-based scenario

Hazy Input DCP [18] CAP [53] AOD [20] Cycle-

GAN [51]

GridDe-

hazeNet [24]

GFN [38] SkyGAN Ground Truth

Figure 5: Qualitative comparison on aerial images from HAI Dataset with water bodies and sky regions

Hazy Input DCP [18] CAP [53] AOD [20] Cycle-

GAN [51]

GridDe-

hazeNet [24]

GFN [38] SkyGAN Ground Truth

Figure 6: Qualitative comparison on aerial images from HAI Dataset with substantial forest region
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Hazy Input DCP [18] Huang et al. [19] DehazeNet [6] SkyGAN Ground Truth

Figure 7: Qualitative comparison of SkyGAN with state-of-the-art techniques over SateHaze1k [19] dataset

are compiled in Table 1 and Table 2. The PSNR and SSIM

metrics are computed between the de-hazed image and the

ground truth clear image.

Performance on HAI Dataset To have a fair compari-

son of the model on the proposed dataset, we evaluate sev-

eral prior-based and pre-trained deep learning-based mod-

els on HAI dataset. For prior-based techniques, we use

the Dark Channel Prior (DCP) [18] and Color Attenuation

Prior (CAP) [53]. For deep learning-based techniques, we

take into account the state-of-the-art AOD-Net [20], Cycle-

GAN [51], GFN [38] and GridDehazeNet [24]. The results

are presented in Table 1, which indicates the percentage in-

crease SkyGAN could achieve over rest of the techniques. It

is quite evident from the metrics that the proposed SkyGAN

performs extremely well in comparison to the rest, both in

terms of PSNR and SSIM.

Performance on SateHaze1k Dataset. SateHaze1k con-

sists of 45 images from each of the three levels of fog

(thin, moderate, and thick). Table 2 shows the quantitative

comparison between various techniques and SkyGAN. Sky-

GAN obtains the highest SSIM in thin and thick fog scenar-

ios. Similarly, our method achieves the best PSNR in thin

and moderate fog conditions. Overall, the proposed method

outperforms the existing state-of-the-art [19] in 4 out of 6

performance measures (SSIM and PSNR) across the three

types of fog conditions.

4.2. Qualitative Analysis

The visual analysis for multiple aerial hazy images was

carried out from the HAI and SateHaze1k datasets. From

the HAI, a set of six challenging aerial hazy images and the

recovered clear images using the proposed SkyGAN and

existing methods are compared. To show the robustness

of our method, we considered various scenarios from ur-

ban regions (in Figure 4), water bodies and sky with large

white/blue regions (in Figure 5), and forest regions (in Fig-

ure 6). It can be easily assessed that existing methods are

able to reduce haze in some regions but fail on certain areas

such as grass fields (in Figure 4), red colored ship decks (in

Figure 5), and large dense forests (in Figure 6). In contrast,

the proposed SkyGAN removes the haze and also restores

the color balance in the recovered clear image.

Furthermore, we compare the qualitative results of the

proposed and existing methods for three aerial hazy images

from SateHaze1k. The images are captured from agricul-

tural fields, roads, residential areas and empty grounds (Fig-

ure 7). The proposed method is reducing the haze in the en-

tire image as opposed to the non-uniform improvements ob-

tained by the existing methods. In terms of closeness to the

actual ground truth, our results are better than the existing

state-of-the-art [19]. The work [19] introduces darker col-

ors in the image as opposed to the actual light colors in the

clear images. The higher quantitative performance (PSNR

and SSIM) of SkyGAN further proves its robustness to mul-

tiple scenarios.

5. Ablation Study

In this subsection, we demonstrate the effectiveness of

various components that have successfully contributed to-

wards dehazing the aerial images through a detailed abla-

tion study. This experiment includes 4 progressive models

and the SkyGAN as shown in Table 3. We add the var-

ious components one-by-one and evaluate their respective

performance. We report results on the thick fog level of
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Hazy Image Model-1 Model-2 Model-3 Model-4 SkyGAN Ground Truth

Figure 8: Qualitative comparison for ablation models as described in Table 3. The gradual improvement in visual as high-

lighted by the red box, clearly indicate the additive enhancement of each component.

Figure 9: Quantitative comparison for ablation models

along with existing state-of-the-art techniques.

Components

Method
Hyperspectral

Catalyst

Task

Supervision

Domain

Classifier

Multi-cue

Color Space

Model-1

Model-2 X

Model-3 X X

Model-4 X X X

SkyGAN X X X X

Table 3: Component-wise ablation models

SateHaze1k dataset for the following ablation models:

Backbone Architecture: The choice of the right image

translation model is crucial for the quality of output dehazed

images. As conditional GANs (cGAN) has been widely ac-

cepted in literature for a variety of tasks, we choose a mod-

ified cGAN as the baseline for our experiments, referred to

as Model-1. The successive models differ significantly from

Model-1 as it is exclusively based on RGB imformation. On

the other hand, Model 2-4 incorporate HSI information for

dehazing. Figure 8 and Figure 9 shows the performance

of proposed SkyGAN in comparison to different ablation

models along with different representative state-of-the-art

techniques for image dehazing respectively.

Hyperspectral Catalyst, Task Supervision, Domain

Classifier: To investigate the utility of these auxiliary

networks for aerial-image dehazing, we train Model-1 by

adding the components progressively. Figure 9 depicts the

performance of various models. Quantitatively, these com-

ponents leads to increment in performance by 1.5% in terms

of SSIM. This can be confirmed by comparing the visual re-

sults as shown in Figure 8.

Multi-cue Color Space: In contrast to other compo-

nents, adding multi-cue color spaces leads to 4.5% improve-

ment in SSIM. This is depicted in Figure 9 as Model 1-4 are

clustered in an area, and SkyGAN stands ahead of all these

ablation model. Thus, multi-cue color space forms a key

contributor towards the performance of SkyGAN.

6. Conclusions

The paper presents a novel GAN based framework, Sky-

GAN, which utilizes HSI guidance and multi-cue color in-

put for aerial image dehazing. SkyGAN effectively com-

bines adversarial distribution discrepancy alignment and

cycle-consistency constraint to reconstruct domain-aware

HSI from a set of hyperspectral natural scene images in

an unpaired manner. A residual network is further used

to alleviate data distribution discrepancy from reconstructed

HSI, thereby generating a HSC. The HSC along with a 12-

channel multi-cue input is used by the cGAN module (I2I)

to perform effective dehazing. The hyperspectral catalyst

consists of rich content from several visual bands, which is

coupled with the multi-cue color space, leading to highly

effective aerial image dehazing. In addition, we also pro-

pose a large-scale dataset (HAI) for haze removal in aerial

images consisting of realistic, non-homogeneous haze with

varying density, along with an extensive evaluation of the

dataset on a representative set of existing state-of-the-art

techniques.
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ter Reinartz. Combined haze and cirrus removal for mul-

421



tispectral imagery. IEEE Geoscience and Remote Sensing

Letters, 13(3):379–383, 2016.

[28] Murari Mandal, Lav Kush Kumar, and Santosh Kumar Vip-

parthi. Mor-uav: A benchmark dataset and baselines for

moving object recognition in uav videos. arXiv preprint

arXiv:2008.01699, 2020.

[29] Murari Mandal, Manal Shah, Prashant Meena, Sanhita Devi,

and Santosh Kumar Vipparthi. Avdnet: A small-sized vehi-

cle detection network for aerial visual data. IEEE Geoscience

and Remote Sensing Letters, 2019.

[30] Murari Mandal, Manal Shah, Prashant Meena, and San-

tosh Kumar Vipparthi. Sssdet: Simple short and shallow net-

work for resource efficient vehicle detection in aerial scenes.

In 2019 IEEE International Conference on Image Processing

(ICIP), pages 3098–3102. IEEE, 2019.

[31] Aryan Mehra, Murari Mandal, Pratik Narang, and Vinay

Chamola. Reviewnet: A fast and resource optimized net-

work for enabling safe autonomous driving in hazy weather

conditions. IEEE Transactions on Intelligent Transportation

Systems, 2020.

[32] Aditya Mehta, Harsh Sinha, Pratik Narang, and Murari Man-

dal. Hidegan: A hyperspectral-guided image dehazing gan.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops, pages 212–213,

2020.

[33] Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos,

Evgenia Rusak, Oliver Bringmann, Alexander S. Ecker,

Matthias Bethge, and Wieland Brendel. Benchmarking ro-

bustness in object detection: Autonomous driving when win-

ter is coming. arXiv preprint arXiv:1907.07484, 2019.

[34] Lichao Mou, Yuansheng Hua, Pu Jin, and Xiao Xiang Zhu.

Era: A dataset and deep learning benchmark for event recog-

nition in aerial videos. arXiv preprint arXiv:2001.11394,

2020.

[35] John F Mustard and Jessica M Sunshine. Spectral analysis

for earth science: investigations using remote sensing data.

Remote sensing for the earth sciences: Manual of remote

sensing, 3:251–307, 1999.

[36] Yanyun Qu, Yizi Chen, Jingying Huang, and Yuan Xie. En-

hanced pix2pix dehazing network. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 8160–8168, 2019.

[37] Yanyun Qu, Yizi Chen, Jingying Huang, and Yuan Xie. En-

hanced pix2pix dehazing network. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 8160–8168, 2019.

[38] Wenqi Ren, Lin Ma, Jiawei Zhang, Jinshan Pan, Xiaochun

Cao, Wei Liu, and Ming-Hsuan Yang. Gated fusion network

for single image dehazing. In IEEE Conference on Computer

Vision and Pattern Recognition, 2018.

[39] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Seman-

tic foggy scene understanding with synthetic data. Interna-

tional Journal of Computer Vision, 126(9):973–992, 2018.

[40] Huanfeng Shen, Chi Zhang, Huifang Li, Quan Yuan, and

Liangpei Zhang. A spatial-spectral adaptive haze removal

method for visible remote sensing images. IEEE Transac-

tions on Geoscience and Remote Sensing, 2020.

[41] Yu Sun, Eric Tzeng, Trevor Darrell, and Alexei A Efros.

Unsupervised domain adaptation through self-supervision.

arXiv preprint arXiv:1909.11825, 2019.

[42] Robby T Tan. Visibility in bad weather from a single image.

In 2008 IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–8. IEEE, 2008.

[43] Jean-Philippe Tarel, Nicholas Hautiere, Laurent Caraffa,
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