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Abstract

In open set recognition, deep neural networks encounter
object classes that were unknown during training. EXxist-
ing open set classifiers distinguish between known and un-
known classes by measuring distance in a network’s logit
space, assuming that known classes cluster closer to the
training data than unknown classes. However, this ap-
proach is applied post-hoc to networks trained with cross-
entropy loss, which does not guarantee this clustering be-
haviour. To overcome this limitation, we introduce the Class
Anchor Clustering (CAC) loss. CAC is a distance-based
loss that explicitly trains known classes to form tight clus-
ters around anchored class-dependent centres in the logit
space. We show that training with CAC achieves state-
of-the-art performance for distance-based open set classi-
fiers on all six standard benchmark datasets, with a 15.2%
AUROC increase on the challenging TinylmageNet, with-
out sacrificing classification accuracy. We also show that
our anchored class centres achieve higher open set per-
formance than learnt class centres, particularly on object-
based datasets and large numbers of training classes.

1. Introduction

Many practical applications require the deployment of
trained visual perception models under open set conditions,
such as autonomous systems, driverless cars, and robotics.
In open set conditions, a model encounters object classes
that were not present during training (referred to as ‘un-
known’ classes) [20]. Deep convolutional neural networks
(CNNs) degrade in performance in open set conditions, as
they can confidently misclassify unknown classes as known
training classes [4,9,15]. This behaviour raises serious con-
cerns about the safety of using CNNs in open set environ-
ments [1] — particularly on autonomous systems where per-
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ception failures may have severe consequences [4,24].

Open set recognition extends object recognition to an
open set environment [20]. During testing, an open set
classifier must classify known object classes and reject un-
known object classes [20]. In this paper, we propose a
new distance-based loss that achieves state-of-the-art per-
formance for distance-based open set recognition.

Many open set classifiers model the position of known
training data in the final layer, or logit space, of a CNN [2,
28,29]. Such approaches assume known classes cluster
tightly in the logit space, and that unknown classes will
maintain a distance from these clusters. Figure la shows
this ideal performance. Currently, this concept is applied to
networks trained with cross-entropy loss [2,28,29]. How-
ever, cross-entropy loss does not guarantee the clustering
behaviour these methods seek to exploit. We exhibit this in
Figure 1b, where we train a CNN with cross-entropy loss
to classify trains, buses, and bicycles (CIFAR100 classes).
The resulting logit space of this CNN appears crowded with
inflated class clusters, and it is challenging to distinguish the
unknown classes (bear and possum) from these clusters.

In this work, we introduce the Class Anchor Clustering
(CAC) loss to address this limitation in prior work. CAC
is a distance-based loss that explicitly encourages known
training data to form tight clusters around anchored, class-
specific centres in the logit space. CAC is compatible with
existing classification networks, with only slight modifica-
tions to the network architecture. Compared to the cross-
entropy trained CNN, a logit space trained with CAC ex-
hibits tight, separate class clusters and an improved distinc-
tion of these clusters from unknown classes (see Figure 1c).

Our paper makes the following contributions:

1. We propose a new loss term for open set recognition
that encourages known class training data to cluster
tightly around class-specific centres in logit space.

2. We show that training with this novel Class Anchor
Clustering (CAC) loss achieves new state-of-the-art
open set performance for distance-based open set clas-
sifiers, without sacrificing classification accuracy.

3. We introduce the concept of anchored class centres as
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(a) ‘Ideal’ open set recognition

(b) Open set recognition with cross-entropy loss

(c) Open set recognition with our CAC loss

Figure 1: Left: An ‘ideal’ open set classifier will tightly cluster known classes in the feature space, and unknown classes will
fall far away. Middle: A CNN trained on real image data from CIFAR100 with cross-entropy loss shows a final 3-D logit
space with inflated known class clusters which cannot be easily distinguished from the unknown classes. Right: A CNN
trained with our proposed CAC loss (on the same CIFAR100 data) shows a final 3-D logit space with tight, separated known

class clusters and improved distinction of unknown classes.

an effective and scalable strategy for distance-based
training. In contrast to learning class centres during
training, distance losses using anchored centres per-
form well with object-based datasets with high intra-
class variation and large numbers of classes.

2. Related Work

Open set recognition Open set recognition is multiclass
classification with the additional requirement of rejecting
inputs from unknown classes [20]. This is formalised as the
task of minimising open space risk, the portion of classifi-
cation space labelled as ‘known’ that is far from the known
training data, while maintaining generalisation and classifi-
cation accuracy on the known classes [20]. Related areas,
such as out-of-distribution and novelty detection, exist as
relaxed forms of open set classification where known and
unknown classes are from different distributions [9] or mul-
ticlass classification is not required [5]. For this work, we
focus specifically on open set recognition.

OpenMax was one of the first CNN open set classifiers,
using the network’s final layer’s logits, or logit space, as
the classification space with open space risk [2]. Open-
Max models each known class as a single cluster, and uses
a Weibull distribution to re-calibrate softmax scores based
on an input’s distance to each cluster centre. OpenMax was
the first ‘distance-based’ approach, using distance from the
training data to minimise the open space risk of a CNN.

Several following works employed real or generated
‘known unknown’ data to augment the training dataset, ei-
ther using the data to improve the feature representation for
distance-based measures [29] or to bound the known clas-
sification space with an ‘other’ class [13,21]. In [7], a net-
work is trained to produce low feature magnitudes and uni-
form confidence scores for ‘known unknown’ data. While
feature magnitudes are used for open set recognition, this
method does not model or measure class-specific distances
in the logit space [7] and therefore we do not define it as a
distance-based method.

Other recent open set classifiers use a combined clas-
sifier and autoencoder network architecture [16, 28]. In
[16], the reconstruction error from a class-conditioned
autoencoder-classifier is used to distinguish between known
and unknown inputs. Others [6,22] observed that recon-
struction error alone is not suitable as a measure of class
novelty. In contrast, [28] jointly applies OpenMax to a clas-
sifier logit space and auto-encoder latent space, with the ad-
ditional reconstruction-learnt features improving the over-
all feature representation. Another approach [18] uses a
self-supervision loss with random transformations to learn a
more descriptive feature representation [18]. Additionally,
the input to the network is augmented with their reconstruc-
tion from an autoencoder to further enable open set recog-
nition [18].

In contrast to existing distance-based open set classi-
fiers [2, 28, 29], which assume known classes will tightly
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cluster but train with cross-entropy loss, our work is the first
to train with a distance loss when using distance in the logit
space for testing.

Distance Losses for Deep Neural Networks The field of
metric learning uses distance loss functions to learn mean-
ingful feature embeddings. Triplet loss is a popular dis-
tance loss that encourages inputs to minimise distance to a
‘positive’ example and maximise distance to a single ‘neg-
ative’ example. Tuplet loss was introduced as an extension
of triplet loss that maximises an input’s distance to multiple
‘negative’ examples [23]. We adopt a modified version of
Tuplet loss as one of two terms in our new CAC loss but
show that Tuplet loss alone is not sufficient for best perfor-
mance.

Center Loss [26] was proposed to improve discrimina-
tive learning for facial recognition by encouraging cluster-
ing in a feature space. It is used in conjunction with cross-
entropy loss and encourages an input to minimise distance
to its ground truth class centre. The class centres are learnt
simultaneously with the feature embedding during training.
In contrast, we propose to use anchored, i.e. fixed, class
centres. This makes training more stable and, as we will
show, more scalable to larger and more complex datasets.

Recently, [12] demonstrated the utility of metric learn-
ing for open set classification, however only for fine-grained
image classification. Such metric learning approaches com-
pute distances between individual instances of the training
data, and the sampling technique used can have a signif-
icant effect on the convergence speed and stability of the
training minimum [27]. As discussed in [19], this sampling
typically makes metric learning computationally intractable
on larger datasets, such as CIFAR10, CIFAR100, or Ima-
geNet. Although recent work [19] adapted metric learning
approaches for large-scale datasets, this technique degraded
the classification accuracy of a standard cross-entropy net-
work.

3. Class Anchor Clustering (CAC) for Open
Set Classification

We now introduce the two core ideas of our paper that
enable distance-based training for large-scale image open
set classification: (1) the Class Anchor Clustering (CAC)
loss that encourages training data to form tight, class-
specific clusters. Tight clusters make it easier to distinguish
between known and unknown class inputs during deploy-
ment. (2) the concept of using anchored class centres in the
logit space to fix cluster centre positions during training.

Before introducing our approach, we briefly explain why
cross-entropy loss is not sufficient for distance-based open
set recognition. Cross-entropy loss minimises the negative
log-probability of an input’s ground truth class, which is

obtained by normalising the logits with a softmax function.
The softmax function is not injective and multiple input
logit vectors map to the same output softmax probability
vector [8]. As a result, cross-entropy loss cannot guarantee
clustering in the logit space.

General Architecture CAC is compatible with existing
classification networks, with slight modifications to the ar-
chitecture. Our proposed CAC-trained open set classifier
has three main components:

1. A base network, f, that projects an input image x to
a vector of class logits z = f(x). This network can
be any existing classifier with an N-dimensional logit
space, where N is the number of known classes.

2. A non-trainable parameter, C, representing a set of
class centre points (cy,...,cx), one for each of the
N known classes.

3. A new layer, e(z, C), that calculates d, a vector of Eu-
clidean distances between a logit vector z and the set
of class centres C.

In summary, the output of our distance-based classifier is
T
d=¢e(zC)=([lz-cil2,....[lz—cnl2) (D
where || - ||2 denotes the Euclidean norm.

3.1. Training with a Distance-based Loss Function

During training, we wish to learn a logit space embed-
ding f(x) where known inputs form tight, class-specific
clusters. This clustering enables us to use a distance-to-
class-centre metric during testing to reject unknown class
inputs and classify known class inputs.

3.1.1 Class Anchor Clustering Loss

We require a distance-based loss that a) encourages training
inputs to minimise the distance to their ground-truth class
centre, while b) maximising the distance to all other class
centres to encourage discriminative learning.

To do this, we use a modified Tuplet loss term Lp [23]
that forces an input x to maximise the difference in distance
to the correct class centre ¢, and all other class centres. Re-
membering that d = (dy,...,dy)" is defined as in (1), we
define this loss component as

N
Lr(x,y) = log (1 + Z edy—dﬂ'). ()

J#y
L differs from Tuplet loss [23] because it is based on
class centres C rather than sampled class instances. Our
modified Tuplet loss term is equivalent to cross-entropy loss
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applied to the distance vector d, but used with a softmin
function rather than softmax (see supplementary material
for proof). The softmin function is the opposite of softmax:
it assigns a large value (= 1) to the smallest value of the
input vector and is defined as:

e~ di

- Zszl e~dr’

While effective for discriminative learning, L7 aims to
maximise the margin between distance to the correct class
centre and distance to the incorrect class centres. To ensure
an input is explicitly forced to lower its absolute distance to
the correct class centre, we also penalise the Euclidean dis-
tance between the training logit and the ground truth class
centre. We refer to this as the Anchor loss term:

softmin(d); (3)

Laxy) =dy = [If(x) —cyll2. @)

We combine the Anchor and Tuplet loss terms to form
our final distance-based loss, which we refer to as the Class
Anchor Clustering (CAC) loss:

ACCAC (Xa y) = ET (X, y) + )“CA(Xv y) (5)

A hyperparameter of our method is A, which balances
these two individual loss terms (explored in section 5.2.3).
By combining the Anchor and Tuplet loss terms, our loss
minimises training inputs distance to their ground-truth an-
chored class centre, while maximising the distance to other
anchored class centres.

3.1.2 Anchored Class Centres

We introduce anchored class centre points as a method of
anchoring, i.e. fixing, cluster centres for each class in the
logit space during training. By anchoring our class centres
during training, we eliminate the need to learn another pa-
rameter (as done in previous approaches to distance losses,
e.g. [26]).

For each known class ¢, our network has an anchored
class centre c; in the logit space. Given an N-dimensional
logit space for N known classes, we place the anchored cen-
tre for each known class at a point on its class coordinate
axis. This anchored centre point is therefore equivalent to
a scaled standard basis vector e;, or scaled one-hot vector,
for each class. The magnitude of the anchored centre, o, is
a hyperparameter of our method (explored in section 5.2.3).
We summarise this below:

C:(Cla"'ch):(Oé'elv"wa'eN) (6)
e =(1,0,...,0)", exy=1(0,...,0,1)T. (7

After completing training, the anchored class centre po-
sitions C are adjusted to the mean position of the correctly

classified training data. This allows us to model the class
cluster centres for complex datasets more accurately, where
visual and semantic similarities between classes can cause
slight divergence from the original anchored class centre
positions. Note that while anchoring our class centres equal
distances apart in the logit space may limit the learning of
semantically meaningful features, for this work we aim to
learn only a discriminative feature representation that ex-
hibits tight clustering behaviour.

3.2. Using Distance-based Measures during Testing

During testing, the network has to reject unknown class
inputs and correctly classify known class inputs. Our CAC
loss trains known inputs to have two distance-based prop-
erties: (1) a high softmin score for the distance to correct
known class centre (as per the modified Tuplet loss term
L) and (2) a low absolute distance to the correct known
class centre (as per the Anchor loss term £ 4). Based on this,
we calculate rejection scores ¥ = (1, ..., 7w )" that express
the classifier’s disbelief that the input x belongs to each of
the NV known classes. We calculate the rejection scores =y
as the element-wise product (o) of the distance vector d and
its inverted softmin:

~ =do (1 — softmin(d)) 3

By weighting the absolute distance with the inverted
softmin score, inputs must have both a low absolute dis-
tance and high softmin score to be assigned a low rejection
score for a known class. If all values in «y are above a thresh-
old @, the input does not belong to any known class and is
rejected as unknown. Otherwise, the class label correspond-
ing to the smallest value in =y is assigned:

decision — {rejected as unknown if min(y) > 6 ©)

class i = argmin~y  if min(y) <6

Using this distance-based decision procedure minimises
open space risk [20]: the further away an input x projects
from the class-specific centres, the more likely it is to be
rejected as unknown.

4. Experimental Setup

To simulate open set conditions, a set of ‘known’ and
‘unknown’ classes must be established. The openness O of
the classification task [20] can then be defined as

2. Ntrain
O0=1—, [———— (10)
Ntesl + Ntarget

where Nyin is the number of ‘known’ classes during train-
ing, Nirger is the number of ‘known’ classes for classifi-
cation during testing and Ny is the total number of test-
ing classes (‘known’ and ‘unknown’). A higher openness

3573



indicates a more difficult problem setup, but other factors
such as the visual similarity between known and unknown
classes also influence the difficulty. We follow the estab-
lished benchmark evaluation protocol [13], where standard
classification datasets are adapted to the open set task by
randomly splitting into ‘known’ and ‘unknown’ classes.

4.1. Datasets

The details of each dataset in its open set configuration
are summarised below. For each dataset, performance is
evaluated over 5 trials with random known and unknown
class splits.

MNIST [11]: grayscale 32 x 32 images of handwritten dig-
its, 6 known and 4 unknown classes, O = 13.39%.

SVHN [14]: RGB 32 x 32 images of street view house dig-
its, 6 known and 4 unknown classes, O = 13.39%.
CIFARI10 [10]: RGB 32 x 32 images of animals and ob-
jects, 6 known and 4 unknown classes, O = 13.39%.
CIFAR+10/+50: considers the 4 non-animal classes of CI-
FARI10 as known, and 10 or 50 randomly sampled animal
classes from CIFAR100 [10] as unknown (O = 33.33% and
62.86%).

TinyImageNet [25]: RGB 64 x 64 images of animals and
objects, 20 known and 180 unknown classes, O = 57.35%.
TinyImageNet images can contain significant background
information unrelated to the object class, a number of
classes are very visually and semantically related (e.g. dif-
ferent breeds of dogs), and there is high visual variation
within individual classes. Examples are provided in the sup-
plementary material.

4.2. Metrics

We use the following metrics to assess the performance
of an open set classifier.
Area Under the ROC Curve (AUROC) is a calibration-
free measure of the open set performance of a classifier.
The Receiver Operating Characteristic (ROC) curve repre-
sents the trade-off between true positive rate (known in-
puts correctly retained as ‘known’) and the false positive
rate (unknown inputs incorrectly retained as ‘known’) when
applying varying thresholds to a given score. We modify
the threshold 6 that is compared to our network’s rejection
scores -y as discussed in (9).
Classification Accuracy measures the classifier’s accuracy
when applied to only the known classes in the dataset,
equivalent to closed set classification. An open set classi-
fier should maintain the classification accuracy of a standard
closed set classifier.
Correct Classification Rate (CCR) measures the fraction
of known inputs that are correctly retained as ‘known’ and
correctly classified as their ground truth class [7]. It can
be computed for various false positive rates when varying a
threshold (we threshold our network’s rejection scores =y).

4.3. State-of-the-art Methods for Comparison

We compare to seven existing state-of-the-art open set
classifiers [2,9,13,16,17,28,29], following the established
protocol that uses AUROC as the primary evaluation met-
ric. The results of these experiments are shown in Table 1,
where we also highlight the three methods [2, 28, 29] that
use distance in the logit space during festing to distinguish
between known and unknown inputs. In contrast to CAC,
none of those methods uses distance during training.

We additionally compare to another state-of-the-art open
set classifier [7] that uses a different evaluation protocol (as
described in Section 5.1). Instead of assessing the overall
performance with AUROC, [7] evaluate with CCR, which
quantifies performance at specific false positive operating
points. This is an important metric for many safety-critical
domains where performance at reasonable low false positive
rates is relevant. We hope that including this comparison
encourages future open set works to do so also.

4.4. Implementation Details

We use the network architecture specified by the bench-
mark evaluation protocol [13]. We use a Stochastic Gradi-
ent Descent (SGD) optimizer with a learning rate of 0.01
and train until convergence. We then complete another
training cycle with a lower learning rate of 0.001 and train
again until convergence. More details about the train-
ing procedure are in the supplementary material. For all
datasets, we use an Anchor loss weight A of 0.1 and a logit
anchor magnitude « of 10.

5. Results and Discussion

Our evaluation revealed four main results that we dis-
cuss in the following: (1) CAC outperforms the existing
distance-based open set classifiers [2,28,29] on every tested
dataset, without sacrificing classification accuracy (Section
5.1). (2) Compared to other distance losses, CAC achieves
better open set performance (Section 5.2.1). (3) Training
with anchored class centres achieves better open set perfor-
mance than learnt class centres on nearly all tested datasets,
particularly on object-based datasets with high intra-class
visual variations. Anchored centres also maintain open
set performance better with increasing numbers of known
classes (Section 5.2.2). (4) Training with CAC is insensi-
tive to the choice of its two hyperparameters over a wide
range of values (Section 5.2.3).

5.1. Comparison with State-of-the-Art Open Set
Classifiers

The open set performance of our proposed approach is
compared to the state-of-the-art methods in Table 1.
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Method Use Distance in MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 TinyImageNet
Training Testing
Softmax [9] X X 978+ 0.6 88.6+14 67.7+38 81.6£NR. 80.5+NR. 57.7+NR.
OSRCI [13] X X 98.8+04 91.0£1.0 699 +3.8 838+ N.R. 82.7+N.R. 58.6+NR.
C2AE [16] X X - 89.2+13 71.1+£08 81.0+£0.5 803=+0.0 58.1+19
GFROR [17] X X - 93.5+1.8 80.7+£39 928+0.2 92.6+0.0 60.8+ 1.7
OpenMax [2] X v 98.1+05 894+13 695+44 81.7£N.R. 79.6E£N.R. 57.6+NR.
G-OpenMax [29] X v 984+05 89.6+1.7 67.5+44 827+NR. 819+ NR. 58.0+NR.
CROSR [28] X v 99.1 +04 899+ 1.8 - - - 58.9 = N.R.
CAC (Ours) v v 99.1+05 941+0.7 80.1+£30 87712 87.0+00 76.0 + 1.5

Table 1: Open set AUROC for state-of-the-art methods and our proposed approach. Best and second best performance are

bolded and italicised respectively.

Cross-entropy network CAC network (Ours)

g
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Figure 2: Training with CAC (right) causes known test data
to cluster more tightly to the class centres than training with
cross-entropy. This allows for distance to better separate
known and unknown test data. This plot shows the distribu-
tions for MNIST, see Table 2 for other datasets.

Comparison with other distance-based approaches:
Compared to other state-of-the-art methods that use dis-
tance in the logit space during testing [2,28,29], we achieve
the best open set performance on all six of the benchmark
datasets. Our performance increase is most substantial on
TinyImageNet and CIFAR10, where there is an increase of
17.1% and 10.6%.

Our proposed approach is the first method that trains
with a distance-based loss when using distance in the logit
space during testing. To analyse the impact of distance-
based training, we examine the distributions of known class
and unknown class distances to a class centre for a network
trained with cross-entropy loss (as used by [2,28,29]) and a
network trained with our proposed CAC loss. As shown in
Figure 2, the CAC-trained network has a known distribution
that clusters more tightly to the class centres (behaviour it
was trained for), and as a result, there is a lower overlap with
the unknown distribution. By reducing the overlap with the
unknown distribution, the open set classifier can more ac-
curately identify and reject unknown inputs, thus improving
open set performance.

Dataset Cross-Entropy CAC (Ours)
MNIST 0414 0.324
SVHN 0.700 0.573
CIFARI10 0.946 0.868
CIFAR+10 0.899 0.766
CIFAR+50 0.889 0.751
TinyImageNet 0.984 0.913

Table 2: Compared to cross-entropy loss, training with CAC
gives a lower Bhattacharyya coefficient between distribu-
tions of known and unknown class distances to the closest
class centre. This represents less overlap between distribu-
tions, enabling better distance-based open set recognition.

In Table 2, we quantitatively show that training with
CAC decreases the overlap between the known and un-
known class distance distributions in comparison to cross-
entropy loss. The table shows the Bhattacharyya coeffi-
cient [3], an established measure of the overlap between two
distributions. For each of the datasets, CAC loss results in a
lower Bhattacharyya coefficient, on average by 14.3%.

Comparison to non-distance-based approaches: Com-
pared to non-distance-based open set classifiers, we achieve
state-of-the-art performance on TinylmageNet, MNIST and
SVHN, and come second to GFROR [17] on CIFAR10 and
CIFAR+10/+50.

While CAC achieves a 15.2% performance increase on
TinyIlmageNet with 20 known classes, it performs less well
to [17] on CIFAR+10/+50 variations with only 4 known
classes. When presented with only 4 known classes, CAC
has less data to learn a rich feature representation that en-
sures known and unknown class inputs do not project to the
same region in the logit space. In contrast, [17] specifically
uses reconstruction and self-supervision techniques during
training to improve the feature representation.
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Figure 3: Our CAC classifier maintains the classification
accuracy of a standard classifier trained with cross-entropy
loss.

Method CCR at FPR of

1% 5% 10%
Softmax [9] 46.0 N.R. 64.7

Unknown Data

SVHN Objectosphere [7]7 54.5 N.R. 70.1
CAC (Ours) 683 785 82.6
Softmax [9] 234 NR. 514
Clgﬁﬁéto 0 Objectosphere [7]7 43.3 N.R. 66.5

CAC (Ours) 325 63.8 73.8

Table 3: At False Positive Rates (FPR) 1%, 5% and 10%,
CAC achieves state-of-the-art Correct Classification Rates
(CCR) for the unknown datasets (with CIFARI10 as the
known dataset). T [7] uses a separate subset of CIFAR100
as known unknowns during training.

Maintaining classification accuracy: In Figure 3, we
show that training with CAC loss maintains the closed set
classification accuracy of a standard network. The standard
network uses the same architecture but is trained with cross-
entropy loss and uses the softmax score for classification.
This result demonstrates that our method improves open set
performance without compromising classification accuracy.

Open set performance at low false positive operating
points: For many safety-critical domains (e.g. robotics or
medical applications), the performance at specific low false
positive rates is practically relevant. Although the main
benchmark used for open set classification (in Table 1) does
not provide such an evaluation, we can compare CAC’s per-
formance at different false positive rates against [7] and [9].
Table 3 shows the results after training a ResNet-18 on CI-
FAR10, and using a CIFAR100 subset and SVHN as the un-
known datasets. We note that [7] uses a ‘known unknown’
subset of CIFAR100 during training, which potentially con-
tributes to their better performance at the very low 1% FPR
on the CIFAR100 experiment. We refer the reader to the
Supplementary for details on the experimental setup.

Dataset Center Tuplet £, only CAC

[26] [23] (Ours) (Ours)
MNIST 0.988 0957 0979 0.987
SVHN 0.941 0.833 0.888  0.942
CIFARI10 0.786 0.739 0.751  0.803

CIFAR+10 0.854 0.844 0.804 0.863
CIFAR+50 0.863 0.837 0.816  0.872
TinyImageNet 0.765 0.717  0.749  0.772

Table 4: CAC provides better open set AUROC perfor-
mance than the compared distance losses on nearly all the
benchmark datasets.

5.2. Ablation Studies
5.2.1 Comparison with Existing Distance Losses

We proposed CAC loss specifically for the task of training a
distance-based open set classifier. However, other distance
losses have been proposed for other computer vision tasks,
e.g. metric learning [23] and facial recognition [26]. In this
experiment, we compare the open set performance achieved
when training with Center loss [26], Tuplet loss [23], the
Anchor loss component £ 4 of CAC, and our proposed CAC
loss. We train the same network architecture with each loss
function and use our anchored class centres. Table 4 sum-
marises the open set AUROC results for each of the losses.

CAC outperforms all other distance losses [23, 26] on
SVHN, CIFARI10, CIFAR+10, CIFAR+50 and TinyIma-
geNet, with Center loss [26] achieving second best perfor-
mance. Center loss uses cross-entropy loss on the logits to
implicitly encourage inputs to maximise distance to other
class centres. In contrast, CAC explicitly forces this be-
haviour by applying Tuplet loss directly to the output dis-
tance vector. Interestingly, when used alone, our Anchor
loss term and Tuplet loss cannot achieve the same perfor-
mance as when they are combined to create CAC loss. This
validates that both loss terms are important for distance-
based open set classification, as together they simultane-
ously ensure minimised distance to the correct class centre
as well as maximised distance to all other class centres.

5.2.2 Anchored versus Learnt Class Centres

In this section we investigate the benefits of using anchored
class centres in the context of open set classification. While
our work is the first to anchor class centres during the
training process, previous distance losses such as Center
loss [26] encourage clustering around class centres that are
simultaneously /earnt during training.

We compare the open set performance when training
with learnt and anchored class centres, and repeat this ex-
periment with CAC loss and Center loss [26]. To learn
class centres, we use the approach described in [26]. Learn-
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Dataset Center [26] CAC (Ours)
Learnt Anchored Learnt Anchored

MNIST 0.985 0.988 0.987 0.987
SVHN 0.937 0.941 0.946 0.942
CIFAR10  0.763 0.786 0.791 0.803
CIFAR+10 0.831 0.854 0.856 0.863
CIFAR+50 0.848 0.863 0.865 0.872
TinyImNet 0.738 0.765 0.764 0.772

Table 5: Anchored class centres yields better open set AU-
ROC than learnt class centres, particularly on the object-
based CIFAR10 and TinylmageNet datasets.

—&— Center [26], Anchored
--=-- Center [26], Learnt
—&— CAC (Ours), Anchored
--#-- CAC (Ours), Learnt

10 15 20 25 30 35 40 45 50
Number of Known Classes

Figure 4: Anchored class centres perform better with in-
creasing numbers of classes than learnt class centres. Re-
sults are averaged over 5 trials of random class splits.

ing centres with CAC required the addition of cross-entropy
loss for stability (see supplementary material for details).

In Table 5, we show that anchored class centres yield
better open set performance than learnt class centres, for
both Center loss [26] and our proposed CAC loss. The per-
formance difference between anchored and learnt centres
is greatest for the object-based datasets (CIFAR10 variants
and TinyImageNet), with an average 2.2% improvement for
Center loss [26] and 0.85% for CAC. Learning class cen-
tres during training relies on a stable learning signal from
the images in each batch. However, CIFAR10 and Tiny-
ImageNet can exhibit considerable visual variations within
each class, thus providing a potentially noisy learning sig-
nal for the class centre positions. By anchoring our class
centres in the logit space, we eliminate this difficulty and
allow for high performance on object-based datasets.

Learning class centres is even more difficult for tasks
with large numbers of classes, as each batch will provide
less data per class. To investigate this effect, we train with
learnt and anchored class centres for Center loss [26] and
CAC loss on increasing numbers of known TinylmageNet
classes, while keeping the openness of the open set task
fixed at 18.35%. As we can see in Figure 4, open set per-
formance of a network trained with learnt class centres de-
grades at a faster rate than a network trained with anchored
class centres for both Center loss [26] and CAC loss.

In summary, we show that training with anchored class
centres yields better performance on object-based datasets

>
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Figure 5: CAC Performance is not sensitive to hyperparam-
eters anchor loss weight A and anchor magnitude « across
arange of values (results from 1 trial on TinyImageNet).

and scales better to larger numbers of training classes. We
found this to be consistent for both tested loss functions.
In addition, we observed training with anchored centres re-
quires approximately half the epochs to converge, speeding
up the training process (see supplementary material).

5.2.3 Analysis of Hyperparameters of CAC loss

Our proposed CAC loss has two hyperparameters, the An-
chor loss term weight o and the anchored centre magnitude
A, and their sensitivity is shown in Figure 5. With an An-
chor loss weight 0.05 < A < 0.8 and an anchor magnitude
5 < a < 20, both the classification accuracy and open set
AUROC vary by less than 4%.

6. Conclusions

The deployment of deep neural networks under open set
conditions remains an important and difficult challenge for
computer vision. Reliability and robustness in the presence
of unknown class inputs is crucial for many safety-critical
applications such as driverless cars or robotics.

We introduced and demonstrated the benefits of an-
chored class centres and the novel Class Anchor Cluster-
ing loss for open set recognition. Future work could focus
on learning more meaningful and diverse feature represen-
tations, potentially by allowing for more complex arrange-
ments of the anchored class centres. A more semantically
meaningful feature representation may allow for better dis-
tinction of unknown classes and increased interpretability
of open set errors, both of which have the potential to im-
prove distance-based open set recognition even further. We
additionally look forward to engaging with the community
to develop new evaluation protocols and datasets beyond the
simple ones commonly used in open set recognition, such as
MNIST, SVHN, or even CIFAR10. Many practical applica-
tions rely on open set robustness, and we believe benchmark
datasets should better reflect the complexity and richness of
those real world applications.
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