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Abstract

In open set recognition, deep neural networks encounter

object classes that were unknown during training. Exist-

ing open set classifiers distinguish between known and un-

known classes by measuring distance in a network’s logit

space, assuming that known classes cluster closer to the

training data than unknown classes. However, this ap-

proach is applied post-hoc to networks trained with cross-

entropy loss, which does not guarantee this clustering be-

haviour. To overcome this limitation, we introduce the Class

Anchor Clustering (CAC) loss. CAC is a distance-based

loss that explicitly trains known classes to form tight clus-

ters around anchored class-dependent centres in the logit

space. We show that training with CAC achieves state-

of-the-art performance for distance-based open set classi-

fiers on all six standard benchmark datasets, with a 15.2%

AUROC increase on the challenging TinyImageNet, with-

out sacrificing classification accuracy. We also show that

our anchored class centres achieve higher open set per-

formance than learnt class centres, particularly on object-

based datasets and large numbers of training classes.

1. Introduction

Many practical applications require the deployment of

trained visual perception models under open set conditions,

such as autonomous systems, driverless cars, and robotics.

In open set conditions, a model encounters object classes

that were not present during training (referred to as ‘un-

known’ classes) [20]. Deep convolutional neural networks

(CNNs) degrade in performance in open set conditions, as

they can confidently misclassify unknown classes as known

training classes [4,9,15]. This behaviour raises serious con-

cerns about the safety of using CNNs in open set environ-

ments [1] – particularly on autonomous systems where per-
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ception failures may have severe consequences [4, 24].

Open set recognition extends object recognition to an

open set environment [20]. During testing, an open set

classifier must classify known object classes and reject un-

known object classes [20]. In this paper, we propose a

new distance-based loss that achieves state-of-the-art per-

formance for distance-based open set recognition.

Many open set classifiers model the position of known

training data in the final layer, or logit space, of a CNN [2,

28, 29]. Such approaches assume known classes cluster

tightly in the logit space, and that unknown classes will

maintain a distance from these clusters. Figure 1a shows

this ideal performance. Currently, this concept is applied to

networks trained with cross-entropy loss [2, 28, 29]. How-

ever, cross-entropy loss does not guarantee the clustering

behaviour these methods seek to exploit. We exhibit this in

Figure 1b, where we train a CNN with cross-entropy loss

to classify trains, buses, and bicycles (CIFAR100 classes).

The resulting logit space of this CNN appears crowded with

inflated class clusters, and it is challenging to distinguish the

unknown classes (bear and possum) from these clusters.

In this work, we introduce the Class Anchor Clustering

(CAC) loss to address this limitation in prior work. CAC

is a distance-based loss that explicitly encourages known

training data to form tight clusters around anchored, class-

specific centres in the logit space. CAC is compatible with

existing classification networks, with only slight modifica-

tions to the network architecture. Compared to the cross-

entropy trained CNN, a logit space trained with CAC ex-

hibits tight, separate class clusters and an improved distinc-

tion of these clusters from unknown classes (see Figure 1c).

Our paper makes the following contributions:

1. We propose a new loss term for open set recognition

that encourages known class training data to cluster

tightly around class-specific centres in logit space.

2. We show that training with this novel Class Anchor

Clustering (CAC) loss achieves new state-of-the-art

open set performance for distance-based open set clas-

sifiers, without sacrificing classification accuracy.

3. We introduce the concept of anchored class centres as
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Extraction
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(a) ‘Ideal’ open set recognition

Open Set Recognition with Cross-Entropy Loss

    Bear   Possum

Unknown classes Known classes 

Bicycle Train Bus

Cross-Entropy CNN Feature Extraction

(b) Open set recognition with cross-entropy loss

Open Set Recognition with our CAC Loss

Unknown classes Known classes 

CAC (Ours) CNN Feature Extraction

    Bear   PossumBicycle Train Bus

(c) Open set recognition with our CAC loss

Figure 1: Left: An ‘ideal’ open set classifier will tightly cluster known classes in the feature space, and unknown classes will

fall far away. Middle: A CNN trained on real image data from CIFAR100 with cross-entropy loss shows a final 3-D logit

space with inflated known class clusters which cannot be easily distinguished from the unknown classes. Right: A CNN

trained with our proposed CAC loss (on the same CIFAR100 data) shows a final 3-D logit space with tight, separated known

class clusters and improved distinction of unknown classes.

an effective and scalable strategy for distance-based

training. In contrast to learning class centres during

training, distance losses using anchored centres per-

form well with object-based datasets with high intra-

class variation and large numbers of classes.

2. Related Work

Open set recognition Open set recognition is multiclass

classification with the additional requirement of rejecting

inputs from unknown classes [20]. This is formalised as the

task of minimising open space risk, the portion of classifi-

cation space labelled as ‘known’ that is far from the known

training data, while maintaining generalisation and classifi-

cation accuracy on the known classes [20]. Related areas,

such as out-of-distribution and novelty detection, exist as

relaxed forms of open set classification where known and

unknown classes are from different distributions [9] or mul-

ticlass classification is not required [5]. For this work, we

focus specifically on open set recognition.

OpenMax was one of the first CNN open set classifiers,

using the network’s final layer’s logits, or logit space, as

the classification space with open space risk [2]. Open-

Max models each known class as a single cluster, and uses

a Weibull distribution to re-calibrate softmax scores based

on an input’s distance to each cluster centre. OpenMax was

the first ‘distance-based’ approach, using distance from the

training data to minimise the open space risk of a CNN.

Several following works employed real or generated

‘known unknown’ data to augment the training dataset, ei-

ther using the data to improve the feature representation for

distance-based measures [29] or to bound the known clas-

sification space with an ‘other’ class [13, 21]. In [7], a net-

work is trained to produce low feature magnitudes and uni-

form confidence scores for ‘known unknown’ data. While

feature magnitudes are used for open set recognition, this

method does not model or measure class-specific distances

in the logit space [7] and therefore we do not define it as a

distance-based method.

Other recent open set classifiers use a combined clas-

sifier and autoencoder network architecture [16, 28]. In

[16], the reconstruction error from a class-conditioned

autoencoder-classifier is used to distinguish between known

and unknown inputs. Others [6, 22] observed that recon-

struction error alone is not suitable as a measure of class

novelty. In contrast, [28] jointly applies OpenMax to a clas-

sifier logit space and auto-encoder latent space, with the ad-

ditional reconstruction-learnt features improving the over-

all feature representation. Another approach [18] uses a

self-supervision loss with random transformations to learn a

more descriptive feature representation [18]. Additionally,

the input to the network is augmented with their reconstruc-

tion from an autoencoder to further enable open set recog-

nition [18].

In contrast to existing distance-based open set classi-

fiers [2, 28, 29], which assume known classes will tightly
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cluster but train with cross-entropy loss, our work is the first

to train with a distance loss when using distance in the logit

space for testing.

Distance Losses for Deep Neural Networks The field of

metric learning uses distance loss functions to learn mean-

ingful feature embeddings. Triplet loss is a popular dis-

tance loss that encourages inputs to minimise distance to a

‘positive’ example and maximise distance to a single ‘neg-

ative’ example. Tuplet loss was introduced as an extension

of triplet loss that maximises an input’s distance to multiple

‘negative’ examples [23]. We adopt a modified version of

Tuplet loss as one of two terms in our new CAC loss but

show that Tuplet loss alone is not sufficient for best perfor-

mance.

Center Loss [26] was proposed to improve discrimina-

tive learning for facial recognition by encouraging cluster-

ing in a feature space. It is used in conjunction with cross-

entropy loss and encourages an input to minimise distance

to its ground truth class centre. The class centres are learnt

simultaneously with the feature embedding during training.

In contrast, we propose to use anchored, i.e. fixed, class

centres. This makes training more stable and, as we will

show, more scalable to larger and more complex datasets.

Recently, [12] demonstrated the utility of metric learn-

ing for open set classification, however only for fine-grained

image classification. Such metric learning approaches com-

pute distances between individual instances of the training

data, and the sampling technique used can have a signif-

icant effect on the convergence speed and stability of the

training minimum [27]. As discussed in [19], this sampling

typically makes metric learning computationally intractable

on larger datasets, such as CIFAR10, CIFAR100, or Ima-

geNet. Although recent work [19] adapted metric learning

approaches for large-scale datasets, this technique degraded

the classification accuracy of a standard cross-entropy net-

work.

3. Class Anchor Clustering (CAC) for Open

Set Classification

We now introduce the two core ideas of our paper that

enable distance-based training for large-scale image open

set classification: (1) the Class Anchor Clustering (CAC)

loss that encourages training data to form tight, class-

specific clusters. Tight clusters make it easier to distinguish

between known and unknown class inputs during deploy-

ment. (2) the concept of using anchored class centres in the

logit space to fix cluster centre positions during training.

Before introducing our approach, we briefly explain why

cross-entropy loss is not sufficient for distance-based open

set recognition. Cross-entropy loss minimises the negative

log-probability of an input’s ground truth class, which is

obtained by normalising the logits with a softmax function.

The softmax function is not injective and multiple input

logit vectors map to the same output softmax probability

vector [8]. As a result, cross-entropy loss cannot guarantee

clustering in the logit space.

General Architecture CAC is compatible with existing

classification networks, with slight modifications to the ar-

chitecture. Our proposed CAC-trained open set classifier

has three main components:

1. A base network, f , that projects an input image x to

a vector of class logits z = f(x). This network can

be any existing classifier with an N-dimensional logit

space, where N is the number of known classes.

2. A non-trainable parameter, C, representing a set of

class centre points (c1, . . . , cN ), one for each of the

N known classes.

3. A new layer, e(z,C), that calculates d, a vector of Eu-

clidean distances between a logit vector z and the set

of class centres C.

In summary, the output of our distance-based classifier is

d = e(z,C) = (‖z− c1‖2, . . . , ‖z− cN‖2)
T

(1)

where ‖ · ‖2 denotes the Euclidean norm.

3.1. Training with a Distance­based Loss Function

During training, we wish to learn a logit space embed-

ding f(x) where known inputs form tight, class-specific

clusters. This clustering enables us to use a distance-to-

class-centre metric during testing to reject unknown class

inputs and classify known class inputs.

3.1.1 Class Anchor Clustering Loss

We require a distance-based loss that a) encourages training

inputs to minimise the distance to their ground-truth class

centre, while b) maximising the distance to all other class

centres to encourage discriminative learning.

To do this, we use a modified Tuplet loss term LT [23]

that forces an input x to maximise the difference in distance

to the correct class centre cy and all other class centres. Re-

membering that d = (d1, . . . , dN )T is defined as in (1), we

define this loss component as

LT (x, y) = log
(

1 +
N
∑

j 6=y

edy−dj

)

. (2)

LT differs from Tuplet loss [23] because it is based on

class centres C rather than sampled class instances. Our

modified Tuplet loss term is equivalent to cross-entropy loss
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applied to the distance vector d, but used with a softmin
function rather than softmax (see supplementary material

for proof). The softmin function is the opposite of softmax:

it assigns a large value (≈ 1) to the smallest value of the

input vector and is defined as:

softmin(d)i =
e−di

∑N

k=1
e−dk

. (3)

While effective for discriminative learning, LT aims to

maximise the margin between distance to the correct class

centre and distance to the incorrect class centres. To ensure

an input is explicitly forced to lower its absolute distance to

the correct class centre, we also penalise the Euclidean dis-

tance between the training logit and the ground truth class

centre. We refer to this as the Anchor loss term:

LA(x, y) = dy = ‖f (x)− cy‖2. (4)

We combine the Anchor and Tuplet loss terms to form

our final distance-based loss, which we refer to as the Class

Anchor Clustering (CAC) loss:

LCAC(x, y) = LT (x, y) + λLA(x, y). (5)

A hyperparameter of our method is λ, which balances

these two individual loss terms (explored in section 5.2.3).

By combining the Anchor and Tuplet loss terms, our loss

minimises training inputs distance to their ground-truth an-

chored class centre, while maximising the distance to other

anchored class centres.

3.1.2 Anchored Class Centres

We introduce anchored class centre points as a method of

anchoring, i.e. fixing, cluster centres for each class in the

logit space during training. By anchoring our class centres

during training, we eliminate the need to learn another pa-

rameter (as done in previous approaches to distance losses,

e.g. [26]).

For each known class i, our network has an anchored

class centre ci in the logit space. Given an N -dimensional

logit space for N known classes, we place the anchored cen-

tre for each known class at a point on its class coordinate

axis. This anchored centre point is therefore equivalent to

a scaled standard basis vector ei, or scaled one-hot vector,

for each class. The magnitude of the anchored centre, α, is

a hyperparameter of our method (explored in section 5.2.3).

We summarise this below:

C = (c1, . . . , cN ) = (α · e1, . . . , α · eN ) (6)

e1 = (1, 0, . . . , 0)T, eN = (0, . . . , 0, 1)T. (7)

After completing training, the anchored class centre po-

sitions C are adjusted to the mean position of the correctly

classified training data. This allows us to model the class

cluster centres for complex datasets more accurately, where

visual and semantic similarities between classes can cause

slight divergence from the original anchored class centre

positions. Note that while anchoring our class centres equal

distances apart in the logit space may limit the learning of

semantically meaningful features, for this work we aim to

learn only a discriminative feature representation that ex-

hibits tight clustering behaviour.

3.2. Using Distance­based Measures during Testing

During testing, the network has to reject unknown class

inputs and correctly classify known class inputs. Our CAC

loss trains known inputs to have two distance-based prop-

erties: (1) a high softmin score for the distance to correct

known class centre (as per the modified Tuplet loss term

LT ) and (2) a low absolute distance to the correct known

class centre (as per the Anchor loss term LA). Based on this,

we calculate rejection scores γ = (γ1, ..., γN )T that express

the classifier’s disbelief that the input x belongs to each of

the N known classes. We calculate the rejection scores γ

as the element-wise product (◦) of the distance vector d and

its inverted softmin:

γ = d ◦ (1− softmin(d)) (8)

By weighting the absolute distance with the inverted

softmin score, inputs must have both a low absolute dis-

tance and high softmin score to be assigned a low rejection

score for a known class. If all values in γ are above a thresh-

old θ, the input does not belong to any known class and is

rejected as unknown. Otherwise, the class label correspond-

ing to the smallest value in γ is assigned:

decision =

{

rejected as unknown if min(γ) > θ

class i = argminγ if min(γ) ≤ θ
(9)

Using this distance-based decision procedure minimises

open space risk [20]: the further away an input x projects

from the class-specific centres, the more likely it is to be

rejected as unknown.

4. Experimental Setup

To simulate open set conditions, a set of ‘known’ and

‘unknown’ classes must be established. The openness O of

the classification task [20] can then be defined as

O = 1−

√

2 ·Ntrain

Ntest +Ntarget

(10)

where Ntrain is the number of ‘known’ classes during train-

ing, Ntarget is the number of ‘known’ classes for classifi-

cation during testing and Ntest is the total number of test-

ing classes (‘known’ and ‘unknown’). A higher openness
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indicates a more difficult problem setup, but other factors

such as the visual similarity between known and unknown

classes also influence the difficulty. We follow the estab-

lished benchmark evaluation protocol [13], where standard

classification datasets are adapted to the open set task by

randomly splitting into ‘known’ and ‘unknown’ classes.

4.1. Datasets

The details of each dataset in its open set configuration

are summarised below. For each dataset, performance is

evaluated over 5 trials with random known and unknown

class splits.

MNIST [11]: grayscale 32×32 images of handwritten dig-

its, 6 known and 4 unknown classes, O = 13.39%.

SVHN [14]: RGB 32× 32 images of street view house dig-

its, 6 known and 4 unknown classes, O = 13.39%.

CIFAR10 [10]: RGB 32 × 32 images of animals and ob-

jects, 6 known and 4 unknown classes, O = 13.39%.

CIFAR+10/+50: considers the 4 non-animal classes of CI-

FAR10 as known, and 10 or 50 randomly sampled animal

classes from CIFAR100 [10] as unknown (O = 33.33% and

62.86%).

TinyImageNet [25]: RGB 64 × 64 images of animals and

objects, 20 known and 180 unknown classes, O = 57.35%.

TinyImageNet images can contain significant background

information unrelated to the object class, a number of

classes are very visually and semantically related (e.g. dif-

ferent breeds of dogs), and there is high visual variation

within individual classes. Examples are provided in the sup-

plementary material.

4.2. Metrics

We use the following metrics to assess the performance

of an open set classifier.

Area Under the ROC Curve (AUROC) is a calibration-

free measure of the open set performance of a classifier.

The Receiver Operating Characteristic (ROC) curve repre-

sents the trade-off between true positive rate (known in-

puts correctly retained as ‘known’) and the false positive

rate (unknown inputs incorrectly retained as ‘known’) when

applying varying thresholds to a given score. We modify

the threshold θ that is compared to our network’s rejection

scores γ as discussed in (9).

Classification Accuracy measures the classifier’s accuracy

when applied to only the known classes in the dataset,

equivalent to closed set classification. An open set classi-

fier should maintain the classification accuracy of a standard

closed set classifier.

Correct Classification Rate (CCR) measures the fraction

of known inputs that are correctly retained as ‘known’ and

correctly classified as their ground truth class [7]. It can

be computed for various false positive rates when varying a

threshold (we threshold our network’s rejection scores γ).

4.3. State­of­the­art Methods for Comparison

We compare to seven existing state-of-the-art open set

classifiers [2, 9, 13, 16, 17, 28, 29], following the established

protocol that uses AUROC as the primary evaluation met-

ric. The results of these experiments are shown in Table 1,

where we also highlight the three methods [2, 28, 29] that

use distance in the logit space during testing to distinguish

between known and unknown inputs. In contrast to CAC,

none of those methods uses distance during training.

We additionally compare to another state-of-the-art open

set classifier [7] that uses a different evaluation protocol (as

described in Section 5.1). Instead of assessing the overall

performance with AUROC, [7] evaluate with CCR, which

quantifies performance at specific false positive operating

points. This is an important metric for many safety-critical

domains where performance at reasonable low false positive

rates is relevant. We hope that including this comparison

encourages future open set works to do so also.

4.4. Implementation Details

We use the network architecture specified by the bench-

mark evaluation protocol [13]. We use a Stochastic Gradi-

ent Descent (SGD) optimizer with a learning rate of 0.01

and train until convergence. We then complete another

training cycle with a lower learning rate of 0.001 and train

again until convergence. More details about the train-

ing procedure are in the supplementary material. For all

datasets, we use an Anchor loss weight λ of 0.1 and a logit

anchor magnitude α of 10.

5. Results and Discussion

Our evaluation revealed four main results that we dis-

cuss in the following: (1) CAC outperforms the existing

distance-based open set classifiers [2,28,29] on every tested

dataset, without sacrificing classification accuracy (Section

5.1). (2) Compared to other distance losses, CAC achieves

better open set performance (Section 5.2.1). (3) Training

with anchored class centres achieves better open set perfor-

mance than learnt class centres on nearly all tested datasets,

particularly on object-based datasets with high intra-class

visual variations. Anchored centres also maintain open

set performance better with increasing numbers of known

classes (Section 5.2.2). (4) Training with CAC is insensi-

tive to the choice of its two hyperparameters over a wide

range of values (Section 5.2.3).

5.1. Comparison with State­of­the­Art Open Set
Classifiers

The open set performance of our proposed approach is

compared to the state-of-the-art methods in Table 1.
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Method Use Distance in MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 TinyImageNet

Training Testing

Softmax [9] ✗ ✗ 97.8 ± 0.6 88.6 ± 1.4 67.7 ± 3.8 81.6 ± N.R. 80.5 ± N.R. 57.7 ± N.R.

OSRCI [13] ✗ ✗ 98.8 ± 0.4 91.0 ± 1.0 69.9 ± 3.8 83.8 ± N.R. 82.7 ± N.R. 58.6 ± N.R.

C2AE [16] ✗ ✗ - 89.2 ± 1.3 71.1 ± 0.8 81.0 ± 0.5 80.3 ± 0.0 58.1 ± 1.9

GFROR [17] ✗ ✗ - 93.5 ± 1.8 80.7 ± 3.9 92.8 ± 0.2 92.6 ± 0.0 60.8 ± 1.7

OpenMax [2] ✗ ✓ 98.1 ± 0.5 89.4 ± 1.3 69.5 ± 4.4 81.7 ± N.R. 79.6 ± N.R. 57.6 ± N.R.

G-OpenMax [29] ✗ ✓ 98.4 ± 0.5 89.6 ± 1.7 67.5 ± 4.4 82.7 ± N.R. 81.9 ± N.R. 58.0 ± N.R.

CROSR [28] ✗ ✓ 99.1 ± 0.4 89.9 ± 1.8 - - - 58.9 ± N.R.

CAC (Ours) ✓ ✓ 99.1 ± 0.5 94.1 ± 0.7 80.1 ± 3.0 87.7 ± 1.2 87.0 ± 0.0 76.0 ± 1.5

Table 1: Open set AUROC for state-of-the-art methods and our proposed approach. Best and second best performance are

bolded and italicised respectively.
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Figure 2: Training with CAC (right) causes known test data

to cluster more tightly to the class centres than training with

cross-entropy. This allows for distance to better separate

known and unknown test data. This plot shows the distribu-

tions for MNIST, see Table 2 for other datasets.

Comparison with other distance-based approaches:

Compared to other state-of-the-art methods that use dis-

tance in the logit space during testing [2,28,29], we achieve

the best open set performance on all six of the benchmark

datasets. Our performance increase is most substantial on

TinyImageNet and CIFAR10, where there is an increase of

17.1% and 10.6%.

Our proposed approach is the first method that trains

with a distance-based loss when using distance in the logit

space during testing. To analyse the impact of distance-

based training, we examine the distributions of known class

and unknown class distances to a class centre for a network

trained with cross-entropy loss (as used by [2,28,29]) and a

network trained with our proposed CAC loss. As shown in

Figure 2, the CAC-trained network has a known distribution

that clusters more tightly to the class centres (behaviour it

was trained for), and as a result, there is a lower overlap with

the unknown distribution. By reducing the overlap with the

unknown distribution, the open set classifier can more ac-

curately identify and reject unknown inputs, thus improving

open set performance.

Dataset Cross-Entropy CAC (Ours)

MNIST 0.414 0.324

SVHN 0.700 0.573

CIFAR10 0.946 0.868

CIFAR+10 0.899 0.766

CIFAR+50 0.889 0.751

TinyImageNet 0.984 0.913

Table 2: Compared to cross-entropy loss, training with CAC

gives a lower Bhattacharyya coefficient between distribu-

tions of known and unknown class distances to the closest

class centre. This represents less overlap between distribu-

tions, enabling better distance-based open set recognition.

In Table 2, we quantitatively show that training with

CAC decreases the overlap between the known and un-

known class distance distributions in comparison to cross-

entropy loss. The table shows the Bhattacharyya coeffi-

cient [3], an established measure of the overlap between two

distributions. For each of the datasets, CAC loss results in a

lower Bhattacharyya coefficient, on average by 14.3%.

Comparison to non-distance-based approaches: Com-

pared to non-distance-based open set classifiers, we achieve

state-of-the-art performance on TinyImageNet, MNIST and

SVHN, and come second to GFROR [17] on CIFAR10 and

CIFAR+10/+50.

While CAC achieves a 15.2% performance increase on

TinyImageNet with 20 known classes, it performs less well

to [17] on CIFAR+10/+50 variations with only 4 known

classes. When presented with only 4 known classes, CAC

has less data to learn a rich feature representation that en-

sures known and unknown class inputs do not project to the

same region in the logit space. In contrast, [17] specifically

uses reconstruction and self-supervision techniques during

training to improve the feature representation.
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Figure 3: Our CAC classifier maintains the classification

accuracy of a standard classifier trained with cross-entropy

loss.

Unknown Data Method CCR at FPR of

1% 5% 10%

SVHN

Softmax [9] 46.0 N.R. 64.7

Objectosphere [7]† 54.5 N.R. 70.1

CAC (Ours) 68.3 78.5 82.6

CIFAR100
Subset

Softmax [9] 23.4 N.R. 51.4

Objectosphere [7]† 43.3 N.R. 66.5

CAC (Ours) 32.5 63.8 73.8

Table 3: At False Positive Rates (FPR) 1%, 5% and 10%,

CAC achieves state-of-the-art Correct Classification Rates

(CCR) for the unknown datasets (with CIFAR10 as the

known dataset). † [7] uses a separate subset of CIFAR100

as known unknowns during training.

Maintaining classification accuracy: In Figure 3, we

show that training with CAC loss maintains the closed set

classification accuracy of a standard network. The standard

network uses the same architecture but is trained with cross-

entropy loss and uses the softmax score for classification.

This result demonstrates that our method improves open set

performance without compromising classification accuracy.

Open set performance at low false positive operating

points: For many safety-critical domains (e.g. robotics or

medical applications), the performance at specific low false

positive rates is practically relevant. Although the main

benchmark used for open set classification (in Table 1) does

not provide such an evaluation, we can compare CAC’s per-

formance at different false positive rates against [7] and [9].

Table 3 shows the results after training a ResNet-18 on CI-

FAR10, and using a CIFAR100 subset and SVHN as the un-

known datasets. We note that [7] uses a ‘known unknown’

subset of CIFAR100 during training, which potentially con-

tributes to their better performance at the very low 1% FPR

on the CIFAR100 experiment. We refer the reader to the

Supplementary for details on the experimental setup.

Dataset Center Tuplet LA only CAC

[26] [23] (Ours) (Ours)

MNIST 0.988 0.957 0.979 0.987

SVHN 0.941 0.833 0.888 0.942

CIFAR10 0.786 0.739 0.751 0.803

CIFAR+10 0.854 0.844 0.804 0.863

CIFAR+50 0.863 0.837 0.816 0.872

TinyImageNet 0.765 0.717 0.749 0.772

Table 4: CAC provides better open set AUROC perfor-

mance than the compared distance losses on nearly all the

benchmark datasets.

5.2. Ablation Studies

5.2.1 Comparison with Existing Distance Losses

We proposed CAC loss specifically for the task of training a

distance-based open set classifier. However, other distance

losses have been proposed for other computer vision tasks,

e.g. metric learning [23] and facial recognition [26]. In this

experiment, we compare the open set performance achieved

when training with Center loss [26], Tuplet loss [23], the

Anchor loss component LA of CAC, and our proposed CAC

loss. We train the same network architecture with each loss

function and use our anchored class centres. Table 4 sum-

marises the open set AUROC results for each of the losses.

CAC outperforms all other distance losses [23, 26] on

SVHN, CIFAR10, CIFAR+10, CIFAR+50 and TinyIma-

geNet, with Center loss [26] achieving second best perfor-

mance. Center loss uses cross-entropy loss on the logits to

implicitly encourage inputs to maximise distance to other

class centres. In contrast, CAC explicitly forces this be-

haviour by applying Tuplet loss directly to the output dis-

tance vector. Interestingly, when used alone, our Anchor

loss term and Tuplet loss cannot achieve the same perfor-

mance as when they are combined to create CAC loss. This

validates that both loss terms are important for distance-

based open set classification, as together they simultane-

ously ensure minimised distance to the correct class centre

as well as maximised distance to all other class centres.

5.2.2 Anchored versus Learnt Class Centres

In this section we investigate the benefits of using anchored

class centres in the context of open set classification. While

our work is the first to anchor class centres during the

training process, previous distance losses such as Center

loss [26] encourage clustering around class centres that are

simultaneously learnt during training.

We compare the open set performance when training

with learnt and anchored class centres, and repeat this ex-

periment with CAC loss and Center loss [26]. To learn

class centres, we use the approach described in [26]. Learn-
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Dataset Center [26] CAC (Ours)

Learnt Anchored Learnt Anchored

MNIST 0.985 0.988 0.987 0.987

SVHN 0.937 0.941 0.946 0.942

CIFAR10 0.763 0.786 0.791 0.803

CIFAR+10 0.831 0.854 0.856 0.863

CIFAR+50 0.848 0.863 0.865 0.872

TinyImNet 0.738 0.765 0.764 0.772

Table 5: Anchored class centres yields better open set AU-

ROC than learnt class centres, particularly on the object-

based CIFAR10 and TinyImageNet datasets.

10 15 20 25 30 35 40 45 50
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Figure 4: Anchored class centres perform better with in-

creasing numbers of classes than learnt class centres. Re-

sults are averaged over 5 trials of random class splits.

ing centres with CAC required the addition of cross-entropy

loss for stability (see supplementary material for details).

In Table 5, we show that anchored class centres yield

better open set performance than learnt class centres, for

both Center loss [26] and our proposed CAC loss. The per-

formance difference between anchored and learnt centres

is greatest for the object-based datasets (CIFAR10 variants

and TinyImageNet), with an average 2.2% improvement for

Center loss [26] and 0.85% for CAC. Learning class cen-

tres during training relies on a stable learning signal from

the images in each batch. However, CIFAR10 and Tiny-

ImageNet can exhibit considerable visual variations within

each class, thus providing a potentially noisy learning sig-

nal for the class centre positions. By anchoring our class

centres in the logit space, we eliminate this difficulty and

allow for high performance on object-based datasets.

Learning class centres is even more difficult for tasks

with large numbers of classes, as each batch will provide

less data per class. To investigate this effect, we train with

learnt and anchored class centres for Center loss [26] and

CAC loss on increasing numbers of known TinyImageNet

classes, while keeping the openness of the open set task

fixed at 18.35%. As we can see in Figure 4, open set per-

formance of a network trained with learnt class centres de-

grades at a faster rate than a network trained with anchored

class centres for both Center loss [26] and CAC loss.

In summary, we show that training with anchored class

centres yields better performance on object-based datasets
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Figure 5: CAC Performance is not sensitive to hyperparam-

eters anchor loss weight λ and anchor magnitude α across

a range of values (results from 1 trial on TinyImageNet).

and scales better to larger numbers of training classes. We

found this to be consistent for both tested loss functions.

In addition, we observed training with anchored centres re-

quires approximately half the epochs to converge, speeding

up the training process (see supplementary material).

5.2.3 Analysis of Hyperparameters of CAC loss

Our proposed CAC loss has two hyperparameters, the An-

chor loss term weight α and the anchored centre magnitude

λ, and their sensitivity is shown in Figure 5. With an An-

chor loss weight 0.05 ≤ λ ≤ 0.8 and an anchor magnitude

5 ≤ α ≤ 20, both the classification accuracy and open set

AUROC vary by less than 4%.

6. Conclusions

The deployment of deep neural networks under open set

conditions remains an important and difficult challenge for

computer vision. Reliability and robustness in the presence

of unknown class inputs is crucial for many safety-critical

applications such as driverless cars or robotics.

We introduced and demonstrated the benefits of an-

chored class centres and the novel Class Anchor Cluster-

ing loss for open set recognition. Future work could focus

on learning more meaningful and diverse feature represen-

tations, potentially by allowing for more complex arrange-

ments of the anchored class centres. A more semantically

meaningful feature representation may allow for better dis-

tinction of unknown classes and increased interpretability

of open set errors, both of which have the potential to im-

prove distance-based open set recognition even further. We

additionally look forward to engaging with the community

to develop new evaluation protocols and datasets beyond the

simple ones commonly used in open set recognition, such as

MNIST, SVHN, or even CIFAR10. Many practical applica-

tions rely on open set robustness, and we believe benchmark

datasets should better reflect the complexity and richness of

those real world applications.
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in ai safety. arXiv preprint arXiv:1606.06565, 2016.

[2] Abhijit Bendale and Terrance E Boult. Towards open set

deep networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1563–

1572, 2016.

[3] Anil Bhattacharyya. On a measure of divergence between

two statistical populations defined by their probability distri-

butions. Bull. Calcutta Math. Soc., 35:99–109, 1943.

[4] Hermann Blum, Paul-Edouard Sarlin, Juan Nieto, Roland

Siegwart, and Cesar Cadena. The fishyscapes benchmark:

measuring blind spots in semantic segmentation. arXiv

preprint arXiv:1904.03215, 2019.

[5] Terrance E Boult, Steve Cruz, Akshay Raj Dhamija, Manuel

Günther, James Henrydoss, and Walter J Scheirer. Learning

and the unknown: Surveying steps toward open world recog-

nition. In Proceedings of the AAAI Conference on Artificial

Intelligence, pages 9801–9807, 2019.

[6] Taylor Denouden, Rick Salay, Krzysztof Czarnecki, Vahdat

Abdelzad, Buu Phan, and Sachin Vernekar. Improving recon-

struction autoencoder out-of-distribution detection with ma-

halanobis distance. arXiv preprint arXiv:1812.02765, 2018.

[7] Akshay Raj Dhamija, Manuel Günther, and Terrance E

Boult. Reducing network agnostophobia. In Advances in

Neural Information Processing Systems, 2018.

[8] Bolin Gao and Lacra Pavel. On the properties of the softmax

function with application in game theory and reinforcement

learning. arXiv preprint arXiv:1704.00805, 2017.

[9] Dan Hendrycks and Kevin Gimpel. A baseline for detect-

ing misclassified and out-of-distribution examples in neural

networks. In International Conference on Learning Repre-

sentations, 2017.

[10] Alex Krizhevsky. Learning multiple layers of features from

tiny images. Technical Report, 2009.

[11] Yann LeCun, Corinna Cortes, and Christopher CJ Burges.

Mnist handwritten digit database. ATT Labs [Online]. Avail-

able: http://yann.lecun.com/exdb/mnist, 2010.

[12] Benjamin J Meyer and Tom Drummond. The importance of

metric learning for robotic vision: Open set recognition and

active learning. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 2924–2931,

2019.

[13] Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen

Wong, and Fuxin Li. Open set learning with counterfac-

tual images. In Proceedings of the European Conference on

Computer Vision, pages 613–628, 2018.

[14] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-

sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural

images with unsupervised feature learning. In Neural Infor-

mation Processing Systems Workshop on Deep Learning and

Unsupervised Feature Learning, 2011.

[15] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural

networks are easily fooled: High confidence predictions for

unrecognizable images. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

427–436, 2015.

[16] Poojan Oza and Vishal M Patel. C2ae: Class conditioned

auto-encoder for open-set recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2307–2316, 2019.

[17] Pramuditha Perera, Vlad I Morariu, Rajiv Jain, Varun Man-

junatha, Curtis Wigington, Vicente Ordonez, and Vishal M

Patel. Generative-discriminative feature representations for

open-set recognition. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 11814–

11823, 2020.

[18] Pramuditha Perera and Vishal M Patel. Deep transfer learn-

ing for multiple class novelty detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 11544–11552, 2019.

[19] Qi Qian, Jiasheng Tang, Hao Li, Shenghuo Zhu, and Rong

Jin. Large-scale distance metric learning with uncertainty.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 8542–8550, 2018.

[20] Walter J Scheirer, Anderson de Rezende Rocha, Archana

Sapkota, and Terrance E Boult. Toward open set recogni-

tion. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(7):1757–1772, 2013.

[21] Patrick Schlachter, Yiwen Liao, and Bin Yang. Open-set

recognition using intra-class splitting. In Proceedings of the

European Signal Processing Conference. IEEE, 2019.

[22] Alireza Shafaei, Mark Schmidt, and James J Little. A

less biased evaluation of out-of-distribution sample detec-

tors. arXiv preprint arXiv:1809.04729, 2018.

[23] Kihyuk Sohn. Improved deep metric learning with multi-

class n-pair loss objective. In Advances in Neural Informa-

tion Processing Systems, pages 1857–1865, 2016.

[24] Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Had-

sell, Dieter Fox, Jürgen Leitner, Ben Upcroft, Pieter Abbeel,

Wolfram Burgard, Michael Milford, and Peter Corke. The

limits and potentials of deep learning for robotics. The In-

ternational Journal of Robotics Research, 37(4-5):405–420,

2018.

[25] TinyImageNet. Tiny ImageNet Visual Recognition Chal-

lenge.

[26] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A

discriminative feature learning approach for deep face recog-

nition. In European Conference on Computer Vision, pages

499–515. Springer, 2016.

[27] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and

Philipp Krahenbuhl. Sampling matters in deep embedding

learning. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 2840–2848, 2017.

[28] Ryota Yoshihashi, Wen Shao, Rei Kawakami, Shaodi

You, Makoto Iida, and Takeshi Naemura. Classification-

reconstruction learning for open-set recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4016–4025, 2019.

[29] Sergey Demyanov Zongyuan Ge and Rahil Garnavi. Gen-

erative openmax for multi-class open set classification. In

Proceedings of the British Machine Vision Conference, pages

42.1–42.12, 2017.

3578


