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Abstract

It is well known that human gaze carries significant in-

formation about visual attention. However, there are three

main difficulties in incorporating the gaze data in an at-

tention mechanism of deep neural networks: (i) the gaze

fixation points are likely to have measurement errors due

to blinking and rapid eye movements; (ii) it is unclear

when and how much the gaze data is correlated with vi-

sual attention; and (iii) gaze data is not always available

in many real-world situations. In this work, we introduce

an effective probabilistic approach to integrate human gaze

into spatiotemporal attention for egocentric activity recog-

nition. Specifically, we represent the locations of gaze fixa-

tion points as structured discrete latent variables to model

their uncertainties. In addition, we model the distribution

of gaze fixations using a variational method. The gaze dis-

tribution is learned during the training process so that the

ground-truth annotations of gaze locations are no longer

needed in testing situations since they are predicted from

the learned gaze distribution. The predicted gaze locations

are used to provide informative attentional cues to improve

the recognition performance. Our method outperforms all

the previous state-of-the-art approaches on EGTEA, which

is a large-scale dataset for egocentric activity recognition

provided with gaze measurements. We also perform an ab-

lation study and qualitative analysis to demonstrate that our

attention mechanism is effective.

1. Introduction

It has recently been shown that attention mechanisms can

boost the performance of neural networks in various tasks

by learning to focus on relatively important and salient parts

of input signals. Most notably, attention-based recurrent

neural networks have achieved great success in machine

translation [1, 23] and image captioning [38]. Attention

mechanisms have also been widely adopted by deep con-

volutional neural networks (CNNs) in several forms of fea-

ture re-weighting such as spatial attention [37, 27], channel

attention [11, 40], etc [35, 33]. These methods usually let

neural networks learn what and where to focus on from their

own responses.

In this paper, we introduce an effective probabilistic

method for integrating human gaze into a spatiotemporal

attention mechanism. It has been well discussed in cogni-

tive science that human gaze is closely related to a person’s

behavioral intention and visual attention [34, 4, 9, 28]. At

the same time, however, there is always uncertainty in the

process of recording the gaze fixation points because of sac-

cadic suppression1[16] and measurement errors. Further-

more, it is not always guaranteed that the surrounding re-

gion around the point of gaze fixation has the most impor-

tant information, especially when interacting with multiple

objects or under dissociation2[2, 14].

To address such problems, we present a probabilistic

modeling method as follows: First, we propose to represent

the locations of gaze fixation points in space and time as

structured discrete latent variables to model their uncertain-

ties. Second, we model the distribution of the gaze fixations

using a variational method. During the training process, the

distribution of gaze fixations is learned using the ground-

truth annotations of gaze points. Specifically, we propose to

reformulate the discrete training objective so that it can be

optimized using an unbiased gradient estimator. The gaze

locations are predicted from the learned gaze distribution so

that the ground-truth annotations of gaze fixation points are

no longer needed in testing scenarios. The predicted gaze

locations are integrated into a soft attention mechanism to

make the intermediate features more attended to informa-

tive regions. It is empirically shown that our gaze-combined

attention mechanism leads to a significant improvement of

activity recognition performance on egocentric videos by

providing additional cues across space and time.

We demonstrate the effectiveness of our method on

EGTEA [17] and GTEA gaze+ [18], which are large-scale

1phenomenon in which visual information is not processed while blink-

ing or under rapid eye movements.
2dissociation of the focus of attention is a phenomenon where the points

of gaze fixation are not correlated with the visual attention within the field

of view.
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datasets for egocentric activities provided with gaze mea-

surements. Our method significantly outperforms all the

previous state-of-the-art approaches. We also perform an

ablation study to verify that probabilistic modeling of gaze

data is truly beneficial. We then visualize the spatiotem-

poral responses of our networks to qualitatively show that

the gaze-combined soft attention provides informative at-

tentional cues.

2. Related work

Recently, attention-based recurrent neural networks have

been widely adopted for neural machine translation [1, 23]

as well as for image captioning [38]. They generate atten-

tion vectors by manipulating hidden states of recurrent neu-

ral networks and annotated information. Attention mech-

anisms have also been incorporated with deep CNNs to

improve the representation quality of intermediate features

by refining the features [37, 27, 11, 40]. They usually

introduce attention modules which find channel-wise or

spatial-wise attention maps from the average-pooled fea-

tures descriptors. There are more recent works which uti-

lize both attention methods across spatial and channel di-

mensions [35, 33]. These methods also have shown that

using both average-pooling and max-pooling in parallel is

beneficial to building attention maps.

There have been a few attempts to utilize human

gaze data for egocentric activity recognition [8, 12, 17].

Fathi et al. [8] propose a conditional generative model that

jointly predicts gaze locations and egocentric activity la-

bels. More related and recent works [12, 17] have shown

that incorporating gaze data into an attention mechanism

can boost the performance of CNNs on egocentric activity

recognition. Huang et al. [12] propose Mutual Context Net-

work (MCN) that tries to use human gaze for recognizing

activities and use the activity labels for predicting gaze loca-

tions. However, MCN has multiple sub-modules that should

be trained separately. Furthermore, an inference procedure

requires many iterations because of the complicated net-

work architecture. They also use saccades as ground-truth

gaze points, which should be ignored to improve the predic-

tion performance. Li et al. [17] is built on a similar proba-

bilistic framework to ours; however, there are three crucial

differences. First, to model the distribution of gaze points

for T time steps, they use T independent 2D latent vari-

ables. This totally ignores the temporal correlation of the

gaze distribution, which limits the recognition performance.

Second, they use the approximated Gumbel-Softmax objec-

tive [13, 25] that introduces a significant bias to a gradient

estimator. As a result, the recognition performance of their

method is further limited. Third, they directly apply the

sampled gaze points z
∗ to the input feature map without

any modifications. This is vulnerable to situations where

the gaze points are misleading and not informative. On

the contrary, we use structured discrete latent variables to

model the gaze distribution in a 3D space. We apply the

direct optimization method to handle this structured latent

space, which also minimizes the bias. Moreover, we use

the sigmoid activated linear mapping on the sampled gaze

points to produce a soft attention map.

3. Background: Direct optimization

Direct optimization [21] was originally proposed for

learning a variational auto-encoder (VAE) with discrete la-

tent variables. The objective of VAE is given by:

LVAE = −Ez∼qφ [log pθ(x|z)]+DKL[qφ(z|x)||pθ(z)] (1)

where x is an input and z is a discrete latent variable. Com-

puting the expected log-likelihood requires drawing sam-

ples from the discrete distribution qφ(z|x), which makes

it difficult to optimize. Gumbel-Softmax reparameteriza-

tion technique [13, 25] was recently suggested to relax the

discrete variables to continuous counterparts. However,

this continuous relaxation is known to introduce a signifi-

cant bias when evaluating gradients and become intractable

under the high-dimensional structured latent spaces. The

direct optimization method introduces an unbiased gradi-

ent estimator for the discrete VAE that can be used even

under the high-dimensional structured latent spaces. For

simplicity, let us rewrite the log-probabilities as follows:

hφ(x, z) = log qφ(z|x), fθ(x, z) = log pθ(x|z). By us-

ing the Gumbel-Max trick [26], the expected log-likelihood

can be reformulated as follows: Ez∼qφ [log pθ(x|z)] =
Eγ∼G[fθ(x, z

∗)] where z
∗ = argmax

ẑ
{hφ(x, ẑ)+ γ(ẑ)},

G denotes a Gumbel distribution, and γ(ẑ) represents a ran-

dom variable sampled from the Gumbel distribution that is

associated with each input ẑ. Then, the proposed gradient

estimator for the expectation term is given in the following

form:

∇φ Eγ∼G[fθ(x, z
∗)] = lim

ǫ→0

1

ǫ

(

Eγ∼G

[

∇φ hφ(x, z
∗(ǫ))

−∇φ hφ(x, z
∗)
]

)

(2)

where z
∗(ǫ) = argmax

ẑ
{ǫfθ(x, ẑ) + hφ(x, ẑ) + γ(ẑ)}.

The suggested gradient estimator is unbiased when the per-

turbation parameter ǫ goes to 0, but small ǫ brings a large

variance of the estimation. Therefore, in practice, we set ǫ
to a large value in the beginning of the training process and

decrease it progressively.

4. Method

We start this section by building a probabilistic frame-

work and the loss function of our method. Next, we propose

a 3D gaze modeling approach using structured discrete la-

tent variables. We then introduce the direct loss minimiza-
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tion approach [21] that is used for optimization in the pres-

ence of the structured discrete latent variables. Finally, we

describe our overall network architecture for activity recog-

nition that integrates the gaze information into attention.

4.1. Probabilistic framework

Let us consider a recognition task of predicting activity

labels y given an input clip of egocentric videos x, which is

equivalent to finding a conditional probability p(y|x). We

represent the gaze locations in space and time with a dis-

crete latent variable z. Then, the conditional probability is

written as follows by the law of total probability:

pθ(y|x) =

∫

pθ(y|x, z)pθ(z|x)dz (3)

where θ denotes the parameters of a network for recogni-

tion. Since z generally has an intractable posterior distribu-

tion, we upper bound the negative log-likelihood by taking

the negative log on both sides of Equation (3) and introduc-

ing the variational approximation qφ(z|x) for gaze model-

ing as follows:

− log pθ(y|x) ≤

∫

−qφ log
(

pθ(y|x, z)
pθ(z|x)

qφ

)

dz

= −Ez∼qφ [log pθ(y|x, z)] +DKL[qφ||pθ(z|x)] (4)

where φ denotes parameters of a network for gaze model-

ing. We use the upper bound in Equation (4) as our loss

function.

4.2. Reformulating the training objective

In order to compute the expected log-likelihood of the

loss function in Equation (4), we need to sample the gaze

points from qφ. We apply the Gumbel-Max trick [26] that is

an efficient method of drawing samples from a discrete dis-

tribution. For simplicity, let us rewrite the log-probability

as follows: hφ(x, z) = log qφ(z|x). Then, we can draw a

gaze sample z∗ using the following equation:

z
∗ = argmax

ẑ

{hφ(x, ẑ) + γ(ẑ)} (5)

where γ(ẑ) represents a random variable sampled from

a Gumbel distribution that is associated with each input

ẑ. However, z
∗ includes a non-differentiable operation,

argmax, so we cannot evaluate the gradient of the expec-

tation term with respect to φ using a standard backprop-

agation algorithm. Here, we propose to apply the direct

optimization method [21] to optimize the expected log-

likelihood term. In the following, we demonstrate that our

loss function can be optimized using the direct optimization

method.

Since our task is to classify activity labels, we can model

y given x and z with a categorical distribution. Specifically,

let us say that there are C number of predefined activity

classes. Then, pθ(y|x, z) =
∏C

c=1
p
✶y=c
c for some class-

wise probabilities pc’s that are dependent on x and z where

✶y=c is an indicator function that is equal to 1 if y = c and

0 otherwise. This allows us to rewrite log pθ(y|x, z) in the

following form:

log pθ(y|x, z) =

C
∑

c=1

✶y=c f
c
θ (x, z) (6)

where f c
θ (x, z)’s are the corresponding class-wise log-

probabilities. Now, we propose to reformulate the expected

log-likelihood using the class-wise log-probabilities:

Ez∼qφ [log pθ] =
∑

z

(

Pγ∼G[z
∗ = z]

C
∑

c=1

✶y=c f
c
θ (x, z)

)

=

C
∑

c=1

✶y=c Eγ∼G[f
c
θ (x, z

∗)] (7)

where G denotes the Gumbel distribution. In Equation (7),

We show that the expected log-likelihood can be decom-

posed into a sum of multiple expectation terms of the class-

wise log-probabilities, each multiplied by an indicator func-

tion. Since the gradient is a linear operator, we can estimate

the gradient of the expected log-likelihood as follows:

∇φ Ez∼qφ [log pθ] =

C
∑

c=1

✶y=c ∇φ Eγ∼G[f
c
θ (x, z

∗)] (8)

where each class-wise gradient estimator

∇φ Eγ∼G[f
c
θ (x, z

∗)] is computed by applying the di-

rect optimization:

∇φ Eγ∼G[f
c
θ (x, z

∗)] = lim
ǫ→0

1

ǫ

(

Eγ∼G

[

∇φ hφ(x, z
∗(ǫ, c))

−∇φ hφ(x, z
∗)
]

)

(9)

when z
∗(ǫ, c) = argmax

ẑ
{ǫf c

θ (x, ẑ) + hφ(x, ẑ) + γ(ẑ)}.

Other gradients, such as the gradient of the expected log-

likelihood with respect to θ, are obtained using a standard

backpropagation algorithm. As a result of the reformula-

tion, we can optimize the training objective without intro-

ducing a bias of gradient estimator.

4.3. Structured gaze modeling

We propose to use structured discrete latent variables to

model the gaze locations as follows. First, we will write Z
to denote a set of every possible z. Let us say that we want

to model the gaze locations in a 3D space: Z = R
T×H×W

where T is the length of the temporal dimension and H
and W represent the height and width of spatial dimensions.

For each time step, gaze is fixated at a single location of a
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Figure 1: An illustration of our overall network architecture. We use the two-stream I3D [3] as a backbone network. To model

the gaze distribution qφ(z|x), we use the same convolutional blocks of the I3D (Mixed 5b-c) and add three convolutional

layers (conv) on top of it. The two intermediate features at the end of the 4th max-pooling layer (MaxPool 5a) are added

in an element-wise fashion and used as input to the network for gaze modeling. The sampled gaze point is applied with a

fully-connected layer (FC) and with the sigmoid function to produce a soft attention map.

H×W dimensional space. Therefore, it is more reasonable

to represent the gaze locations with a sequence of 2D dis-

crete random variables rather than with a single 3D random

variable. Specifically, we assign a 2D discrete random vari-

able to each time step: z = (z1, ..., zt, ..., zT ) where each

zt is one-hot encoded. For example, if the gaze is fixated at

(h,w) on the t-th time step, zt(j, k) = 1 if (j, k) = (h,w)
and 0 otherwise.

Computing z
∗(ǫ, c) in Equation (9) requires evaluating

f c
θ (x, z) for every z, which causes serious overhead. Al-

though our structured gaze modeling reduces the number

of possible realizations from 2THW to (HW )T , it is still

computationally expensive. We propose to further reduce

the number of computations by applying a low-dimensional

approximation as suggested by Lorberbom et al. [21]. In

particular, we approximate f c
θ (x, z) =

∑T
t=1

f c
t (x, zt; θ)

where f c
t (x, zt; θ) = f c

θ (x, z
∗

1
, ..., zt, ...z

∗

T ). This low-

dimensional approximation further reduces the number of

possible realizations from (HW )T to THW . We imple-

ment the realization of z by using the batch operation so

that we can obtain z
∗(ǫ, c) in a single forward pass.

4.4. Network architecture

The overall network architecture is illustrated in Fig-

ure 1. As a backbone network, we use the two-stream

I3D [3] which is a popular network for activity recogni-

tion tasks (#Params: 24.7M, FLOPs: 80.2G). To model

the gaze distribution qφ(z|x), we use the same convolu-

tional blocks of the I3D (Mixed 5b-c) and add three

convolutional layers (kernel size=[(1,3,3), (1,3,3), (1,1,1)],

stride=[(1,1,1), (1,1,1), (1,1,1)]) on top of it. We add the

two intermediate features at the end of the 4th max-pooling

layer (MaxPool 5a) and use the added feature map as an

input to the network for gaze modeling. We draw a sam-

ple z
∗ using the Equation (5), which is then applied with a

fully connect layer and the sigmoid function to produce a

soft attention map. The two features at the end of the 5th

convolutional block (Mixed 5c) are added in an element-

wise way, and we apply the soft attention map to the added

feature map via a residual connection. Our final network

has #Params: 31.9M, FLOPs: 81.3G.

5. Experiments

We evaluate our method on EGTEA [17], which is a

large-scale dataset with over 10k video clips of 106 fine-

grained egocentric activities and annotated gaze fixations.

It is demonstrated that our method outperforms other pre-

vious state-of-the-art approaches. Furthermore, we provide

a qualitative analysis by visualizing the spatiotemporal re-

sponses of our network. We perform additional experiments

on GTEA Gaze+ [18] that consists of 2k videos with 44 ac-

tivity categories.

5.1. Implementation details

Training/testing process. First, we resize each frame

to 256× 340 and generate optical flow frames by using the

TV-L1 algorithm [39]. Following the previous works on

the EGTEA dataset [12, 17], we use the I3D pre-trained
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Method Backbone network Acc (%) Acc∗ (%)

Li et al. [17] I3D [3] 53.30 -

Sudhakaran et al. [32] ResNet34+LSTM [10, 36] - 60.76

LSTA [31] ResNet34+LSTM [10, 36] - 61.86

MCN [12] I3D [3] 55.63 -

Kapidis et al. [15] MFNet [7] 59.44 66.59

Lu et al. [22] I3D [3] 60.54 68.60

Ours I3D [3] 62.84 69.58

Table 1: Performance comparison of our method with other state-of-the-art methods on EGTEA dataset [17]. We report both

Acc (mean class accuracy) and Acc∗ (ratio of correctly classified videos to the total number of videos). Acc is typically lower

than Acc∗ due to an imbalanced class distribution of the dataset.

Method Backbone network Acc (%) Acc∗ (%)

Sudhakaran et al. [32] ResNet34+LSTM [10, 36] - 60.13

MCN [12] I3D [3] 61.14 -

Ma et al. [24] FCN32s+CNN-M-2048 [20, 5] - 66.40

Shen et al. [30] SSD+LSTM [19] - 67.10

Ours I3D [3] 64.81 68.67

Table 2: Performance comparison on the GTEA Gaze+ [18] dataset. We report both Acc (mean class accuracy) and Acc∗

(ratio of correctly classified videos to the total number of videos). Ours again achieves the best performance.

on Kinetics dataset [3] as a backbone network. During the

training process, we randomly sample 24-frame input seg-

ments and randomly crop 224 × 224 regions for each seg-

ment. We train our network in an end-to-end manner with

a batch size of 24 on 8299 training video clips using the

first split of the dataset. We use the SGD algorithm with 0.9

momentum and 0.00004 weight decay. The learning rate

starts at 0.032 and decays two times by a factor of 10 after

8k and 15k iterations. ǫ is set to 1000 in the beginning and

decreases exponentially with a 0.001 annealing rate. We

set the minimal ǫ to be 0.1. ǫ goes to this minimum value

within 10k iterations. The whole training process of 18K

iterations takes less than 12 hours using 4 GPUs (TITAN

Xp). For the evaluation, we divide each testing video into

non-overlapping 24-frame segments. The whole evaluation

process takes less than a half hour using a single GPU.

Dimensions of the latent space. For better compari-

son, we decided to follow the previous approaches for the

dimensions of the latent space. Li et al. [17] suggests pre-

dicting gaze points for every 8 frames using the fact that a

common duration of gaze fixation is roughly the same as

the time interval of 8 frames (about 300ms). It is also sug-

gested to reduce the spatial dimensions of the space for gaze

distribution by a factor of 32. This is reasonable since our

final goal is to improve the recognition performance, not to

predict the exact gaze location in a high-dimensional space.

As a result, the dimensions of the 3D latent space for gaze

points described in Section 4.3 become Z = R
3×7×7 as

T = 24/8 and H = W = 224/32.

5.2. Comparison with the Stateoftheart

We compare our method with other state-of-the-art

methods. Performance comparison on the EGTEA dataset

is reported in Table 1. We want to point out that

Li et al. [17], MCN [12], and Lu et al. [22] use the same

backbone network as ours, which is two-stream I3D [3].

Our method outperforms all other methods by a large mar-

gin.

We also evaluate our method on the GTEA Gaze+ [18],

which is another commonly-used dataset for egocentric ac-

tivity recognition provided with gaze measurements. It is

collected by 6 different human subjects. Following previ-

ous works, we perform a leave-one-subject-out cross vali-

dation. The performance comparison is reported in Table 2.

Our method again achieves the best performance among the

recent approaches.

5.3. Qualitative analysis

We visualize the response of the last convolutional layer

of our model and of I3D [3] to see how the gaze integra-

tion affects the top-down attention of the two networks. We

use Grad-CAM++ [6], which is a recently proposed visual-

ization method for CNNs. It is an improved and generalized

version of famous Grad-CAM [29]. It is recently shown that
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(a)

(b)

(c)

(d)

Figure 2: Qualitative results of our model and the baseline network (I3D). We use Grad-CAM++ [6] to visualize the spa-

tiotemporal responses of the last layer of each models. We can observe that our method makes the network better at attending

objects or regions which are related to the activity. Activity label of (a): “Move Around bacon”, (b): “Cut cucumber”, (c):

“Cut bell pepper”, (d): “Put lettuce”.

Method
Using gaze data during

Acc (%) Acc∗ (%)
Training Testing

I3D w/ Gaze X X 59.56 67.46

I3D w/ Gumbel-Softmax [13, 25] X 61.24 68.69

Ours X 62.84 69.58

Table 3: Performance comparison of different ablative settings. Interestingly, I3D w/ Gaze that uses gaze data also in the

testing process performs the worst. The results demonstrate that our structured gaze modeling with direct optimization is

effective in improving the performance of egocentric activity recognition. Qualitative analysis regarding this ablation study

is provided in the next section.

Grad-CAM++ is effective in understanding 3D CNNs on

the task of activity recognition by visualizing the attended

locations by the networks across space and time. The visu-

alization results are illustrated in Figure 2. We can clearly

observe that our model is better at attending activity-related

objects or regions. Specifically, our model is more sensitive

to the target objects. The baseline network is sometimes dis-

tracted by the background objects. The results qualitatively

demonstrate that modeling gaze distributions improves the

attentional ability of the networks and the performance of

egocentric activity recognition.

5.4. Ablation study

We perform an ablation study on EGTEA dataset [17] as

reported in Table 3. “I3D w/ Gaze” refers to the method of

using the ground-truth gaze annotations without any gaze

modeling. For each input segment, the 3D tensor repre-

senting the ground-truth gaze locations zGT is first down-

sampled to have 3× 7× 7 dimensions and is applied with a

fully-connected layer and the sigmoid function to produce
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(a) (b)

Figure 3: Our method is robust to situations where the ground-truth gaze fixations do not carry activity-related information

and are misleading. White marks denote ground-truth annotations of gaze fixations and black marks denote the predicted

gaze locations. The predicted gaze locations are successfully fixated on the target objects when the ground-truth annotations

are misleading. It demonstrates that our structured gaze modeling with direct optimization is effective. Activity label of (a)

is “Mix pasta” and (b) is “Move Around bacon”.

a soft-attention map. This method requires using the gaze

data in testing because it does not model the distribution of

gaze points. “I3D w/ Gumbel-Softmax [13, 25]” uses the

Gumbel-Softmax reparameterization trick to relax the dis-

crete objective to make it continuous. Specifically, it draws

a relaxed gaze sample z
∗

GS instead of z
∗ in Equation 5 us-

ing the following equation: z
∗

GS = softmax
{(

hφ(x, z) +

γ(z)
)

/τ
}

. We set τ = 2 following the previous work,

Li et al. [17], that uses the Gumbel-Softmax objective (but

takes different gaze modeling approach). The results indi-

cate that our structured gaze modeling with direct optimiza-

tion is more effective than the other two methods. Interest-

ingly, “I3D w/ Gaze” that uses gaze data also in the testing

process performs the worst. This is probably because some

of the ground-truth gaze annotations are not correlated with

the actual visual attention. As mentioned in the introduc-

tion, measurement error and other uncertainties (saccadic

suppression [16] and dissociation [2, 14]) make the anno-

tated gaze points uninformative and sometimes misleading.

We argue that our method is capable of learning only the

informative gaze distribution that is related to the activities.

We qualitatively analyze these interesting results in the fol-

lowing section.

5.5. Robustness to misleading gaze fixations

We perform an additional qualitative analysis to show

the robustness of our method to the misleading gaze fix-

ations. Here, misleading gaze points refer to the ground-

truth gaze annotations that are not correlated with the actual

visual attention. We compare our model with I3D [3] (with-

out any gaze incorporation) and “I3D w/ Gaze” which uses

gaze data in training and testing without gaze modeling. We

again use Grad-CAM++ [6] to visualize the spatiotempo-

ral activation maps of the last convolutional layer of each

model. Figure 3 illustrates the situations where the ground-

truth gaze points are not fixated at the activity-related ob-

jects or regions. In these examples, the gaze points are not

informative and misleading: the ground-truth gaze points

are fixated on the background, not on the pan. This leads to

blurry and noisy activation maps of “I3D w/ Gaze” because

it uses the misleading ground-truth gaze points directly as a

soft-attention map. We can observe that our method is ro-

bust to such misleading gaze points while “I3D w/ Gaze”

is not. Specifically, the predicted gaze locations (denoted

as black marks) are successfully fixated on the target ob-

jects when the ground-truth annotations (denoted as white

marks) are not. It demonstrates the effectiveness of our pro-

posed structured gaze modeling with direct optimization.

6. Additional analysis

We visualize confusion matrices for the baseline network

(I3D [3]) and our method on the EGTEA dataset [17] in Fig-

ure 4. Our method outperforms the baseline at least by 0.1%

on 28 classes. For better comparison, we also visualize con-

fusion matrices of the two methods on these 28 classes in

Figure 5. We can observe that many activities containing

“Cut”, “Take”, and “Put” are benefitted from our gaze in-

corporation.

1075



(a) Baseline (b) Ours

Figure 4: Confusion matrices for the baseline (I3D [3]) and ours on the EGTEA dataset [17].

(a) Baseline (b) Ours

Figure 5: Confusion matrices for the baseline and ours on 28 classes where our method beats the baseline by a meaningful

margin (0.1%). We can observe that many activities containing “Cut”, “Take”, and “Put” are better recognized by our gaze

incorporated model.

7. Conclusion

We have presented an effective method of integrating

human gaze into attention on the task of egocentric activ-

ity recognition. Incorporating gaze data is non-trivial be-

cause there is always uncertainty in the process of record-

ing and the regions near the gaze fixation points are some-

times uninformative. Our method addresses both problems

with a probabilistic modeling and an efficient optimization

technique. We implement the overall network structures

with a simple and powerful 3D CNNs. We evaluate our

method in various ways on large-scale datasets. An ablation

study demonstrates that incorporating gaze data improves

the recognition performance. This is because gaze is corre-

lated with egocentric activity. Moreover, it shows that our

proposed structured gaze modeling provides performance

improvements by extracting only the informative cues. In-

terestingly, modeling gaze distribution is more effective in

improving the performance than when using ground-truth

gaze measurements. We argue that our model is capable

of learning only the informative gaze distribution, which is

related to the activities of interest. We also qualitatively

analyze the effectiveness of our model using the state-of-

the-art visualization technique. Our method outperforms all

the other previous methods on the task of egocentric activity

recognition.
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