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Abstract

Driven by deep learning, object recognition has recently

made a tremendous leap forward. Nonetheless, its accuracy

often still suffers from several sources of variation that can

be found in real-world images. Some of the most challeng-

ing variations are induced by changing lighting conditions.

This paper presents a novel approach for tackling bright-

ness variation in the domain of 2D object detection and 6D

object pose estimation. Existing works aiming at improv-

ing robustness towards different lighting conditions are of-

ten grounded on classical computer vision contrast normal-

isation techniques or the acquisition of large amounts of an-

notated data in order to achieve invariance during training.

While the former cannot generalise well to a wide range of

illumination conditions, the latter is neither practical nor

scalable. Hence, We propose the usage of Generative Ad-

versarial Networks in order to learn how to normalise the

illumination of an input image. Thereby, the generator is

explicitly designed to normalise illumination in images so

to enhance the object recognition performance. Extensive

evaluations demonstrate that leveraging the generated data

can significantly enhance the detection performance, out-

performing all other state-of-the-art methods. We further

constitute a natural extension focusing on white balance

variations and introduce a new dataset for evaluation.

1. Introduction

Due to its wide range of applications, localising objects

in natural images is one of the most studied fields in com-
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†Federico Tombari is now working at Google

Figure 1. Detection under strong lighting variations. Although

the input image is subject to strong light from the side, we can

still detect almost all objects taken from Toyota Light [12] (top).

Similarly, we are able to robustly detect these objects when little

light is available (bottom). In each row the input image is shown

on the left, while SSD detections are shown on the right.

puter vision [41, 55, 26, 20, 52, 12, 13]. Recently, driven by

deep learning and the accessibility of large-scale datasets

such as ImageNet [6] or Open Images [22], there has been

tremendous improvement in terms of detection accuracy as

well as the number of objects that can be recognized simul-

taneously [25, 27, 36, 10, 20, 33, 24]

Despite the undeniable advances, several open chal-

lenges still remain to be solved. Some of the most promi-

nent being robustness towards illumination [17, 35, 51],

viewpoint changes [28], occlusion, as well as handling the
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synthetic-to-real domain gap [13, 46].

Real-world environments commonly possess a large

variation of illumination conditions. For instance, applica-

tions involving outdoor scenes are often exposed to strong

changes in illumination. In autonomous driving, cars often-

times operate in extreme scenarios such as direct strong sun-

light during the day or almost no light at night. Similarly,

indoor vision systems often suffer from challenging lighting

conditions. Noteworthy, nearby windows or inside refrig-

erators the contrast ratio be 1000:1 or higher. These chal-

lenges commonly go unnoticed when training on large scale

datasets. However, many practical applications deal with

objects categories or instances that are not part of bench-

mark datasets. Therefore, training data needs to be collected

from scratch and the acquisition of data with the required

variation is problematic. This is particularly true for 6D

pose estimation, since annotating the 6D pose of an object

is very difficult, time consuming, and error-prone [13]. For

this reason, increasing the capability of models leveraging

only synthetic data is of high interest [20, 46, 13, 44]. As a

consequence, in this work we focus on robustness towards

brightness and color with a particular focus on synthetic

data.

In this paper we introduce our novel method to improve

2D object detection and 6D object pose estimation, which

we call Detector-Boost GAN(DB-GAN) - a GAN-based

architecture for illumination normalisation (c.f . Figure 1).

Our method is essentially trained to perform illumination

normalisation by means of generating images tailored to the

capabilities of the object detector. By back-propagating the

detection loss, DB-GAN learns to eradicate the weaknesses

of the detector and strengthen its performance. Our method

does not need prior information on the input image and is

able to automatically recover normalised texture under dark,

bright as well as non-uniform light conditions. DB-GAN is

capable of outperforming all related state-of-the-art meth-

ods on two standard benchmark datasets, TUD Light and

Toyota Light [12]. We also introduce a new dataset named

Toyota TrueBlue, aimed at assessing robustness to white

balance changes. Our approach is able to achieve signif-

icant mAP improvements on all datasets compared to our

baseline detectors and other existing works. Noteworthy,

despite focusing on improving detectors, our method can

be potentially leveraged to enhance performance of various

computer vision tasks.

In summary, we make the following contributions. i) We

propose a novel architecture which learns to generate im-

ages in order to facilitate further detection under strong il-

lumination changes. ii) We introduce Toyota TrueBlue, a

new dataset focusing explicitly on robustness to change in

white balance and iii) experimentally demonstrate that DB-

GAN significantly enhances performance both in 2D and

3D, outperforming all related methods.

2. Related Work

In this section we provide an overview on previous works

in illumination normalisation. Since we employ Genera-

tive Adversarial Networks (GANs) to normalize images, we

also briefly outline the most important works in the GAN

literature.

2.1. Generative Adversarial Networks

Generative Adversarial Networks(GANs) [8] are one

of most important recent advances in generative models.

GANs train in alternation two deep learning architectures: a

generator and a discriminator. While the generator produces

realistically looking images, the discriminator attempts to

distinguish images coming from the generator from im-

ages sampled from the true distribution. The networks are

trained jointly in a min-max game fashion, converging in

an equilibrium in which the discriminator is not capable of

distinguishing real from fake. Inspired by [8], Isola et al.

employ Conditional GANs [30] for image translation be-

tween two domains [14]. Here the generated samples are

also conditioned on the input sample, meaning that the dis-

criminator always receives a pair of images. Accordingly,

the discriminator is required to distinguish whether the gen-

erated output is consistent with the input and correctly trans-

lates to the target domain. Similarly, Cycle-GAN, proposed

in [59] also carries out domain translation, but without the

need for paired data. SINGAN [39] leverages a sequence

of generators learning to reconstruct texture at different res-

olutions and can be trained using a single high resolution

training image.

Some existing GAN based works have been introduced

in the context of object detection. While, Wang et al. [49]

leverage GANs for knowledge distillation, Bai et al. [2] fo-

cuses on improving the detection of small objects. In [58],

the authors propose to use weakly supervised object dis-

covery for the detection of vehicles in high resolution re-

mote sensing images. Wang et al. [50] propose an adver-

sarial mask generation approach to improve occlusion and

deformation robustness in object detection. Finally, other

works [7, 15] use GAN generators to produce instance level

segmentation masks for either weakly supervised [7] or un-

paired data based object detection [15].

Nevertheless, to the best of our knowledge, none of the

mentioned works have been used to improve illumination

robustness.

2.2. Illumination Normalisation

In this section we specifically cover illumination nor-

malization, image enhancement and color constancy ap-

proaches with a special focus on GAN-based solutions.

Local Contrast Normalization [16], was introduced as a

pre-processing step to mimic the behaviour of the V1 cells
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in the cortical area of the brain. A few deep-learning ap-

proaches for robustness towards illumination changes have

also been proposed. Krizhevsky et al. [21] introduce Lo-

cal Response Normalization as a brightness normalisation

module to be applied after non-linearities in deep archi-

tectures. Rad et al. [35] propose to learn the parameters

of a generalization of the Difference-of-Gaussians(DoG)

method using CNNs. Thereby, the DoG parameters are

learned end-to-end with respect to object detection and 6D

object pose estimation. Nonetheless, this method is inher-

ently restricted by the capacity of DoGs for normalisation.

Other works [23, 48] perform illumination estimation for

modality fusion of thermal and color inputs [23] and image

enhancement [48]. Several additional approaches have been

introduced for general image enhancement [53, 54, 9, 31].

GAN-based approaches In [42], the authors leverage

GANs (i.e. Angular-GAN) to remove light and shadows

from RGB images. Their method is fully-supervised and

uses synthetic training samples generated with GTA-V.

Jiang et al. propose EnlightenGAN[17] for transforming

dark into bright images and vice-versa. The architecture

is inspired by Cycle-GAN[59], hence, eradicating the need

for paired images during training. However, prior knowl-

edge on whether the input image is too dark or too bright is

required. Furthermore, this method assumes that the input

image is acquired under uniform lighting, which is rarely

the case in practical scenarios. Wei et al. recently introduce

Retinex-Net[51], an end-to-end trainable architecture for

low-light image enhancement. [51] decomposes the image

into reflectance and illumination, prior to adjusting illumi-

nation. Nonetheless, they require paired low-light/normal-

light data for training. Zhang et al. [57] propose a GAN

base architecture to deal with illumination robustness in

face recognition. They learn a illumination invariant la-

tent space by means of adversarial training. Sakkos et al.

[38] use two GAN generators to produce both low-light and

bright images and then perform semantic segmentation on

the difference image in a multi-task setting. Finally, Chen et

al. [4] propose a GAN-based image enhancement approach.

3. Methodology

In this work, we propose a novel method for illumination

normalisation in RGB images. The network is grounded

on an Encoder-Decoder architecture, leveraging recent ad-

vances in GANs to further enhance the reconstruction qual-

ity. The core novelty of this work lies in the additional

back-propagation of a detection loss, while training the

GAN. This implicitly forces the network to generate im-

ages, which simplify latter object detection despite contrary

conditions such as very strong illumination. Unlike previ-

ous works [17, 51] our method does not require prior knowl-

edge of the input image as well as any real data for training.

In this section, we explain the technical details of our

proposed method.

3.1. DB­GAN for Detection­Driven Reconstruction

Let I be any image space and Ī be the subset of I whose

elements possess uniform lighting. Assumed an acquired

set of image pairs (I , Ī), where I ∈ I, and Ī ∈ Ī, the illu-

mination normalised version of I. In addition, we assume

that all objects of interest are annotated in the form of either

bounding boxes or 6D poses. In the following sections we

describe how we construct a dataset with these characteris-

tics without any human labelling.

We want to learn a mapping from the domain I to the

illumination-free domain Ī. To this end, we employ a GAN

based architecture, following recent success of adversarial

models at image generation tasks[59, 39, 14, 42]. To avoid

losing details in the reconstructed image [14, 17, 3, 19],

our generator G is based on an encoder-decoder architec-

ture with skip connections [37]. Given an image pair (I ,

Ī) the generator has to learn to normalise the input image

according to

Î = G(I). (1)

Since we assume pairs of images, we can learn the map-

ping from I to Ī in a fully supervised fashion, using a re-

construction loss on the target Ī and the prediction Î with

Lrecons := ||Î − Ī||1. (2)

To prevent the generator from predicting blurry outputs

we adopt the perceptual loss [18]. In particular, to ensure

high and low-level similarity, we extract features φl at mul-

tiple levels L from a VGG16 [43] network trained on Ima-

geNet. We employ the first five (|L| = 5) different layers

and calculate the perceptual loss using

Lperceptual :=
1

|L|

∑

l∈L

||φl(Î)− φl(Ī)||1. (3)

We additionally use an adversarial loss to improve fine-

grained reconstruction and ensure proper domain transfer.

In particular, we use a discriminator which assesses if a

sample in fact originates from the illumination-free domain.

In our implementation we use both a global D and a local

discriminator LD as proposed in [14]. While the global

discriminator encourages better translation to the target do-

main, the local discriminator operates on small patches in

order to enforce the preservation of details. We use binary

cross entropy loss for both discriminators. Following com-

mon practice [14, 30, 32] we condition the output on input

according to I ⊕ Î or I ⊕ Ī , where ⊕ denotes horizontal

concatenation [30].

During generator training, we feed the conditioned im-

ages to both discriminators for teaching the generator to
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Figure 2. Training scheme of DB-GAN for Object Detection. Our loss is based on three different blocks, all intended to optimize

detection under high lighting variations. First, a reconstruction term for high quality reconstruction of the normalized target scene Ī .

Thereby, we incorporate two discriminators ensuring consistency at different scales. Second, a perceptual term to enforce feature similarity

between the prediction Î and the target Ī . Finally, a detection term in which we propagate the loss, with respect to the given ground truth

(green arrow), from a pre-trained SSD instance to the image normalization network. Due to this, the network is forced to reconstruct the

image Ī such that detection is optimized.

produce realistic images that seem to originate from the uni-

form lighting domain. Again, we use binary cross entropy

loss for optimization. We denote these two loss term as

LfoolD and LfoolLD
.

Unique to this work is the training of the generator with

a additional detection loss (Detection Optimization as de-

picted in Fig 2). In essence, we encourage the GAN to not

only create realistic illumination normalised images, but to

also optimize the image for detection. To this end, we pre-

train the detector on synthetic data without any illumination

changes and freeze its weights. When training DB-GAN,

we additionally back-propagate the loss with respect to the

trained detector. DB-GAN is consequently required to ad-

equately adjust lighting in order to optimize detection. To

test out the proposed architecture, we use SSD [27] for 2D

object detection and SSD6D [20] for 6D object pose estima-

tion. For both detectors we use the original loss terms LDet,

as reported in the corresponding papers. Given a set of pos-

itive Pos and hard-mined negative Neg anchor boxes, we

minimize the following

LDet(Pos,Neg) :=
∑

b∈Pos

(Lclass + αLfit)+
∑

b∈Neg

Lclass.

(4)

with respect to SSD, and for SSD6D according to

LDet(Pos,Neg) :=
∑

b∈Neg

Lclass +
∑

b∈Pos

(Lclass+

αLfit + βLview + γLinplane).

(5)

Thereby Lclass denotes the cross-entropy loss applied to

each anchor and Lfit denotes the L1 loss which measures

the misalignment of the corners in order to provide a tight

fit. Further, SSD6D decouples 3D rotation into viewpoint

and in-plane rotation. Thereby viewpoint describes the per-

ceived surface and inplane rotation describes how this sur-

face is rotated on the image-plane. To increase stability,

SSD6D bins viewpoint and in-plane rotation and conducts

classification referring again to the cross-entropy loss for

Lview and Linplane.

The final loss for the generator is then comprised of a

weighted sum over all individual contributions

L :=Lrecons + λ1LGAN + λ2Lperceptual + λ3LfoolD+

λ4LfoolLD
+ λ5LDet

(6)

We empirically found that good choices for the above

hyper-parameters are: λ1 = λ2 = λ3 = 1, λ4 = 0.5 and

λ5 = 0.01.

3.2. Image Enhancement Using DB­GAN

The aim of our approach is to use the trained DB-GAN

to generate a new training set enhancing the detector’s ro-

bustness towards different lighting conditions.

PHOS Dataset. In line with [35], we use the PHOS

dataset [47] to train our DB-GAN for illumination robust-

ness. Contrary to [35], we only use PHOS to extract back-

ground images. The PHOS dataset [47], contains 15 real

2942



scenes, captured under 15 different lighting conditions: one

correct exposure, 8 images under uniform lighting (i.e. 4

underexposed samples and 4 overexposed samples) and 6

samples with non-uniform lighting.

Baseline Detector Data Generation. As we want to

back-propagate the detector loss, we need to first train a de-

tector instance capable of detecting all objects of interest.

Since we focus on training with synthetic data, we follow

standard procedure [20, 29] and render 3D object models

with random poses on top of random backgrounds, drawn

from the Microsoft Coco dataset [26, 11]. Afterwards, we

use the generated data to train the initial detector.

DB-GAN Data Generation. While the background vari-

ability in PHOS is limited, it exposes a very high per im-

age resolution of (4256 × 2832). Considering the input

resolution of modern deep learning architectures, this en-

ables the sampling of numerous diverse patches. We use

256×256 as sample size, since it correlates to the input res-

olution of the DB-GAN generator. We use Laplacian checks

to ensure only patches with sufficient textural variation are

used. To generate our DB-GAN training data, we render

the object models on these PHOS patches. Therefore, we

randomly sample an image I from any lighting condition

and utilize the matching image with the correct exposure as

ground truth Ī . We apply several light perturbations on the

object model with respect to different OpenGL functionali-

ties and render the result on I . We then re-render the same

objects and poses onto the target image, however, without

employing any perturbations. We demonstrate two exam-

ple training examples in the supplementary material. Once

the detector baseline and DB-GAN are trained, the detector

training data is passed to the generator. The resulting output

images form the new, normalised, training data. Finally, a

new detector instance is trained on the normalised data.

3.3. Toyota TrueBlue dataset

TrueBlue is a new dataset which specifically targets to

assess object detection robustness to white balance errors.

Existing image datasets focusing on color temperature [5,

40, 34] do not quantify the illuminant and do not contain

household objects with ground truth bounding boxes and

3D object models. We believe this dataset to be the first to

be acquired with known light source color temperature and

camera settings and, thus, enables quantification of detector

performance under erroneous white balance conditions1.

Toyota TrueBlue (see Figure 3) consists of 11 image

sets of 3 different scenes with daily household objects with

3D model, distractor objects and also the MacBeth Color

1Toyota Trueblue can be downloaded free-of-

charge for non-commercial use by filling the form at

https://forms.gle/ZX1aWPiu9HoetKcG9.

Figure 3. Example of two color images from the Toyota True-

Blue dataset. The image on the left has a 2500K color tem-

perature, while the image on the right depicts the same scene at

10000K. More examples can be found in the supplementary mate-

rial.

Checker chart. Each scene was illuminated from above by a

set of three lights of different types, e.g. LED, incandescent,

compact fluorescent, daylight and mixture of different light

sources. 11 images were acquired of each scene using a

Nikon D750 with Nikon 24-70mm f/2.8 lens with 11 differ-

ent white balance settings, ranging from 2500K to 10000K.

More details on how the dataset was acquired can be found

in the supplementary material.

4. Evaluation

In this section, we introduce the implementation details,

and the datasets used for evaluation. Then we demonstrate

the results of our experiments.

4.1. Implementation Details

We generate 50000 training images for both the GAN

and the two SSD instances and 100000 training images for

SSD6D since it is a more complex task. We train all detec-

tors for 50 epochs. Due to the different number of objects

we trained DB-GAN for 10 epochs on the TUD Light ob-

jects and for 30 epochs on the Toyota Light objects, with

a batch size of 1. The initial learning rate is set to 0.0003

with an exponential update rule. To stabilise training, we

do not back-propagate the detector loss until the reconstruc-

tions are fairly realistic. Empirically, we found that 30000

iterations are sufficient for this. The experiments were im-

plemented with Tensorflow [1] and run on a single Nvidia

TitanXp GPU.

Generator implementation. The generator follows an

encoder-decoder architecture using skip connections sim-

ilar to [37]. We use a 5 × 5 filter size and leaky

ReLU(LReLU) [56], with a 0.2 slope on the negative side,

as activation function. The generator consists of eight con-

volutional layers with stride equal to 2 in the encoder as

well as eight deconvolutional layers in the decoder. Each

convolutional layer of the encoder is followed by batch nor-

malisation. Further, the encoder has an input image size of

256 × 256. We use unpooling with zero padding for up-
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sampling. The final up-sampling layer is followed by a hy-

perbolic tangent activation function to squeeze the output

between 0-1 for all channels.

Discriminators implementation. The global discrimina-

tor is composed of four convolutional layers. Each convolu-

tional layer is followed by a batch normalisation layer with

LReLU activation. Finally, a fully connected layer with sig-

moid activation is applied.

The local discriminator first applies a convolutional

layer. Afterwards, we extract 64 non-overlapping patches

of size 32×32. Each of them is processed by two more con-

volutional layers followed by a fully connected layer with

sigmoid activation. This enforces the output to be also lo-

cally consistent within each patch.

Detectors. Our SSD and SSD6D detectors work at 299×
299 resolution with an InceptionV4 backbone [45] using

6099 anchor boxes. For viewpoint classification in 6D we

use 89 view vertices and 36 inplane angles.

4.2. Evaluation Protocol

To assess the performance of our method, we performed

experiments on the Benchmark for 6D Object Pose Es-

timation (BOP) 2019 challenge version [12] of both the

Toyota Light and the TUDLight datasets. For the 6D ex-

periments on the Toyota Light dataset we trained all de-

tectors on 4 objects, namely objects 6,9,14 and 15 that

we believe well represent the dataset in terms of shape

and appearance variation. Note that for all experiments

we do not use any of the datasets images during training,

but rather train our networks fully from synthetic render-

ings of the 3D model data. We compare the performance

of our approach against the SSD or SSD6D baselines.

We additionally compare against three illumination nor-

malisation/image enhancement approaches: the Difference

of Gaussians (DoG), EnlightenGAN[17], RetinexNet[51]

and Deep Upe[48]. Among classical computer vision ap-

proaches DoG still provides top performance on image nor-

malisation for object detection and 6D object pose estima-

tion [35]. In our experiments we used two Gaussian ker-

nels of size 5 and 3 pixels. For all DoG, EnlightenGAN,

RetinexNet and Deep Upe we pre-processed the training

dataset as well as the input images at inference time.

Finally, we show the effectiveness of our approach at in-

creasing object detection robustness against white balance

variation. To achieve this we manually perturbe the hue

value of the GAN training images. The hue range [−15, 15]
was divided into 4 intervals of equal length. Then a random

hue value was sampled in each interval and added uniformly

to each image pixel producing 4 new GAN training images.

The task of DB-GAN was to reconstruct the original im-

ages.

Toyota Light dataset. The Toyota Light dataset [12] con-

tains 21 rigid household objects, captured under 5 different

lighting conditions. Noteworthy, the annotation for each in-

put sample includes the actual light conditions at the acqui-

sition time. Two lighting levels are reported. The first is

ambient light which is a diffuse overhead light source. The

intensity of the incident light on the object was kept con-

stant at 200lx for all samples. The second is the intensity

of a directional light source oriented at 90 degrees to the

scene. This feature makes this dataset suitable to evaluate

non-uniform lighting robustness.

TUD Light Dataset. The TU Dresden Light dataset con-

tains training and test image sequences that show three

moving objects under 8 different lighting conditions. The

object poses were annotated by manually aligning the 3D

object model with the first frame of the sequence and prop-

agating the initial pose through the sequence using ICP.

Metrics. All 2D experiments are evaluated following the

standard metric for 2D detection, i.e. mean Average Preci-

sion(mAP) with a 0.5 IOU threshold. The 6D experiments

are evaluated using the BOP 19 challenge toolkit. We re-

port the average recall and report the recall according to all

individual BOP metrics in the supplementary materials.

4.3. Qualitative Results

Figure 4 shows qualitative results of our approach for 2D

object detection. Both in challenging dark and bright con-

ditions DB-GAN is able to recover images that look almost

identical. The SSD trained on DB-GAN generated images

can detect a larger number of object instances compared to

the SSD baseline. Qualitative comparisons among the dif-

ferent approaches are presented in the supplementary mate-

rial.

4.4. Quantitative Results

Here we provide a quantitative evaluation of our detec-

tion boosting approach compared with existing works.

4.4.1 2D Object Detection

Toyota Light & TUD Light. Table 1 shows the 2D re-

sults on the Toyota Light and TUD Light datasets. Our

method achieves a mAP of 0.72 on the Toyota Light dataset

and 0.66 on the TUD Light dataset, outperforming the SSD

baseline as well as all the other approaches. In more de-

tail, we surpass the best existing approach by 0.43 (Deep

Upe and EnlightenGAN) on the Toyota Light and by 0.04
(RetinexNet) on TUD Light.
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Input Image SSD Detection GAN Augmentation DB-GAN Detection

Figure 4. Comparison of the SSD baseline with our GAN optimized SSD on objects taken from Toyota Light. Thereby, the second

column depicts the results using only SSD and the fourth column shows the corresponding detection employing DB-GAN. It can be

easily deduced that our approach significantly improves detection even under difficult lightning conditions. Further, notice that almost all

directional light is canceled by the GAN, as illustrated in the intermediate DB-GAN representations (3rd column).

Toyota Light TUD Light

SSD with mAP ↑ mAP ↑

DoG 0.20 0.36

enlightenGAN[17] 0.29 0.43

Retinex-Net[51] 0.28 0.62

Deep Upe [48] 0.29 0.47

baseline 0.27 0.18

DB-GAN 0.72 0.66

Table 1. DB-GAN 2D Object Detection results on the Toyota

Light and TUD Light datasets. Our method outperforms the

SSD baseline as well all other state-of-the-art approaches for il-

lumination normalisation.

Losses used mAP ↑

L1 0.55

+ Perceptual 0.67

+ Global Discriminator 0.66

+ Local Discriminator 0.60

+ SSD Loss 0.72

Table 2. DB-GAN loss ablation study on Toyota Light.. These

results show that the best performance is achieved when using the

proposed combination of loss terms.

Ablation Study. The ablation study was performed on the

Toyota Light dataset for 2D object detection. We added the

loss terms one by one and report the corresponding mAP.

Table 2 shows the results of our ablation study with respect

to each loss contribution. Noteworthy, each loss term helps

SSD with Toyota TrueBlue mAP ↑

baseline 0.39

baseline w/ augmentation 0.54

DB-GAN 0.73

Table 3. DB-GAN results on the Toyota TrueBlue dataset. Our

method outperforms the baseline as well as SSD when leveraging

color augmentations.

to improve the overall detection performance. Importantly,

our main contribution, i.e. the back-propagation of the de-

tector loss, constitutes again a significant leap forward in

performance, overall giving the best results.

Toyota TrueBlue. Table 3 shows our results on color ro-

bustness. We compared our method against the SSD base-

line. We additionally compared with standard color aug-

mentation by training a SSD instance on perturbed images.

In practice, we perturbed the hue channel of the training im-

ages by sampling a random value in the interval [−15, 15]
and adding that amount. The results show that our approach

achieves a mAP of 0.73, improving on the SSD baseline by

almost a factor of two and performing 0.19 better than color

augmentation. The supplementary material provides visual

examples of detection results for each color temperature.

4.4.2 6D Object Pose Estimation

Toyota Light & TUD Light Table 4 reports the results of

our DB-GAN experiments for 6D object pose estimation.

2945



Figure 5. Examples from the evaluation on TUD Light. The

pair shows a TUD Light image with the corresponding GAN aug-

mentation. Notice how the GAN especially focused on the objects

of interest. Nevertheless, the method is also capable of recovering

structure in the background, which was almost completely lost due

to bad illumination.

Toyota Light TUD Light

SSD6D with w\o ICP w\ICP w\o ICP w\ICP

DoG 0.35 0.37 0.14 0.19

enlightenGAN[17] 0.30 0.34 0.157 0.21

Retinex-Net[51] 0.32 0.36 0.13 0.19

Deep Upe [48] 0.34 0.38 0.12 0.18

baseline 0.23 0.32 0.159 0.155

DB-GAN 0.42 0.44 0.164 0.25

Table 4. Results for DB-GAN for 6D object pose estimation

on Toyota Light and TUD Light. Our method outperforms the

SSD6D baseline as well all other state-of-the-art approaches for

illumination normalisation.

Similar to 2D object detection, our approach improves on

the baseline detector as well as all alternative approaches,

by a margin of 7.2% on the Toyota Light and 0.5% on the

TUD Light. Furthermore, our approach is the only one that

significantly improves performance over the baseline on the

TUD Light dataset. Additionally, we applied an ICP step to

refine the predicted poses. Notice that our approach stays

the most competitive. Furthermore, with ICP the gap be-

tween our approach and existing methods on TUD Light

significantly increases.

4.4.3 Additional Experiments.

Figure 6 shows the performance of the SSD baseline and

our boosted SSD on the entire Toyota Light dataset (both

train and test sets) as a function of the contrast ratio. Here,

contrast ratio is defined as the ratio of the intensity of inci-

dent light from the directional light source with respect to

the overhead diffuse light source mentioned previously. We

observe that the SSD baseline particularly struggles to de-

tect objects in low and high contrast, while after boosting,

SSD has become more light invariant, showing roughly the

same level of performance for each setting. This shows that

our approach is able to improve detection accuracy for both

uniform lighting (Contrast Ratio=0) as well as non-uniform
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Figure 6. Comparison between the SSD baseline and the

boosted SSD with respect to different contrast ratios in the im-

ages. We report mAP for each contrast ratio value in the Toyota

Light dataset. Our approach can deal with both uniform (Contrast

Ratio=0) as well as non-uniform lighting (Contrast Ratio=1-10).

lighting (Contrast Ratio=1-10).

DB-GAN pre-processing during inference. While pre-

processing training images greatly improves performance,

we also want to investigate the use of DB-GAN for pre-

processing input images prior to inference. From our ex-

periments we found that in almost all cases this further en-

hanced the models’ capabilities. Nonetheless, when refer-

ring to Toyota Light, we surprisingly reveal a small drop in

performance. Repetitive textural patterns as well as large

flat areas oftentimes degrade the domain transfer capabili-

ties of the GAN, since these samples are eminently different

to our training distribution. A qualitative example is shown

in Figure 5.

5. Conclusion & Future Work

We presented DB-GAN, a GAN based approach which

is able to boost object detection and 6D object pose esti-

mation performance under challenging lighting conditions.

The evaluation shows that our method clearly outperforms

both the baseline detectors as well as all other state-of-the-

art approaches. Further, our method for image normalisa-

tion is fully data-driven and neither requires large manually

annotated datasets, nor prior knowledge of the input image.

Furthermore, our approach is able to deal with non-uniform

lighting and does not need prior knowledge of the input im-

age. In the future we want to explore how to expand our

methods towards a more diverse set of tasks.
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