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Abstract

Benefiting from the capability of building inter-

dependencies among channels or spatial locations, atten-

tion mechanisms have been extensively studied and broadly

used in a variety of computer vision tasks recently. In

this paper, we investigate light-weight but effective at-

tention mechanisms and present triplet attention, a novel

method for computing attention weights by capturing cross-

dimension interaction using a three-branch structure. For

an input tensor, triplet attention builds inter-dimensional

dependencies by the rotation operation followed by resid-

ual transformations and encodes inter-channel and spatial

information with negligible computational overhead. Our

method is simple as well as efficient and can be easily

plugged into classic backbone networks as an add-on mod-

ule. We demonstrate the effectiveness of our method on

various challenging tasks including image classification on

ImageNet-1k and object detection on MSCOCO and PAS-

CAL VOC datasets. Furthermore, we provide extensive in-

sight into the performance of triplet attention by visually

inspecting the GradCAM and GradCAM++ results. The

empirical evaluation of our method supports our intuition

on the importance of capturing dependencies across di-

mensions when computing attention weights. Code for this

paper can be publicly accessed at https://github.

com/LandskapeAI/triplet-attention.

1. Introduction

Over the years of computer vision research, convo-

lutional neural network architectures of increasing depth

have demonstrated major success in many computer vi-

sion tasks [12, 17, 28, 29, 36]. Numerous recent work

[5, 14, 24, 33, 23] have proposed using either channel at-
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Figure 1. Abstract representation of triplet attention with three

branches capturing cross-dimension interaction. Given the input

tensor, triplet attention captures inter-dimensional dependencies

by rotating the input tensor followed by residual transformation.

tention, or spatial attention, or both to improve the perfor-

mance of these neural networks. These attention mecha-

nisms have the capabilities of improving the feature repre-

sentations generated by standard convolutional layers by ex-

plicitly building dependencies among channels or weighted

spatial mask for spatial attention. The intuition behind

learning attention weights is to allow the network to have

the ability to learn where to attend and further focus on the

target objects.

One of the most prominent methods is the squeeze-

and-excitation networks (SENet) [14]. Squeeze and Excite

(SE) module computes channel attentions and provides in-

cremental performance gains at a considerably low cost.

SENet was succeeded by Convolutional Block Attention

Module (CBAM) [33] and Bottleneck Attention Module

(BAM) [24], both of which stressed on providing robust

representative attentions by incorporating spatial attention

along with channel attention. They provided substantial

performance gains over their squeeze-and-excite counter-
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part with a small computational overhead.

Different from the aforementioned attention approaches

that require a number of extra learnable parameters, the

foundation backbone of this paper is to investigate the way

of building cheap but effective attentions while maintain-

ing similar or providing better performance. In particu-

lar, we aim to stress on the importance of capturing cross-

dimension interaction while computing attention weights to

provide rich feature representations. We take inspiration

from the method of computing attention in CBAM [33]

which successfully demonstrated the importance of cap-

turing spatial attention along with channel attention. In

CBAM, the channel attention is computed in a similar way

as that of SENet [14] except for the usage of global average

pooling (GAP) and global max pooling (GMP) while the

spatial attention is generated by simply reducing the input to

a single channel output to obtain the attention weights. We

observe that the channel attention method within CBAM

[33] although providing significant performance improve-

ments does not account for cross-dimension interaction

which we showcase to have a favorable impact on the per-

formance when captured. Additionally, CBAM incorpo-

rates dimensionality reduction while computing channel at-

tention which is redundant to capture non-linear local de-

pendencies between channels.

Based on the above observation, in this paper, we pro-

pose triplet attention which accounts for cross-dimension

interaction in an efficient way. Triplet attention comprises

of three branches each responsible for capturing cross-

dimension between the spatial dimensions and channel di-

mension of the input. Given an input tensor with shape

(C × H × W ), each branch is responsible for aggregat-

ing cross-dimensional interactive features between either

the spatial dimension H or W and the channel dimension

C. We achieve this by simply permuting the input tensors

in each branch and then passing the tensor through a Z-pool,

followed by a convolutional layer with kernel size of k× k.

The attention weights are then generated by a sigmoid acti-

vation layer and then is applied on the permuted input tensor

before permuting it back into the original input shape.

Compared to previous channel attention mechanisms

[2, 10, 14, 24, 33], our approach offers two advantages.

First, our method helps in capturing rich discriminative

feature representations at a negligible computational over-

head which we further empirically verify by visualizing the

Grad-CAM [27] and Grad-CAM++ [3] results. Second, un-

like our predecessors, our method stresses the importance

of cross-dimension interaction with no dimensionality re-

duction, thus eliminating indirect correspondence between

channels and weights.

We showcase this way of computing attention in paral-

lel across branches while accounting for cross-dimension

dependencies is extremely effective and cheap in com-

putational terms. For instance, for ResNet-50 [12] with

25.557M parameters and 4.122 GFLOPs, our proposed

plug-in triplet attention results in an increase of parameters

by 4.8K and GFLOPs by 4.7e-2 respectively while provid-

ing a 2.28% improvement in Top-1 accuracy. We evalu-

ate our method on ImageNet-1k [7] classification and ob-

ject detection on PASCAL VOC [8] and MS COCO [21]

while also providing extensive insight into the effectiveness

of our method by visualizing the Grad-CAM [27] and Grad-

CAM++ [3] outputs respectively.

2. Related Work

Attention in human perception relates to the process of

selectively concentrating on parts of the given information

while ignoring the rest. This mechanism helps in refin-

ing perceived information while retaining the context of it.

Over the last few years, several researched methods have

proposed to efficiently incorporate this attention mechanism

in deep convolution neural network (CNN) architectures to

improve performance on large-scale vision tasks. In the fol-

lowing part of this section, we will review some attention

mechanisms that are strongly related to this work.

Residual Attention Network [31] proposes a trunk-and-

mask encoder-decoder style module to generate robust

three-dimensional attention maps. Due to the direct genera-

tion of 3D attention maps, the method is quite computation-

ally complex as compared to the recently proposed methods

to compute attention. This was followed by the introduction

of Squeeze-and-Excitation Networks (SENet) [14] which

as debated by many was the first to successfully imple-

ment an efficient way of computing channel attention while

providing significant performance improvements. The aim

of SENet was to model the cross-channel relationships in

feature maps by learning per-channel modulation weights.

Succeeding SENet, Convolutional Block Attention Module

(CBAM) [33] was proposed, in which they enrich the atten-

tion maps by adding max pooled features for the channel

attention along with an added spatial attention component.

This combination of spatial attention and channel attention

demonstrated substantial improvement in performance as

compared to SENet. More recently, Double Attention Net-

works (A2-Nets) [6] introduced a novel relation function

for Non-Local (NL) blocks. NL blocks [32] were intro-

duced to capture long range dependencies via non-local op-

erations and were designed to be lightweight and easy to

use in any architecture. Global Second order Pooling Net-

works (GSoP-Net) [10] uses second-order pooling for richer

feature aggregation. The key idea is to gather important fea-

tures from the entire input space using second order pooling

and subsequently distributing them to make it easier for fur-

ther layers to recognize and propagate. Global-Context Net-

works (GC-Net) [2] propose a novel NL-block integrated

with a SE block in which they aimed to combine contextual
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Figure 2. Comparisons with different attention modules: (a) Squeeze Excitation (SE) Module; (b) Convolutional Block Attention

Module (CBAM); (c) Global Context (GC) Module; (d) triplet attention (ours). The feature maps are denoted as feature dimensions, e.g.

C × H × W denotes a feature map with channel number C, height H and width W . ⊗ represents matrix multiplication, ⊙ denotes

broadcast element wise multiplication and ⊕ denotes broadcast element-wise addition.

representations with channel weighting more efficiently. In-

stead of simple downsampling by GAP as in the case of

SENet [14], GC-Net uses a set of complex permutation-

based operations to reduce the feature maps before passing

it to the SE block.

Attention mechanisms have also been successfully used

for image segmentation and fine grained image classifica-

tion. Criss-Cross Networks (CCNet) [15] and SPNet [13]

present novel attention blocks to capture rich contextual in-

formation using intersecting strips. Xiao et al. [35] propose

a pipeline integrated with one bottom-up and two top-down

attention for fine grained image classification. Cao et al. [1]

introduce the ’Look and Think Twice’ mechanism which is

based on a computational feedback process inspired from

the human visual cortex which helps in capturing visual at-

tention on target objects even in distorted background con-

ditions.

Most of the above methods have significant shortcom-

ings which we address in our method. Our triplet atten-

tion module aims to capture cross-dimension interaction

and thus is able to provide significant performance gains at a

justified negligible computational overhead as compared to

the above described methods where none of them account

for cross-dimension interaction while allowing some form

of dimensionality reduction which is unnecessary to capture

cross-channel interaction.

3. Proposed Method

In this section, we first revisit CBAM [33] and ana-

lytically diagnose the efficiency of the shared MLP struc-

ture within the channel attention module of CBAM. Subse-

quently, we propose our triplet attention module where we

demonstrate the importance of cross-dimension dependen-

cies and further compare the complexity of our method with

other standard attention mechanisms. Finally, we conclude

by showcasing how to adapt triplet attention into standard

deep CNN architectures for different challenging tasks in

the domain of computer vision.

3.1. Revisiting Channel Attention in CBAM

We first revisit the channel attention module used in

CBAM [33] in this subsection. Let χ ∈ R
C×H×W be the

output of a convolutional layer and the subsequent input to

the channel attention module of CBAM where C, H andW
represent the channels of the tenor or the number of filters,

height, and width of the spatial feature maps, respectively.

The channel attention in CBAM can be represented by the

following equation:

ω = σ(f(W0,W1)(g(χ)) + f(W0,W1)(δ(χ))) (1)

where ω ∈ R
C×1×1 represent the learnt channel attention

weights which are then applied to the input χ, g(χ) is the

global average pooling (GAP) function as formulated as fol-

lows:

g(χ) =
1

W ×H

H∑

i=1

W∑

j=1

χi,j (2)

and δ(χ) represents the global max pooling (GMP) function

written as:

δ(χ) = max
H,W

(χ) (3)

The above two pooling functions make up the two meth-

ods of spatial feature aggregation in CBAM. Symbol σ
represents the sigmoid activation function. Functions

f(W0,W1)(g(χ)) and f(W0,W1)(δ(χ)) are two transfor-

mations. Thus, after expanding f(W0,W1)(g(χ)) and

f(W0,W1)(δ(χ)), we have the following form of ω:

ω = σ(W1ReLU(W0g(χ)) +W1ReLU(W0δ(χ))) (4)
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Figure 3. Illustration of the proposed triplet attention which has three branches. The top branch is responsible for computing attention

weights across the channel dimension C and the spatial dimension W . Similarly, the middle branch is responsible for channel dimension

C and spatial dimension H . The final branch at the bottom is used to capture spatial dependencies (H and W ). In the first two branches, we

adopt rotation operation to build connections between the channel dimension and either one of the spatial dimension. Finally, the weights

are aggregated by simple averaging. More details can be found in Sec. 3.2

where ReLU represents the Rectified Linear Unit and W0

and W1 are weight matrices, the size of which are defined

to be C×
C
r

and C
r
×C, respectively. Here, r represents the

reduction ratio in the bottleneck of the MLP network which

is responsible for dimensionality reduction. Larger r results

in lower computational complexity and vice versa. To note,

the weights of the MLP: W0 and W1 are shared in CBAM

for both the inputs: g(χ) and δ(χ). In Eq. (4), the chan-

nel descriptors are projected into a lower dimensional space

and then maps them back which causes loss in inter-channel

relation because of the indirect weight-channel correspon-

dence.

3.2. Triplet Attention

As demonstrated in Sec. 1, the goal of this paper is to

investigate how to model cheap but effective channel atten-

tion while not involving any dimensionality reduction. In

this subsection, unlike CBAM [33] and SENet [14], which

require a certain number of learnable parameters to build

inter-dependencies among channels, we present an almost

parameter-free attention mechanism to model channel at-

tention and spatial attention, namely triplet attention.

Overview: The diagram of the proposed triplet attention

can be found in Fig. 3. As the name implies, triplet atten-

tion is made up of three parallel branches, two of which are

responsible for capturing cross-dimension interaction be-

tween the channel dimension C and either the spatial di-

mension H or W . The remaining final branch is similar

to CBAM [33], used to build spatial attention. The outputs

from all three branches are aggregated using simple aver-

aging. In the following, before specifically describing the

proposed triplet attention, we first introduce the intuition of

building cross-dimension interaction.

Cross-Dimension Interaction: Traditional ways of com-

puting channel attention involve computing a singular

weight, often a scalar for each channel in the input tensor

and then scaling these feature maps uniformly using the

singular weight. Though this process of computing chan-

nel attention has been proven to be extremely lightweight

and quite successful, there is a significant missing piece in

considering this method. Usually, to compute these singu-

lar weights for channels, the input tensor is spatially decom-

posed to one pixel per channel by performing global average

pooling. This results in a major loss of spatial information

and thus the inter-dependence between the channel dimen-

sion and the spatial dimension is absent when computing

attention on these single pixel channels. CBAM [33] intro-

duced spatial attention as a complementary module to the

channel attention. In simple terms, the spatial attention tells

’where in the channel to focus’ and the channel attention

tells ’what channel to focus on’. However, the shortcom-

ing in this process is that the channel attention and spatial

attention are segregated and computed independent of each

other. Thus, any relationship between the two is not consid-

ered. Motivated by the way of building spatial attention, we

present the concept of cross dimension interaction, which

addresses this shortcoming by capturing the interaction be-

tween the spatial dimensions and the channel dimension of

the input tensor. We introduce cross-dimension interaction

in triplet attention by dedicating three branches to capture

dependencies between the (C, H), (C, W ) and (H , W ) di-

mensions of the input tensor respectively.

Z-pool: The Z-pool layer here is responsible for reducing

the zeroth dimension of the tensor to two by concatenating

the average pooled and max pooled features across that di-

mension. This enables the layer to preserve a rich represen-

tation of the actual tensor while simultaneously shrinking

its depth to make further computation lightweight. Mathe-
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matically, it can be represented by the following equation:

Z-pool(χ) = [MaxPool0d(χ),AvgPool0d(χ)], (5)

where 0d is the 0th-dimension across which the max and

average pooling operations take place. For instance, the Z-

Pool of a tensor of shape (C ×H ×W ) results in a tensor

of shape (2×H ×W ).

Triplet Attention: Given the above defined operations, we

define triplet attention as a three branched module which

takes in an input tensor and outputs a refined tensor of the

same shape. Given an input tensor χ ∈ R
C×H×W , we first

pass it to each of the three branches in the proposed triplet

attention module. In the first branch, we build interactions

between the height dimension and the channel dimension.

To achieve so, the input χ is rotated 90◦ anti-clockwise

along the H axis. This rotated tensor denoted as χ̂1 is of

the shape (W × H × C). χ̂1 is then passed through Z-

pool and is subsequently reduced to χ̂∗

1 which is of shape

(2×H × C). χ̂∗

1 is then passed through a standard convo-

lutional layer of kernel size k × k followed by a batch nor-

malization layer, which provides the intermediate output of

dimensions (1 × H × C). The resultant attention weights

are then generated by passing the tensor through a sigmoid

activation layer (σ). The attention weights generated are

subsequently applied to χ̂1 and then rotated 90◦ clockwise

along the H axis to retain the original input shape of χ.

Similarly, in the second branch, we rotate χ 90◦ anti-

clockwise along the W axis. The rotated tensor χ̂2 can be

represented with dimension of (H ×C ×W ) and is passed

through a Z-pool layer. Thus, the tensor is reduced to χ̂∗

2 of

the shape (2 × C ×W ). χ̂∗

2 is passed through a standard

convolutional layer defined by kernel size k × k followed

by a batch normalization layer which outputs a tensor of

the shape (1 × C × W ). The attention weights are then

obtained by passing this tensor through a sigmoid activation

layer (σ) which are then simply applied on χ̂2 and the output

is subsequently rotated 90◦ clockwise along the W axis to

retain the same shape as input χ.

For the final branch, the channels of the input tensor

χ are reduced to two by Z-pool. This reduced tensor χ̂3

of shape (2 × H ×W ) is then passed through a standard

convolution layer defined by kernel size k followed by a

batch normalization layer. The output is passed through sig-

moid activation layer (σ) to generate the attention weights

of shape (1 ×H ×W ) which are then applied to the input

χ. The refined tensors of shape (C × H ×W ) generated

by each of the three branches are then aggregated by simple

averaging.

Summarizing, the process to obtain the refined attention-

applied tensor y from triplet attention for an input tensor

χ ∈ R
C×H×W can be represented by the equation:

y =
1

3
(χ̂1σ(ψ1(χ̂

∗

1))+ χ̂2σ(ψ2(χ̂
∗

2))+χσ(ψ3(χ̂3))), (6)

Attention Mechanism Parameters Overhead (ResNet-50)

SE [14] 2C2/r 2.514M

CBAM [33] 2C2/r + 2k2 2.532M

BAM [24] C/r(3C + 2k2C/r + 1) 0.358M

GC [2] 2C2/r + C 2.548M

Triplet Attention 6k2 0.0048M

Table 1. Comparisons of various attention modules based on their

parameter complexity and overhead using ResNet-50 backbone.

where σ represents the sigmoid activation function; ψ1, ψ2

and ψ3 represent the standard two-dimensional convolu-

tional layers defined by kernel size k in the three branches

of triplet attention. Simplifying Eq.(6), y becomes:

y =
1

3
(χ̂1ω1 + χ̂2ω2 + χω3) =

1

3
(y1 + y2 + y3), (7)

where ω1, ω2 and ω3 are the three cross-dimensional atten-

tion weights computed in triplet attention. The y1 and y2 in

Eq. (7) represents the 90◦ clockwise rotation to retain the

original input shape of (C ×H ×W ).

Complexity Analysis: In Tab. 1, we empirically verify

the parameter efficiency of triplet attention as compared

to other standard attention mechanisms. C represents the

number of input channels to the layer, r represents the re-

duction ratio used in the bottleneck of the MLP while com-

puting the channel attention and the kernel size used for

2D convolution is represented by k; k ≪ C. We show

that the parameter overhead brought along by different at-

tention layers is much higher as compared to our method.

We calculate the overhead on a ResNet-50 [12] by adding

the attention layers in each block while fixing r to be 16. k
was fixed at 7 for CBAM [33] and triplet attention while for

BAM [24] k was set to be 3. The reason for the lower over-

head cost for BAM as compared to CBAM, GC [2] and SE

[14] is because unlike the latter mentioned attention layers

being used in every block, BAM was used only three times

across the architecture in total according to the default set-

ting for BAM.

4. Experiments

In this section, we provide the details for experiments

and results that demonstrate the performance and efficiency

of triplet attention, and compare it with previously proposed

attention mechanisms on several challenging computer vi-

sion tasks like ImageNet-1k [7] classification and object de-

tection on PASCAL VOC [8] and MS COCO [21] datasets

using standard network architectures like ResNet-50 [12]

and MobileNetV2 [26]. To further validate our results, we

provide the Grad-CAM [27] and Grad-CAM++ [3] results

for sample images to showcase the ability of triplet attention

to capture more deterministic feature-rich representations.
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Method Backbone Parameters FLOPs Top-1 (%) Top-5 (%)

ResNet [12]

ResNet-18 11.69M 1.82G 30.20 10.90

ResNet-50 25.56M 4.12G 24.56 7.50

ResNet-101 44.46M 7.85G 22.63 6.44

SENet [14]

ResNet-18

11.78M 1.82G 29.41 10.22

BAM [24] 11.71M 1.83G 28.88 10.01

CBAM [33] 11.78M 1.82G 29.27 10.09

Triplet Attention (Ours) 11.69M 1.83G 28.91 10.01

SENet [14]

ResNet-50

28.07M 4.13G 23.14 6.70

BAM [24] 25.92M 4.21G 24.02 7.18

CBAM [33] 28.09M 4.13G 22.66 6.31

GSoP-Net1 [10] 28.29M 6.41G 22.02 5.88

A
2-Nets [6] 33.00M 6.50G 23.00 6.50

GCNet [2] 28.10M 4.13G 22.30 6.34

GALA [22] 29.40M - 22.73 6.35

ABN [9] 43.59M 7.66G 23.10 -

SRM [18] 25.62M 4.12G 22.87 6.49

Triplet Attention (Ours) 25.56M 4.17G 22.52 6.32

SENet [14]

ResNet-101

49.29M 7.86G 22.38 6.07

BAM [24] 44.91M 7.93G 22.44 6.29

CBAM [33] 49.33M 7.86G 21.51 5.69

SRM [18] 44.68M 7.85G 21.53 5.80

Triplet Attention (Ours) 44.56M 7.95G 21.97 6.15

MobileNetV2 [26]

MobileNetV2

3.51M 0.32G 28.36 9.80

SENet [14] 3.53M 0.32G 27.58 9.33

CBAM [33] 3.54M 0.32G 30.07 10.67

Triplet Attention (Ours) 3.51M 0.32G 27.38 9.23

Table 2. Single-crop error rate (%) on the ImageNet validation set and complexity comparisons in terms of network parameters (in millions)

and floating point operations per second (FLOPs). Other than reporting results on heavy-weight ResNets, we also show results based on

light-weight mobile networks. With a negligible increase of learnable parameters, our approach works much better than the baselines and

is also comparable to the state-of-the-art methods that need large additional parameters and computations, like GSoP-Net1 [10].

All ImageNet models were trained using 8 Nvidia Tesla

V100 GPUs, and all object detection models were trained

with 4 Nvidia Tesla P100 GPUs. We did not observe any

substantial difference in total wall time between the baseline

models and those augmented with triplet attention.

4.1. ImageNet

To train our ResNet [12] based models, we add triplet

attention layers at the end of each bottleneck block. We

follow the exact training configuration as [12, 14] for con-

sistent and fair comparison with other methods. Similarly,

we follow the approach of [26] to train our MobileNetV2-

based architecture.

Our results for the validated architectures are shown in

Tab. 2. Triplet attention is able to match or outperform

other similar techniques, while simultaneously introducing

the fewest number of additional model parameters.

A ResNet50-based model augmented with triplet atten-

tion achieves a 2.04% improvement in top-1 error rate on

ImageNet while only increasing the number of parame-

ters by approximately 0.02% and increasing the FLOPs by

≈1%. The only comparable model that outperforms triplet

attention is GSoP-Net, which provides a 0.5% gain over

triplet attention at the cost of 10.7% more parameters and

53.6% more FLOPs.

We observe similar trend in performance in the smaller

ResNet-18 model where triplet attention provides a 0.5%

improvement in top-1 error rate while only increasing the

parametric complexity by 0.02%.

For ResNet-101 based models, triplet attention outper-

forms both vanilla and SENet variants by 0.66% and 0.41%,

respectively. While SRM [18] and CBAM were able to ob-

tain marginally better results than triplet attention, our ap-

proach is still the lightest in terms of parameters.
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Backbone Detectors Parameters AP AP50 AP75 APS APM APL

ResNet-50 [12]

Faster R-CNN [25]

41.7M 36.4 58.4 39.1 21.5 40.0 46.6

ResNet-101 [12] 60.6M 38.5 60.3 41.6 22.3 43.0 49.8

SENet-50 [14] 44.2M 37.7 60.1 40.9 22.9 41.9 48.2

ResNet-50 + CBAM [33] 44.2M 39.3 60.8 42.8 24.1 43.0 49.8

ResNet-50 + Triplet Attention (Ours) 41.7M 39.3 60.8 42.7 23.4 42.8 50.3

ResNet-50 [12]

RetinaNet [25]

38.0M 35.6 55.5 38.3 20.0 39.6 46.8

SENet-50 [14] 40.5M 37.1 57.2 39.9 21.2 40.7 49.3

ResNet-50 + CBAM [33] 40.5M 38.0 57.7 40.6 22.1 41.9 50.2

ResNet-50 + Triplet Attention (Ours) 38.0M 37.6 57.3 40.0 21.7 41.1 49.7

ResNet-50 [12]

Mask RCNN [11]

44.3M 37.3 59.0 40.2 21.9 40.9 48.1

SENet-50 [14] 46.8M 38.7 60.9 42.1 23.4 42.7 50.0

ResNet-50 + 1 NL block [32] 46.5M 38.0 59.8 41.0 - - -

GCNet [10] 46.9M 39.4 61.6 42.4 - - -

ResNet-50 + Triplet Attention (Ours) 44.3M 39.8 61.6 42.8 24.3 42.9 51.3

Table 3. Object detection mAP(%) on the MS COCO validation set. Triplet Attention results in higher performance gain with minimal

computational overhead.

With MobileNetV2, triplet attention provides a 0.98%

improvement in top-1 error rate on ImageNet while only

increasing parameters by approximately 0.03%. We also

observed that CBAM hurts model performance in case of a

MobileNetV2 where it drops accuracy by 1.71%. The ex-

perimental results demonstrate that the proposed triplet at-

tention works well for both heavy and light-weight models

with a negligible increase in parameters and computations.

In the following subsection and supplementary materials,

we will show the effectiveness of our triplet attention mod-

ule when applied to other vision tasks, like object detection,

instance segmentation, and human key-point detection.

4.2. PASCAL VOC

Method Detector AP AP50 AP75

ResNet-50 [12]

Faster R-CNN [25]

46.956 77.521 48.903

ResNet-50 + CBAM [33] 51.398 80.409 54.919

ResNet-50 + TA (Ours) 53.919 80.932 58.810

Table 4. Object detection mAP(%) on the PASCAL VOC 2012

test set. Triplet attention results in providing significant improve-

ment in performance with negligible overhead as compared to it’s

counterparts. TA represents Triplet Attention.

For object detection, we utilize our pre-trained ResNet-

50 model described in Sec. 4.1 in conjunction with Faster

R-CNN [25] with FPN [19] on the Pascal VOC dataset [8].

We adopt default training configuration for the detectron2

toolkit [34] to train a baseline ResNet-50 [12] and ResNet-

50 with CBAM [33]. For all models, we train on the 2007

and 2012 versions of the training set and validate on the

2007 validation set as described in [8].

The results can be found in Tab. 4. When compared to

the baseline model and its corresponding CBAM variant,

our triplet attention module is able to produce a distinct im-

provement in AP score, beating the baseline ResNet50 by

6.9%, and CBAM by 2.6% while having a backbone that

consumes fewer FLOPs and parameters.

4.3. MS COCO

As in Sec. 4.2, using the ImageNet models aug-

mented with triplet attention as backbones, we train Faster-

RCNN [25], Mask-RCNN [11], and RetinaNet [20] mod-

els to apply our attention module to object detection tasks

on the COCO dataset [21]. We use the training proce-

dure described in [20, 25],implemented in the mmdetec-

tion framework[4], to ensure a fair test. Our results for the

COCO dataset results are summarized in Tab. 3. We ob-

serve that triplet attention outperforms most of the similar

layers, achieving a higher AP score in multiple categories.

Across all architectures, adding a triplet attention module

improves the AP score by over 2 points in AP over the

baseline model while using the same ImageNet backbone

described in Sec. 4.1 that adds a negligible computational

overhead. The improvement in performance observed in the

experiments showcase the benefit of our cross-dimension

interaction strategy in triplet attention.

4.4. Ablation Study on Branches

We further validate the importance of cross-dimension

interaction by conducting ablation experiments to observe

the impact of the branches in the triplet attention module. In

Tab. 5, spatial off indicates that the third branch, where the

input tensor is not permuted, is switched off, and channel
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Model Parameters FLOPs Top-1 Accuracy (%)

ResNet-32 [12] 0.464M 3.404G 93.12

ResNet-32 + TA (channel off) 0.466M 3.437G 93.27

ResNet-32 + TA (spatial off) 0.467M 3.415G 93.29

ResNet-32 + TA (full) 0.469M 3.448G 93.56

VGG-16 + BN [28] 15.254M 0.315G 93.25

VGG-16 + BN + TA (channel off) 15.255M 0.315G 93.59

VGG-16 + BN + TA (spatial off) 15.256M 0.32G 93.15

VGG-16 + BN + TA (full) 15.257M 0.32G 93.78

MobileNet-v2 [26] 2.297M 0.095G 93.11

MobileNet-v2 + TA (channel off) 2.302M 0.096G 92.94

MobileNet-v2 + TA (spatial off) 2.308M 0.12G 93.22

MobileNet-v2 + TA (full) 2.313M 0.122G 93.51

Table 5. Effect of different branches in triplet attention on perfor-

mance in CIFAR-10 classification.

off indicates that the two branches, which involve permu-

tations of the input tensor, are switched off. As shown, the

results support our intuition with triplet attention having all

three branches switched on, denoted as full, to be perform-

ing consistently better than the vanilla version and its two

counterparts.

4.5. Grad­CAM Visualization

GradCAM GradCAM ++

G.T. - Husky

G.T. - Warplane

Vanilla ResNet-50
Predicted Label – Husky

Confidence Score – 56.89%

ResNet-50 + CBAM
Predicted Label – Husky

Confidence Score – 65.02%

ResNet-50 + Triplet Attention
Predicted Label – Husky

Confidence Score – 82.21%

Vanilla ResNet-50
Predicted Label – projectile, missile

Confidence Score – 46.51%

: Incorrect Prediction

ResNet-50 + CBAM
Predicted Label – Warplane
Confidence Score – 82.49%

ResNet-50 + Triplet Attention
Predicted Label – Warplane
Confidence Score – 90.16%

Figure 4. Visualization of Grad-CAM and Grad-CAM++ re-

sults. The results were obtained for two random samples from

the ImageNet validation set and were compared for a baseline

ResNet-50, ResNet-50 + CBAM and a ResNet-50 + triplet atten-

tion. Ground truth (G.T) labels for the images are provided below

the original samples and the networks prediction and confidence

scores are provided in the corresponding boxes.

We hypothesize that the cross-dimensional interaction

provided by triplet attention helps the network learn more

meaningful internal representations of the image. To vali-

date this claim, we provide sample visualizations from the

Grad-CAM [27] and Grad-CAM++ [3] techniques, which

visualize the gradients of the top-class prediction with re-

spect to the input image as a colored overlay. As shown in

Fig. 4, triplet attention is able to capture tighter and more

relevant bounds on images from the ImageNet dataset [7].

In certain cases, when using triplet attention, a ResNet50 is

able to identify classes that the baseline model fails at pre-

dicting correctly. More Grad-CAM based results are pre-

sented in the supplementary section.

The visualizations support our understanding of the in-

trinsic capability of triplet attention to capture richer and

more discriminative contextual information for a particular

target class. This property of triplet attention is extremely

favorable and helpful in improving the performance of deep

neural network architectures as compared to their baseline

counterparts.

5. Conclusion

In this work, we propose a novel attention layer, triplet

attention, which captures the importance of features across

dimensions in a tensor. Triplet attention uses an efficient at-

tention computation method that does not have any informa-

tion bottlenecks. Our experiments demonstrate that triplet

attention improves the baseline performance of architec-

tures like ResNet and MobileNet on tasks like image clas-

sification on ImageNet and object detection on MS COCO,

while only introducing a minimal computational overhead.

We expect that other novel and robust techniques of cap-

turing cross-dimension dependencies when computing at-

tention may improve upon our results while reducing cost.

In the future, we plan to investigate the effects of adding

triplet attention to more sophisticated architectures like Ef-

ficientNets [30] and extend our intuition in the domain of

3D vision.
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