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Abstract

In crowd counting we often observe wrong predictions

on image regions not containing any person. But how often

do these mistakes happen and how much do they affect the

overall performance? In this paper we analyze this prob-

lem in depth and present an extensive analysis on five of

the most important crowd counting datasets. We present

this analysis in two parts. First, we quantify the number of

mistakes made. Our results show that (i) mistakes on back-

ground are substantial and they are responsible for 18-49%

of the total error, (ii) models do not generalize well to differ-

ent kinds of backgrounds and perform poorly on completely

background images, and (iii) models make many more mis-

takes than those captured by the standard Mean Absolute

Error (MAE) metric, as counting on background compen-

sates substantially for misses on foreground. And second,

we quantify the performance change gained by helping the

model better deal with this problem. We enrich a popular

crowd counting network with a segmentation branch trained

to suppress background predictions. This simple addition

(i) reduces background error by 10-83%, (ii) reduces fore-

ground error by up to 26% and (iii) improves overall crowd

counting performance up to 20%. When compared against

the literature, this simple technique achieves very competi-

tive results on all datasets, showing the importance of tack-

ling the background problem.

1. Introduction

Crowd counting has attracted a lot of attention in the last

few years, thanks to its applications in real-world use cases.

Despite recent successes, it remains a difficult task, as mod-

els need to work well across different scenarios, from dense

crowds to sparse scenes, and on any person, independently

on what they are wearing or how they appear. One of the

most important challenges is the problem of scale, which

causes people on the far end of the image to appear much

smaller compared to those closer to the camera. Most recent

works [2, 3, 12, 14, 16–18, 20, 23–25, 28–30, 35–37, 39, 40]

tackle this problem by proposing new models that attempt

to achieve invariance to scale variations.

W

Figure 1: Crowd counting networks output an important amount

of wrong predictions on regions not containing any person, espe-

cially when these resemble crowds (e.g., foliage, roudish objects,

stones, logos, etc.).

Instead, we investigate an orthogonal problem: errors

crowd counting networks make on image regions that con-

tain no people (i.e., the background). While this problem

is evident in the density predictions produced by state-of-

the-art crowd counting networks (fig. 1), it remains unex-

plored in the literature. Only a few previous works [1, 7,

9, 27, 31, 41] have suggested that crowd counting models

should be aided to attend to foreground regions only. Here

we go a step further and perform an extensive quantita-

tive evaluation that addresses the following questions: “how

much do mistakes on background affect crowd counting per-

formance?” In order to answer it, we experiment with

five of the most popular crowd counting datasets: Shang-

hai Tech (Part A & B) [40], WorldExpo’10 [38], UCF-

QNRF [10] and GCC [33]. Additionally, we also exper-

iment on ADE20k [42], a semantic segmentation dataset

from which we remove people and use as 100% back-

ground.

In the first part of this paper we focus on understanding

how many mistakes are actually made on background re-

gions. As the concept of background is undefined for crowd

counting (i.e., each person is annotated solely with a 2D

point), in this work we define background as a function of a

person’s head size, which we estimate automatically similar

to [30]. In detail, we first enlarge each head to twice its size

and then set all the pixels inside these areas as foreground

and everything outside as background. Despite these favor-

able conditions that relax the foreground considerably, our

results show that background mistakes are responsible for
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18-49% of the total crowd counting error (depending on the

dataset), On the most challenging datasets (ShanghaiTechA

and UCF-QNRF), mistakes on background are almost as

frequent as those on foreground (roughly 1 for every 2).

Moreover, our analysis also shows that models do not gen-

eralize well to different kinds of background. For example,

a model trained on ShanghaiTechB that achieves a MAE of

5.0 on its background, achieves a much larger MAE of 18.5

on a dataset not containing any person instance (ADE20k).

Finally, by experimenting on background and foreground

independently we show that the standard crowd counting

MAE computed on the full image hides a lot of mistakes,

as wrong predictions on the background are used to com-

pensate for under-predictions on the foreground. Impor-

tantly, this difference is substantial and we hope that our re-

sults will encourage the community to report MAE on back-

ground and foreground independently (e.g., the aforemen-

tioned ShanghaiTechB model that achieves a MAE of 9.1 on

whole images, achieves an MAE of 5.0 on the background

and a MAE of 10.7 on the foreground: 5 + 10.7 ≫ 9.1).

In the second part on this work, we investigate how

crowd counting performance changes when the network

learns to tackle this problem. We propose to enhance a clas-

sic crowd counting network with a simple foreground seg-

mentation branch used to suppress background mistakes. In

a thorough analysis we show that this addition brings many

benefits: (i) it reduces errors on background regions by 10-

83% on all datasets; (ii) it improves predictions on fore-

ground by up to 26%, and (iii) it increases crowd counting

performance by up to 20%. Interestingly, these improve-

ments enable such a simple approach to achieve perfor-

mance on par with the state-of-the-art methods, which use

much more complex architectures. This shows the impor-

tance of addressing the background problem.

We outline the paper as follow: in sec. 2 we summarize

related works; in sec. 3 we present our first contribution:

an in-depth analysis on the impact of errors on background

regions in crowd counting; in sec. 4 we present our second

contribution: an analysis on how teaching a crowd count-

ing model about the background changes its performance;

finally, in sec. 5 we present our conclusions.

2. Related work

Crowd counting. Approaches in the literature can be

categorized into two high level groups: counting-by-

detection [15, 21, 32, 34] and counting-by-regression

[1–6, 12–14, 17, 19, 20, 22–25, 27–30, 35–37, 39, 40].

The former group employs person/head detectors

to localize and count all the instances in an image,

while the latter regresses a feature representation of

the image into a count number [4, 5, 22] or a density

map [1–3, 6, 12–14, 17, 19, 20, 23, 24, 27–30, 35, 37, 39, 40].

Most of the recent approaches belong to the latter group

and focus on learning new and more accurate image

representations.

Challenges in crowd counting. One of the most prominent

challenges is the issue of scale, which causes people on

the far end of the image to appear smaller than those

closer to the camera. This problem originates from the

perspective effect and most of the recent works in the

literature have addressed this with new multi-scale mod-

els [2, 3, 12, 14, 17, 20, 23–25, 28–30, 35–37, 39, 40].

Some works adopted multi-column architec-

tures [2, 12, 17, 20, 23, 24, 28, 40], where each column is

dedicated to a specific scale; others [3,14,29,30,35,37,39]

proposed single-column architectures that learn multi-scale

features within the network itself (e.g., by combining

feature maps from different layers [29, 30, 37, 39]); fi-

nally, [25, 36] proposed perspective-aware networks. On

a different direction, [6, 13, 19] focused at improving

spatial awareness in counting. Differently from all these

works, we explore yet another important problem: crowd

counting networks wrongly count on background regions

not containing any person’s instance. While this issue was

briefly mentioned in [1, 27], to the best of our knowledge,

we are the first to quantitatively evaluate the magnitude of

this problem and present an extensive analysis on how this

affects crowd counting performance.

Reducing errors on background. Only a few methods

in the literature [1, 7, 9, 27, 31, 41] have, to a certain ex-

tent, tried to address this problem by using semantic seg-

mentation branches trained to separate the foreground from

the background. For example, Arteta et al. [1] employed

a body segmentation branch, along with numerous other

supervisions, like multiple point annotations from different

annotators on each entity (penguin), uncertainty maps that

capture the annotators agreement and depth density maps

that capture the perspective change. Huang et al. [9] com-

bined the features of a body-parts segmentation branch with

those of a structured density map and used those to regress

to the final count. Similarly, [7, 27, 31, 41] combined a

head segmentation branch with: a density map estimator

and a random high-level density classifier [7], a depth esti-

mator and a count regressor [41], an appearance and resid-

ual branches [31] and a global density branch and per-pixel

density one [27]. Note how all these methods employ many

cues and auxiliary tasks in their designs, as they focus on

achieving the best possible counting performance. Instead,

in this work we employ a foreground/background segmen-

tation branch only for analysis purposes, where we use it to

quantify how crowd counting performance changes as the

model learns about the background. We hope that our dis-

coveries can shed some lights on this problem and inspire

new research directions.
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3. Wrong predictions on background regions

In this section we present the first analysis on the prob-

lem of predicting counts on regions not containing any per-

son instance. We present an extensive analysis on five of

the most popular crowd counting datasets, on which we

quantify the number of mistakes popular crowd counting

approaches make on these regions.

3.1. Our baseline: CSRNet+

In our analysis we experiment with the popular CSR-

Net architecture [14]. However, in our re-implementation

of this network we made few small changes to better fit it to

the task of crowd counting. More specifically, we remove

the pool3 layers of VGG16 and set the dilation rates of

convolution layers in the 4th and 5th block to be 2 and 4
respectively. This leads to higher-resolution features maps

that are key to predicting very small people covering just

a few pixels. Moreover, we also adopt a sub-pixel con-

volutional layer [26] for upsampling the predicted density

map to the original input image size. From our experi-

ments, these small changes slightly, but consistently, im-

prove crowd counting performance over the settings of the

original CSRNet (table 1). Finally, we follow the imple-

mentation details of [14] and we use the classic method pro-

posed by Zhang et al. [40] to generate ground truth density

maps: we convolve each head ground truth point annotation

with a fixed Gaussian kernel of σ = 15 pixels.

3.2. Datasets

We experiment with five of the largest and most popular

crowd counting datasets: UCF-QNRF [10], Shanghai Tech

(Part A & B) [40], WorldExpo’10 [38] and GCC [33]. As

these datasets capture quite different scenarios, they provide

the best mix of background for this analysis. Finally, in

order to understand how crowd counting models perform

on general background images, we also test on a large-scale

semantic segmentation dataset: ADE20K [42].

• UCF-QNRF [10] is one the newest crowd counting

dataset and it contains large diversity both in scenes, as

well as in background types. It consists of 1535 images

high-resolution images from Flickr, Web Search and

Hajj footage. The number of people (i.e., the count)

varies from 50 to 12,000 across images. In order to fit

images as large as 6000 × 9000 pixels in memory, at

inference we downsample these to a maximum side of

1920 pixels.

• ShanghaiTech [40] consists of two parts: A and B.

Part A contains 482 images of mostly crowded scenes

from stadiums parades and its count averages >500

people per image. Part B consists of 716 images of

less-crowded street scenes taken from fixed cameras

and counts varying from 2 to 578.

• WorldExpo’10 [38] contains 3980 frames from 1132

video sequences. These are split into 5 scenes and we

report their average performance. The dataset is com-

monly evaluated by masking out images with some

regions of interest (ROIs) provided by the creators,

which are meant to suppress both (some) background

and small non-annotated people in the far end of the

image. We follow this standard procedure.

• GCC [33] is the newest dataset and it consists of 15212

synthetic images with more than 7.5 million people.

The dataset contains a large variety of computer gener-

ated scenes, from very dense to very sparse. It contains

three slips: Random, Camera and Location. We limit

our analysis to the last set (as it is the most challenging

one), but we compare against the literature on all three.

• ADE20k [42] is a semantic segmentation dataset con-

taining images picturing more diverse and challenging

scenes compared to those for crowd counting. For ex-

ample, these scenes range from natural to man-made

and from outdoor to indoor, and they provide an excel-

lent test use case. We evaluate on the 1468 background

validation images (i.e., those that do not contain any

person).

3.3. Metrics

We report our results using the standard crowd count-

ing metrics: Mean Absolute Error (MAE) and Root Mean

Squared Error (MSE). In details, given the predicted count

C
p and ground truth count Cgt:

MAE =
1

N

N
∑

i=1

|Cp
i −C

gt
i |, MSE =

√

√

√

√

1

N

N
∑

i=1

(Cp
i −C

gt
i )2 (1)

where N refers to the number of test images.

In order to better analyze the behavior of crowd counting

models and how they deal with background regions, we re-

port our results on three MAE/MSE adaptations, each one

evaluating the error on a particular region of the image.

More specifically, we evaluate on background only, fore-

ground only and full images. We compute these as in eq. 1,

but only count on specific regions:

C
p
i =

H
∑

j

W
∑

k

D
p
i (j, k) ·M

gt
i (2)

where H,W indicate the spatial resolution of the image,

D
p
i is the predicted density map and M

gt
i corresponds to

a ground truth mask that specifies what region to evaluate

on. The computation of C
gt
i is analogous. For Full Im-

age, we set every element in M
gt
i to 1, meaning that ev-

ery pixel in the image is considered in the error estimation.

Note how this is the standard case used in the crowd count-

ing literature. For Foreground, instead, we only set the
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Figure 2: Three images and three foreground masks M
gt ob-

tained by dilating the head size di with α (sec. 3.4).

foreground elements in M
gt
i to 1, and the rest 0. This es-

timates count error on foreground regions only and it does

not penalize for false positive predictions on background.

Finally, Background has a mask complementary to Fore-

ground (i.e., ones and zeros swapped). In the next section

we explain how to estimate M
gt
i .

3.4. Background analysis

In this section we present a series of experiments that

investigate if and by much crowd counting models wrongly

predict people on background regions.

What is background in crowd counting? In crowd count-

ing datasets, each person is annotated only with its head

point (xi, yi), which is not sufficient to estimate good

boundaries between foreground and background and to gen-

erate accurate foreground masks for evaluation. We over-

come this limitation by augmenting each point annotation

with a value di, corresponding to the diameter of the head.

We estimate this similarly to the bounding-box technique

of Rama Varior et al. [30]: first, we run a head detector,

then we associate its detections (of size si) to the annotated

head points, and finally we set the size of the remaining

heads (the tiny ones that the detector failed to localize) to

15 pixels, which is the common size estimate used in crowd

counting. This can be summarized as di = max(si, 15).

Next, we obtain the foreground mask Mi by setting all

the pixels inside each head blob centered at (xi, yi) to 1.

In order to understand how the performance changes with

respect to the definition of foreground, we experiment with

different head blob sizes by dilating the estimated head size

by a factor α = [1, . . . , 6]: d′i,j = di · αj (fig. 2 and fig. 3).

Among these, α = 1 is the stricter definition, as each

head corresponds to foreground and any non-head region is

mapped to background. Under this setting, all models sur-

prisingly achieve a very large MAE on both background and

foreground. We attribute this phenomena to three factors:

(i) there is uncertainty in our estimation of si, (ii) there is in-

Figure 3: Errors on background and foreground regions as a

function of α, which is used to dilate each head di and define dif-

ferent background/foreground boundaries (i.e., the larger α is, the

less the amount of background in an image, fig. 2 for examples).

Model
Train & Test Background Foreground Full Image

dataset % Surface MAE % Surface MAE MAE

CSRNet+ ShanghaiTechA 39% 18.4 61% 60.0 64.9

CSRNet+ ShanghaiTechB 76% 5.0 24% 10.7 9.1

CSRNet+ UCF-QNRF 51% 42.0 49% 94.1 95.1

CSRNet+ WorldExpo 89% 10.2 11% 11.2 8.7

CSRNet+ GCC 88% 17.7 12% 79.9 81.2

MCNN [40] ShanghaiTechA 39% 56.9 61% 96.1 110

MCNN [40] ShanghaiTechB 76% 18.3 24% 31.5 26.4

CSRNet [14] ShanghaiTechA 39% 37.1 61% 68.4 66.5

CSRNet [14] ShanghaiTechB 76% 24.2 24% 24.9 9.6

SFCN [33] UCF-QNRF 51% 41.6 49% 114 102

Table 1: MAE results of different models on five crowd counting

datasets, split into background, foreground and aggregated over

the full image. While the community has mostly focused on re-

ducing Foreground error, the unexplored Background error is also

important and worth addressing in the future.

consistency in the exact location of the annotated point (i.e.,

sometimes the point lies on the chin of a person, other times

on the forehead, etc.) and, more importantly, (iii) crowd

counting models are good at counting, but less accurate at

localizing each individual person: they tend to output den-

sity predictions that are less peaky than the Gaussian ker-

nels used to convolve each point during training, resulting

sometimes in predictions just outside a head region.

For all the other values of α, the performance is much

more consistent: while foreground MAE increases slowly,

background MAE continues to decrease as the background

shrinks. From these results we can see that α = 2 (fig. 2

mid) is a good choice to define the foreground/background

boundary, as it provides a good trade-off between a too

strict foreground (causing the issues mentioned above)

and a too relax foreground (causing important background

regions to be considered as foreground). In the remaining

of the paper we evaluate on background and foreground

using this definition.

Is background a problem for crowd counting? Now that

we have defined what foreground and background mean
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in crowd counting, we investigate how many mistakes are

made in these regions with respect to the full image. We

present our results in table 1, along with the percentage of

background and foreground for each dataset. While not

as frequent as the mistakes on foreground, the errors of

CSRNet+ on background regions are still substantial: on

all datasets Background MAE is responsible for around 18-

49% of the total error. This is especially problematic on

very crowded datasets, where the areas belonging to back-

ground and foreground are very similar (ShanghaiTechA

and UCF-QNRF), meaning that the errors on background

are almost as frequent as those on foreground (i.e., 1:2

and 1:2.4 when normalized by the surface area). On the

much less dense datasets, results are less severe, but this is

the case because ShanghaiTechB and GCC contain similar

backgrounds in their train and test sets, and WorldExpo uses

ROIs to suppress difficult regions (sec. 3.2).

In table 1 we also report the results we obtained by

running the code and models (available online) of some

popular crowd counting approaches1. Their results show

similar behavior of those of our CSRNet+ baseline. In-

terestingly, CSRNet achieves a substantially higher MAE

on foreground and background compared to CSRNet+,

even though their full image MAEs are very similar. Upon

investigatation we noticed that CSRNet is not particularly

good at localizing people and it tends to output less peaky

density maps (due to its lower resolution feature maps).

Observation about MAE for crowd counting. Finally, we

want to highlight how MAE computed on full images

is not equal to the sum of the MAEs computed over

background and foreground (e.g., in first row of table 1,

64.9 6= 60.0 + 18.4). This is surprising, considering

that the union of these two mutually-exclusive pixel sets

are equivalent to that of the full image. This behavior is

due to the fact that MAE computed on full images uses

wrong predictions on background regions to compensate

for missed predictions on foreground areas. This is an

important concern, especially considering the large dis-

crepancies reported in table 1. Going forward, we hope

that these results will encourage the community to report

more accurate estimates than MAE computed on the whole

image, like MAE split into background and foreground, or

GAME [8].

Do models generalize to different backgrounds? Here we

investigate how models trained on a specific dataset general-

ize to different kinds of background (i.e., to other datasets).

Results are presented in table 2. The best performing model

(i.e., lowest background MAE) on each dataset is, except for

WorldExpo, the model trained on that same dataset. This is

1Note: the CSRNet models the authors released online achieve slightly

better performance compared to the results they report in their paper.

P
P

P
P
P

P
PP

Train

Test Shanghai Shanghai UCF World
GCC ADE20k

Tech A Tech B QNRF Expo

ShanghaiTechA 18.4 7.7 57.3 6.7 143.2 27.6

ShanghaiTechB 21.3 5.0 62.1 9.0 19.9 18.5

UCF-QNRF 20.5 8.8 42.0 19.1 38.6 8.4

WorldExpo 98.8 13.5 118.1 11.2 73.6 45.1

GCC 24.9 7.9 45.2 5.9 17.7 3.2

Table 2: Background MAE for CSRNet+ across datasets.

a domain gap problem and it is substantial; for example,

a very good model trained on ShanghaiTechB makes 50%

more mistakes than one trained on UCF-QNRF on the back-

ground of UCF-QNRF (62.1 vs 42.0). This problem is even

more evident in the results on the ADE20k dataset, which

does not contain any person: the best model trained on real

data (UCF-QNRF) outputs an average count of 8.4 per im-

age, while the worse (WorldExpo) more than 45. These

are equivalent to 12,000 and 66,000 people predicted in a

dataset not containing any person. This poor generalization

to different backgrounds is an important limitation towards

applying crowd counting techniques to real world use cases.

Finally, the results suggest that the model trained on

synthetic data (GCC) is, on average, the best performing

model on background. However, upon investigation we

observed that this model undercounts significantly on any

real image, leading to good background MAE, but terrible

foreground MAE. For example, it achieves and MAE of

235 on ShanghaiTeachA, of 25 on ShanghaiTechB, of

274 on UCF-QNRF and of 46 on WorldExpo, which are

significantly higher then the results presented in table 1

(MAE 60, 10.7 94.1 and 11.2, respectively). These results

are a bit discouraging, as they show that significant work is

needed before we can use synthetic data for crowd counting.

Conclusions. Crowd counting models occasionally make

mistakes on background regions and every researcher on

this topic is likely aware of this behavior. However, this

problem appears to be much more severe that what people

may have anticipated: our analysis quantitatively showed

that crowd counting models produce an important number

of wrong predictions on background regions, which flac-

tuates from 18 to 49%, depending on the dataset. More-

over, our analysis also showed why these mistakes have not

been clearly captured before: the MAE metric computed on

the full image hides these mistakes behind underpredictions

on foreground regions, fooling us in believing that crowd

counting models perform better than they actually do. Fi-

nally, our analysis also showed that crowd counting datasets

do not contain enough diversity in terms of background,

which lead to poor generalization when evaluated on pure

background images. Given all these discoveries, we believe

that wrongly predicting people on background regions is an

important issue in crowd counting and we hope that these

results will inspire more works to solve this problem.
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New branch to suppress background

Classic Crowd counting: Encoder + Regressor 
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Figure 4: In the top row we show a classic crowd counting methods that consists of a feature encoder and a count regression module. In

our approach we enrich this design with a segmentation branch that is used to suppress predictions on background regions.

4. Teaching the network about background

In this section we present the second part of our analy-

sis, where we investigate how crowd counting performance

changes when a network learns to suppress wrong counts

on background regions. Towards this, we propose a sim-

ple change to the typical crowd counting network that aims

at reducing background mistakes from the final density

map, leading to cleaner outputs and more accurate count-

ing. We propose to enrich the final regression block that

maps the backbone’s features to a density map for crowd

counting, with a new head that is trained specifically to

suppresses predictions on background regions (fig. 4). We

model this head as a shallow foreground/background seg-

mentation branch that has low impact in terms of computa-

tional cost with respect to the overall model. This branch

outputs a mask that is used to modulate the density map

outputted by the regression head. This mechanims has two

benefits: while the segmentation head reliably suppresses

background predictions, the regression head can now better

specialize on foreground patterns and improve its counting

accuracy (due to being trained on gradients from foreground

pixels only, eq. 5).

Finally, note that the idea of using a segmentation

branch to attend to foreground regions was first introduced

by Arteta et al. [1] to count penguins and very recently also

by [7, 9, 27, 31, 41] to count people (sec. 2). However, all

these works used a segmentation branch within a much

more complex design, as their goal was to achieve the best

counting performance. Instead, we use it as part of our

analysis on understanding the impact of suppressing back-

ground mistakes on the final count. Towards this, we are

purposely making our model as simple and as specialized

to this problem as possible. In the next paragraphs we

explain how to train this simple approach.

Loss functions. Given a training image of size (W , H), we

train the segmentation head with a pixel-wise binary cross

entropy loss between the sigmoided predicted mask M
p and

its corresponding ground truth M
gt:

Lbce =
1

HW

H∑

i

W∑

j

−M
gt
i,j ·log(M

p
i,j)−(1−M

gt
i,j)·log(1−M

p
i,j)

(3)
Moreover, following the literatures [2,3,12,14,17,20,23–

25, 28–30, 35–37, 39, 40], we train our regression head with

a pixel-wise ℓ2 distance loss between the predicted density

map D
p and its corresponding ground truth map D

gt:

Lℓ2 =

H
∑

i

W
∑

j

√

(Dp
i,j −D

gt
i,j)

2 (4)

where the predicted density map D
p is obtained by modu-

lating the intermediate density map D
int with the predicted

foreground mask M
p as follows: D

p = D
int ⊙ M

p, in

which ⊙ represents the Hadamard operation. Importantly,

note how the regression module only aggregates counting

contribution for foreground regions, as the segmentation

head takes the responsibility for recognizing background re-

gions. In an end-to-end fashion (fig. 4), we train our model

(including the backbone) with the following dual task loss:

L = Lℓ2(D
p,Dgt) + λLbce(M

p,Mgt) (5)

where λ regulates the importance of the segmentation

loss. From these losses one can see how separating

foreground and background predictions (to regressor and

segmenter, respectively) not only helps reducing mistakes

on background, but it also helps the regressor becoming

more accurate, as it is now entirely dedicated on counting

on foreground regions only.

Implementation details. We use the backbone (CSRNet+)

introduced in sec. 3.1 and 3 additional fully convolutional

layers for the segmentation head (an exact copy of the 3

fully convolutional layers used for regression). Moreover,

we generate M
gt as explained in sec. 3.4, with α = 1

(sec. 4.2).
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Train & Test
Model

Background Foreground Full Image

dataset MAE MAE MAE

ShanghaiTechA
CSRNet+ 18.4

↓↓19%
60.0

↓1.6%
64.9

↓3.5%
CSRNet+ w/BS 14.9 58.9 62.6

ShanghaiTechB
CSRNet+ 5.0

↓↓36%
10.7

↓↓26%
9.1

↓↓20.1%
CSRNet+ w/BS 3.2 7.9 7.2

UCF-QNRF
CSRNet+ 42.0

↓↓24%
94.1

↓9.1%
95.1

↓9.2%
CSRNet+ w/BS 31.9 85.5 86.3

WorldExpo
CSRNet+ 11.2

↓10%
10.2

↓7%
8.7

↓6.9%
CSRNet+ w/BS 10.1 9.5 8.1

GCC
CSRNet+ 17.7

↓↓43%
79.9

↓↓17.3%
81.2

↓↓19.2%
CSRNet+ w/BS 10.1 66.1 65.6

Table 3: We compare CSRNet+ w/o and w/ our background sup-

pression branch (BS) on five crowd counting datasets. Adding the

background suppression branch brings many benefits: (i) errors

on background reduce considerably, (ii) errors on foreground also

reduce, though less and (iii) the final performance is always better.

P
P
P
P
P

P
PP

Model

Train Shanghai Shanghai UCF- World
GCC

TechA TechB QNRF Expo

CSRNet+ 27.6
↓↓29%

18.5
↓↓83%

8.4
↓↓38%

45.1
↓↓20%

3.2
↓↓75%

CSRNet+ w/BS 19.7 3.1 5.2 36.0 0.8

Table 4: We compare CSRNet+ w/o and w/ our background sup-

pression branch (BS) on the pure background dataset ADE20k.

Errors on background reduces substantially.

4.1. Validation of our approach

In this section, we experiment with this simple approach

and evaluate its impact on the task of crowd counting,

especially on background regions. We compare the CSR-

Net+ baseline model presented in sec. 3.1 with the same

CSRNet+, but enhanced with a segmentation branch. For

simplicity, in the remaining of the paper we will refer to

our approach as CSRNet+ w/BS (background suppression).

First, we compare against the CSRNet+ results presented

in table 1 and investigate if this new branch can improve its

performance. These are presented in table 3.

Background mistakes decrease (Background MAE). Results

validate our hypothesis that the segmentation branch can

help reduce mistakes on background and show that our ap-

proach can consistently reduce these errors by an important

10-40% on all datasets, over the baseline. Importantly, this

improvement generalizes well to other background types,

like on the background dataset ADE20k (table 4), where

MAE always decreases, from 30% to more than 80%.

Finally, in the supplementary material we also report the

improvement across datasets (baseline in table 2), further

showing the improvement in background generalization.

For example, MAE for the model trained on Shanghai Tech

B and tested on UCF-QNRF drops from 62.1 to 26.2 and

for the model trained on WorldExpo and tested on Shanghai

Tech A from 98.8 to 47.9.

Foreground errors decrease (Foreground MAE). In sec. 4,

we argued that adding the segmentation mask and using

it to modulate the final output can, in theory, help the

regressor better specialize on foreground (as it is lifted of

the responsibility of the background) and produce more

Figure 5: Results for different values of α (a) and λ (b).

accurate predictions. Results validate this and show that

in practice MAE on foreground regions always reduces,

sometimes marginally (+1.6% on Shanghai Tech A), but

other times substantially (+26% on Shanghai Tech B).

Overall performance improves (Full Image MAE). Finally,

results also show that improving both background and fore-

ground MAEs leads to a consistent improvement in the

overall image performance, up to 20% better.

4.2. Sensitivity analysis of hyper­parameters

In this section, we evaluate some of our choices for

the paraneters if CSRNet+ w/BS. We experiment on the

UCF-QNRF dataset only, as it is the largest and most

diverse crowd counting dataset and it is a good benchmark

for this study.

Lambda λ. We investigate how sensitive our model is

to different values of λ in eq. 5, which regularizes the

importance of the segmentation head. As shown in fig. 5b,

the model performs best on full images when λ is in

the range of 0.5 × 10−4 to 5 × 10−4. This provides a

good trade-off between not using the segmentation head

(λ = 0) and relying on it too much (λ too large). Moreover,

MAE on foreground is the lowest when λ is around 10−4,

while MAE on background consistently decreases as the

segmentation head gets more and more importance (i.e., λ

increases). These results show the importance of training

a model that is well balanced for both foreground and

background. In our experiments, we use λ to 10−4.

Training foreground mask M
gt. In our experiments we

chose α = 1. Our intuition is twofold: (i) d should be at

least as large as the Gaussian kernel σ = 15 used to de-

fine GT maps (otherwise non-zero pixels’ count would be

wrongly assigned to background) and (ii) it should be as

close as possible to the true size of the head (si). To verify

this hypothesis, we experiment here with different values

of α and train with different foreground/background defini-

tions. Results in fig. 5a show that the best performance is in-

deed achieved by setting α to 1. Nevertheless, note that our

model is quite robust and still achieves great performance

until the point where di becomes too large and almost every

pixel is labeled as foreground (i.e., α > 4).
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Error (Fg): 67.6

Error (Bg): 130.2 

Error (Fg): 11.6

Error (Bg): 68.9 

Error (Fg): 37.5

Error (Bg): 256.0

Error (Fg): 7.1 

 

Error (Fg): 115.2

Error (Bg): 21.3 

Error (Fg): 99.0

Error (Bg): 6.7 

Error (Bg): 234.3

Figure 6: Enhancing CSRet+ with the ability to suppress background (w/BS) produces more accurate density maps with less errors on

background regions (Error Bg) and significantly sharper foreground estimates (Error Fg).

UCF-QNRF Shanghai Tech A Shanghai Tech B WorldExpo GCC (MAE)

Method Venue & Year MAE MSE MAE MSE MAE MSE Avg MAE Rand Cam Loc

MCNN [40] CVPR 2016 277.0 426.0 110.2 173.2 26.4 41.3 11.6 100.9 110.0 154.8

SwitchCNN [24] CVPR 2017 228.0 445.0 90.4 135.0 21.6 33.4 9.4 - - -

CP-CNN [28] ICCV 2017 - - 73.6 106.4 20.1 30.1 8.9 - - -

CSRNet [14] CVPR 2018 - - 68.2 115.0 10.6 16.0 8.6 38.2 61.1 92.2

CL-CNN [10] ECCV 2018 132.0 191.0 - - - - - - - -

CSRNet+PACNN [25] CVPR 2019 - - 62.4 102.0 7.6 11.8 - - - -

SFCN [33] CVPR 2019 102.0 171.4 64.8 107.5 7.6 13.0 9.4 36.2 56.0 89.3

BL [19] ICCV 2019 88.7 154.8 62.8 101.8 7.7 12.7 - - - -

PGCNet [36] ICCV 2019 - - 57.0 86.0 8.8 13.7 8.1 - - -

SANet+SPANet [6] ICCV 2019 - - 59.4 92.5 6.5 9.9 7.7 - - -

ASNet [11] CVPR 2020 91.6 159.7 57.8 90.1 - - 6.6 - - -

AMRNet [18] ECCV 2020 86.6 152.2 61.6 98.4 7.0 11.0 - - - -

LibraNet [16] ECCV 2020 88.1 143.7 55.9 97.1 7.3 11.3 - - - -

CSRNet+ w/BS - 86.3 153.1 62.6 103.3 7.2 11.5 8.1 30.2 39.3 65.6

CSRNet+ w/BS (pre-trained) - - - 58.3 100.1 6.7 10.7 7.9 32.6 40.2 69.8

Table 5: Quantitative results of CSRNet+ enriched with a segmentation branch, on five popular datasets, against several approaches in

the literature. “pre-trained” refers to models pre-trained on the large-scale UCF-QNRF dataset.

4.3. Comparison with the state­of­the­art

In the previous sections we evaluated the effect of reduc-

ing background mistakes for crowd counting by enriching a

model with a segmentation branch (sec. 4.1). For complete-

ness, we now compare this architecture against other works

in the literature. Results are presented in table 5. Despite its

simplicity, our approach achieves remarkably competitive

performance on all the five datasets. We find these results

very encouraging, as they show that sometimes there is no

need for complex architectures, but rather for simple solu-

tions that tackle the right problem. Finally, we present some

qualitative results of this approach in fig. 6.

5. Conclusions
We presented an extensive analysis on a problem that has

been overlooked by the literature, yet it plays a fundamen-

tal part in the overall crowd counting performance and the

applicability of crowd counting approaches to real world ap-

plications. Our results showed that the problem of counting

on background regions is significant and in it is responsi-

ble for 18-49% of the total count error. Furthermore, we

showed that this problem can be substantially mitigated by

teaching the counting network the concept of background.

By simply enriching a crowd counting network with a back-

ground segmentation branch we were able to reduce these

mitakes by up to 83%, leading to better crowd counting per-

formance (up to 20%). Finally, such a simple architectural

change led to results on par with the state-of-the-art, on all

the evaluated datasets. We find these results remarkable and

a clear indication that future research should start address-

ing this problem more directly.
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