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Abstract

Objective and interpretable metrics to evaluate current

artificial intelligent systems are of great importance, not

only to analyze the current state of such systems but also

to objectively measure progress in the future. We propose a

novel metric, called Fuzzy Topology Impact (FTI), that as-

sesses both the quality and diversity of a generated set us-

ing topological representations combined with fuzzy logic.

In our synthetic experiments, FTI consistently outperforms

current evaluation methods in terms of stability and sensi-

tivity to detect drops in quality and diversity in the gener-

ated set, both on image and text generation tasks. Moreover,

FTI shows a high degree of correlation to human evaluation

on unconditional language generation.

1. Introduction

Accurate evaluation of a model’s learning capabilities

is of extreme importance to identify possible shortcomings

in the model’s behavior. When learning a discriminative,

supervised task, this evaluation is often straightforward by

comparing the model’s predictions against ground-truth la-

bels. For example, in an image classification task with la-

beled data, one can evaluate the model’s label prediction of

an image on the test set to its real label.

However, in a generative, unsupervised task, the assess-

ment of a model’s capabilities is far more challenging. As

an example, considering image generation with unlabeled

data using generative adversarial networks [7], a model

would generate an image from random noise. How can one

evaluate the quality of such an image? Moreover, how can

one evaluate the diversity of the entirety of the generated

set? Answering these questions is the focus of this work.

Our method builds on top of the topological representa-

tions created by UMAP’s algorithm [19]. These topological

features can be represented by a directed, weighted graph

which first uses the k-nearest neighbors (KNN) algorithm to

∗Equal contribution.

establish the connections between nodes. Then, such con-

nections are weighted using principles of Riemannian ge-

ometry and fuzzy logic, representing the probability of the

existence of each directed edge in the resulting graph.

Our method, Fuzzy Topology Impact (FTI), has as a ba-

sis the construction of two of the aforementioned graphs:

one for the real and one for the fake data. Then, we analyze

the impact that each sample of a given set has on the other

set’s graph to separately determine the quality and diversity

of the fake data set. More precisely, quality is measured by

the impact, on average, that a fake sample has on the real

data graph, and diversity is measured inversely, by measur-

ing the impact each real sample has on the fake data graph.

Our method can be interpreted as the drop in the average

probability of the existence of a connection in the real graph

and fake graph, representing the quality and diversity of the

fake data. We present the following contributions:

1. Retrieval of two interpretable metrics, which directly

correlate to sample quality and diversity.

2. Contrarily to previous topology-based methods, our

method can be seen as finer-grained approach due to

the usage of fuzzy logic.

3. Thorough experimental discussion of existing evalu-

ation methods, i.e. Inception Score [25], Fréchet

Inception Distance [10], precision and recall assess-

ment [24], and improved precision and recall [16],

showing the superiority of our approach.

4. Code for the reproducibility of the results is available

at https://github.com/sleighsoft/fti.

2. Related Work

This work primarily focuses on the evaluation of gener-

ative models targeting assessing both the quality and the di-

versity of the generated set. In general, current approaches

can be categorized into three different types: analysis of

likelihoods [32] and probability distributions [10, 8], topo-

logical analysis of manifolds [24, 16, 13, 20], and classifier-

2013



based methods [25, 9, 28]. This work falls within the topo-

logical analysis category, where we propose a novel ap-

proach that improves existing metrics by following a finer-

grained methodology. A description of the methods com-

pared throughout this paper follows.

Inception score or IS [25] analyzes the output distribu-

tion of a pre-trained Inception-V3 [31] on ImageNet [6] to

measure both the quality and diversity of a generated set.

They use the Kullback-Leibler Divergence to compare the

conditional probability distribution of a fake sample being

classified as a given class as well as the marginal distribu-

tion of all samples across the existing classes. Higher IS

should indicate that each fake sample is clearly classified

as belonging to a single class and that all fake samples are

uniformly distributed across all existing classes.

Fréchet Inception Distance or FID [10] builds upon the

idea of using the Inception-V3 network, but simply to ob-

tain feature representations. In contrast to IS, FID uses the

real data distribution and retrieves a distance to the fake data

distribution. Therefore, a lower FID is better since it indi-

cates the fake distribution approximates the real one. Even

though FID provides significant improvements over IS, like

the detection of mode dropping where only identical sam-

ples of each class are generated, it also retrieves a single-

valued metric. Therefore, it does not give a direct insight

regarding the quality and diversity of the generated set.

To fix this, Sajjadi et al. [24] proposed to separate the

evaluation into two distinct values, namely precision and

recall, by using the relative probability densities of the real

and fake distributions. For simplicity, we refer to this ap-

proach as Precision and Recall for Distributions (PRD).

Thus, precision reflects the quality of generated samples,

whereas recall quantifies the diversity in the generated set.

Using Inception-V3’s features, similarly to FID, for both

real and fake samples, they use k-means clustering to group

the totality of the samples and evaluate quality and diver-

sity by analyzing the histograms of discrete distributions

over the clusters’ centers for the real and fake data. Pre-

cision and recall values are approximated by calculating a

weighted F-Score with β = 8 and β =
1

8
, respectively.

Having concerns about how to appropriately choose

β and reliability against mode dropping or truncation,

Kynkaanniemi et al. [16] proposed to use non-parametric

representations of the manifolds of both real and fake data.

We refer to this approach as IMproved Precision And Re-

call (IMPAR). Instead of using Inception-V3, IMPAR uses

VGG-16 [29]’s feature representations. Moreover, instead

of determining a set of clusters in the data, as proposed by

PRD, IMPAR uses KNN to approximate the topology of the

underlying data manifold by forming a hypersphere to the

third nearest neighbor of each data point. Precision is then

the fraction of points in the generated set that lie within the

real data manifold, whereas recall is the fraction of points

in the real set that lie within the generated data manifold.

Since IMPAR uses a binary overlapping approach to

compare the real and fake data manifolds, it lacks into tak-

ing into consideration sample density. For example, when

dealing with highly sparse data, big regions of the data

space may intersect - think of a binary overlapping version

of Figure 2(b). This may also be observed when using a

high k. In this work, we propose a finer-grained, mathe-

matical sound KNN approach based on fuzzy logic that is

sensitive to different overlapping regions depending on the

overall sample density.

3. Fuzzy Topology Impact

Following the method proposed by UMAP [19], we cre-

ate a graph where each node represents the embeddings

from a pre-trained model of each sample. The result-

ing weighted, directed graph is designed to maintain the

topological representations of the embeddings using Fuzzy

logic, with each weight representing the probability of the

existence of a given edge. Then, we measure the drop in the

average probability of existence that a new sample has in

the original graph, which we call the Fuzzy Topology Im-

pact (FTI). Following this principle, we separately analyze

the quality, by calculating the impact that fake samples have

in the real samples’ graph, and diversity, by measuring the

impact that real samples have in the fake samples’ graph.

3.1. Topological Representation

We will now dive into the underlying properties used by

UMAP that enable the data manifold approximation with a

fuzzy simplicial set representation in the form of a weighted

graph. The geodesic distance from a given point to its

neighbors can be normalized by the distance of the k-th

neighbor (or by a scaling factor σ), creating a notion of local

distance that is different for each point. This notion aligns

with the assumption that the data is uniformly distributed on

the manifold with regards to a Riemannian metric (see [19]

for original lemmas and proofs), which is a requirement for

the theoretical foundations from Laplacian eigenmaps [1, 2]

used to formally justify this manifold approximation.

When combining the aforementioned principles with

Riemannian geometry, most concretely by connecting each

data point using 1-dimensional simplices, we achieve a

weighted, directed, k-neighbor graph that represents the ap-

proximated manifold. The weight values of the resulting

graph are computed using fuzzy logic, which inherently de-

scribes the probability of the existence of each edge.

Given N embeddings, X = {x1, . . . , xN}, and the k ∈
N nearest neighbors under the euclidean distance d ∈ R

+ of

each xi ∈ X , {xi1 , . . . , xik}, we have the following graph

G: G = (V,E), where V represents the embeddings X and

E forms a set of directed edges, E ⊆ {(xi, xij ) | j ∈
N : j ∈ [1, k] ∧ i ∈ N : i ∈ [1, N ]}. Each directed
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edge exi,xij
∈ E, is associated with the following weight

or probability of existence pxi,xij
∈ R

+ : pxi,xij
∈ [0, 1]:

pxi,xij
= exp

(

−d(xi, xij )

σi

)

, (1)

where σi ∈ R
+
∗

represents the scaling factor associated

with xi such that:

k
∑

j=1

exp

(

−d(xi, xij )

σi

)

= log2(k). (2)

Thus, the existence probability associated with each em-

bedding’s connections are scaled such that the cardinality

of the resulting fuzzy set is fixed:
∑k

j=1
pxi,xij

= log2(k).

Note that log2(k) was chosen through an empirical search

by the original UMAP implementation and we re-use this

value. Such scaling standardizes the weights of the result-

ing graph while still maintaining the notion of local con-

nectivity by the usage of individual scaling factors for each

embedding.

The resulting graph is weighted and directed, with the

corresponding weights representing the probability of ex-

istence of the directed connection between a point and re-

spective neighbors.

Note that there are several differences between our final

graph and UMAP’s. While we use a directed graph, UMAP

combines disagreeing weights to represent the probability

of at least one of the edges existing to form an undirected

graph. Contrarily to UMAP, we set the local connectivity to

0, meaning that the weight of each sample’s closest neigh-

bor is not set to 1.0. This was done to mitigate the influence

of outliers in the retrieved impact. Moreover, each node

in the graph represents each sample’s embeddings from a

pre-trained model instead of the sample itself. We found

using the embedding information to be more stable in our

experiments. Finally, instead of finding a low dimensional

representation from the resulting graph, we use the inher-

ent topological information to evaluate generative models,

which is described next.

3.2. Impact Evaluation

Considering the previously described graph G, we can

calculate the average probability of existence of the directed

edges by:

PG =

∑N

i=1

∑k

j=1
pxi,xij

N × k
. (3)

The proposed evaluation metric is to simply retrieve the

average drop of PG when adding a new sample x′i to the

original graph. To achieve this, we modify each weight in

the following way:

p
x′

i
xi,xij

=























0, if j = k ∧ d(xi, xik) > d(xi, x
′

i)

e

−d(xi, xij )

σ′

i , if j 6= k ∧ d(xi, xik) > d(xi, x
′

i)

pxi,xij
, otherwise.

(4)

Hence, if a new sample x′i is part of the k closest neigh-

bors of an original sample xi, we remove the connection

to the original k’th furthest neighbor, i.e. p
x′

i
xi,xik

= 0, and

update the weight values of the original k−1 nearest neigh-

bors according to Eq. 1 and the new σ′

i satisfying Eq. 5. On

the other hand, if x′i is not a k cloest neighbor to any origi-

nal sample xi, the original weight values remain unchanged.

Figure 1 illustrates these scenarios.

k−1
∑

j=1

(

exp

(

−d(xi, xij )

σ′

i

)

)

+exp

(

−d(xi, x
′

i)

σ′

i

)

= log2(k).

(5)

Thus, the drop of average probability of existence of the

original connections by a new sample x′i can be described

as:

PG,x′

i
=

∑N

i=1

∑k

j=1
p
x′

i
xi,xij

N × k
. (6)

Finally, having X as the original set used to generate

G with k nearest neighbors, and N ′ new samples X ′ =
{x′1, . . . , x

′

N ′}, FTI can be defined as the average drop of

probability of existence of the original connections:

FTI(X,X ′, k) =

∑N ′

i=1
PG − PG,x′

i

N ′
. (7)

Algorithm 1 presents the proposed method. Note that the

presented pseudo-code is optimized for visualization, not

performance. The function SmoothDistApprox executes

a binary search that satisfies Equation 5 for the distances

passed as argument, similarly to UMAP.

3.2.1 Number of neighbors

The open cover of the manifold is computed by finding the

k-nearest neighbors of each original sample. Therefore, us-

ing smaller k values promote a more detailed local structure,

whereas larger k values induce a larger, global structures.

In another words, a higher number of neighbors leads to the

resolution of which the topology is approximated to become

more diffused, spreading high impact over larger regions.

To visualize such effect of using different number of

neighbors in the overall impact, we analyze one toy exam-

ple with 40 random original samples (Figure 2). The top
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(a) Effects of a new, realistic sam-

ple on the original graph (k = 2).

(b) Effects of a new, similar sample

on the original graph (k = 2).

Figure 1. Original samples are represented by filled circles

whereas new samples are shown as empty circles. New samples

that are the k closest neighbor to a given original point will af-

fect the weights of all directed edges from such point (a). Outlier

samples, i.e. new samples that are not a closest k neighbor to any

original point, cause no impact in the original graph (b).

Algorithm 1 Fuzzy Toplogy Impact. G represents the origi-

nal graph and dist a dictionary with the euclidean distances

of each sample’s nearest neighbors.

Require: X , the original set of samples; X ′, the new set of

samples; k, the number of neighbors

1: impact← 0
2: for each x′i ∈ X

′ do

3: pX ← 0
4: pX

′

← 0
5: count← 0
6: for each xi ∈ X do

7: if d(xi, x
′

i) < d(xi, xik) then

8: count← count+ 1
9: pX ← pX + pxi,xik

10: del dists[(xi, xik)]

11: p
x′

i
xi,xik

← 0
12: dists[(xi, x

′

i)]← d(xi, x
′

i)
13: σ′

i ← SmoothDistApprox(dists, k)
14: for j = 1, . . . , k − 1 do

15: pX ← pX + pxi,xij

16: p
x′

i
xi,xij

← exp

(

−d(xi, xij )

σ′

i

)

17: pX
′

← pX
′

+ p
x′

i
xi,xij

18: end for

19: end if

20: end for

21: impact← impact+ pX − pX
′

22: end for

23: return
impact

N ′

row shows the original samples in a 2-dimensional space

with the radius to the k-th nearest neighbor, while the bot-

(a) k = 2. (b) k = 3

Figure 2. Visualization of the impact of new points given randomly

distributed original points using 2 (a) and 3 (b) neighbors. Warmer

colors indicate higher impact than cooler colors, with the darkest

color indicating no impact.

tom row presents the impact a new sample would have at

any given (x,y)-coordinate.

3.2.2 Quality and Diversity

We introduced FTI as the drop in the average probability

of existence in the original graph. If we consider the real

data as the original sample set R and the generated data

as the new sample set G, we can derive both the quality

and diversity of the generated data by calculating the bi-

directional impact between both sets.

More specifically, quality can be defined as the impact

that, on average, a fake sample has on the real data graph. In

contrast, diversity is defined as the impact that, on average,

a real sample has on the fake data graph. The two metrics

are then defined as follows:

quality = FTI(R,G, k) diversity = FTI(G,R, k)
(8)

4. Experimental Results

We tested our proposed metric, FTI, on several synthetic

experiments that simulate a drop in quality and/or diversity

of the generated set. Such experiments cover both image

(Sections 4.1 and 4.2) and text (Section A.1) generation.

Moreover, we evaluated FTI in terms of correlation to hu-

man evaluation on language generation (Section 4.3). All

the experiments are performed using the default k of each

method, particularly k = 3 for FTI and IMPAR.
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4.1. Synthetic Experiments

We first tested our approach alongside IS, FID, PRD,

and IMPAR on three image datasets: Fashion-MNIST [34],

CIFAR-10 and CIFAR-100 [15]. The performed experi-

ments evaluate the sensitivity to noise (Section 4.1.1), mode

dropping (Section 4.1.2) as well as mode addition and mode

invention (Section 4.1.3). Throughout our experimental

setup, we used the training images and testing images of

each dataset as real and generated samples, respectively.

The embeddings used by our approach were calculated us-

ing Inception-V3 due to lower runtime than VGG-16. Since

the different compared metrics have different ranges, we an-

alyze the results using their respective ratios.

4.1.1 Noise Sensitivity

To test the sensitivity of the different methods against dif-

ferent amounts of noise, we incrementally added Gaussian

noise to the test images of each dataset. Ideally, all meth-

ods should show signs of deterioration and, while quality

should decrease faster than diversity when little noise is

added, both metrics should degrade. Figure 3 shows the

comparison results.

We observe that FID is very sensitive to noise with dis-

tances growing by an order of magnitude even at almost

imperceptible noise amounts. IS is barely perturbed by the

noise on Fashion-MNIST and, unexpectedly, shows an in-

crease on CIFAR-10 and CIFAR-100, as well as constant

behavior at early noise stages on Fashion-MNIST. Simi-

larly, PRD shows little sensitivity from low to mid noise

amounts and then rapidly drops as noise increases. Even

though IMPAR and FTI show similar performance, IMPAR

shows a faster decrease in diversity over quality, which we

argue is not ideal for this experiment. Finally, FTI shows

the most levels of sensitivity which we directly link to the

fine-grained property of our method.

4.1.2 Mode Dropping

We further simulated mode collapse by first defining a

constant window that includes samples from only half of

the classes of the different datasets as the real sample set.

On the other hand, the test set window slides through

the remaining classes, one class at a time, dropping sam-

ples from a class represented in the real sample set while

adding samples from one unseen class. Ideally, all methods

should show a proportional decrease with the number of real

classes dropped. Moreover, quality is affected by adding

samples from fake classes while diversity is also affected as

real classes are removed from the test set. Figure 4 shows

the comparison results. Note that IS is excluded from this

Figure 3. Results for added Gaussian noise on Fashion-MNIST, CIFAR-10 and CIFAR-100. All metrics are normalized by their respective

values obtained on unaltered test images, i.e. without added noise.

Figure 4. Mode dropping results on Fashion-MNIST, CIFAR-10 and CIFAR-100. Metrics are normalized by their respective values on zero

dropped classes.
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experiment as it uses a pre-trained classifier on all classes.

We observe that FID almost linearly increases for

Fashion-MNIST and CIFAR-100, but stagnates for CIFAR-

10 at 3 dropped classes. PRD detects a change in the

number of modes for Fashion-MNIST but does not capture

mode dropping for CIFAR-10, as its quality first decreases

and then increases unexpectedly, and CIFAR-100 where its

decrease of both quality and diversity is negligible. IM-

PAR’s diversity fails to detect a decrease in diversity on

Fashion-MNIST, even showing an increase on CIFAR-10

when all classes are dropped. Overall, FTI is the most sta-

ble approach on mode dropping across all datasets.

4.1.3 Mode Addition & Invention

Inspired by Sajjadi et al. [24]’s experimental setup, we eval-

uated a different variant of mode collapse and inventing

which sheds more light on the importance of using two

separate metrics to measure quality and diversity indepen-

dently. The window of the real set is identical to the last

experiment, however, instead of a sliding window for the

testing set, we simply add one class at a time, without drop-

ping any class. Note that, since the cardinality of the test set

changes, we do not normalize FTI by the number of origi-

nal connections in this experiment. Thus, we evaluate mode

addition until all real classes are present in the test set, and

mode invention for additionally added classes. Ideally, the

quality remains constant during the mode dropping phase,

while diversity increases with each added class. In the mode

invention phase, diversity should remain constant whereas

quality should decrease as the added classes are not part of

the real sample set. Figure 5 shows the comparison results.

On FID, we observe signs of sensitivity to mode col-

lapse, as shown in the previous experiment, however, on

CIFAR-10 and CIFAR-100, it fails to punish mode invent-

ing with the overall distance remaining almost constant.

Hence, we verify that FID’s single-value is unclear with re-

gards to image quality and diversity, as seen on Fashion-

MNIST, reinforcing the importance of a separate analysis

of quality and diversity. Nevertheless, PRD’s quality and

diversity behave contradictory to what is expected. More-

over, on CIFAR-10, PRD’s diversity stays constant which is

also seen on CIFAR-100 for both quality and diversity. IM-

PAR assigns the same diversity to the class range [0-3] as it

does to [0-4] for CIFAR-10 and it lacks to disentangle qual-

ity and diversity measures for CIFAR-100. In conclusion,

and once more, we see the expected behavior on FTI for

this experiment, successfully detecting mode addition and

mode invention across all data sets.

4.2. Experiments on StyleGAN and StyleGAN2

To assess our method generated images with high-

fidelity, we studied the current state-of-the-art architecture

for unconditional generative image modeling as of the writ-

ing of this work: StyleGAN2 [12]. We manipulated the

quality and diversity of the generated set by using differ-

ent pre-trained StyleGAN2 models trained with different

truncation ψ, as this hyperparameter is known to provide

a tradeoff between image quality and diversity [16, 18,

3, 11, 14]. The different models were trained on LSUN-

Church [35], LSUN-Horse [35], and FFHQ [11]. We also

performed identical experiments for its predecessor, Style-

GAN [11], on LSUN-Bedroom [35], LSUN-Cat [35], and

FFHQ. All images were rescaled to 256x256 for all the ex-

periments.

Figures 6 and 7 shows the effect of the different models

on all the previously compared evaluation metrics. Ideally,

as truncation ψ increases, the diversity of the generated set

also increases, whereas quality assessment is expected to

decrease. We observe that FTI correctly responds to the

increase in truncation, with a more pronounced change in

quality and diversity when compared to the compared meth-

ods across all the datasets. It can be further observed that

PRD fails to exhibit a meaningful response to the change of

truncation values.

To empirically study the effects of using a different k in

our method, we varied the number of neighbors when calcu-

lating the k-nearest neighbors algorithm and re-conducted

Figure 5. Mode invention experiment on Fashion-MNIST, CIFAR-10, and CIFAR-100. Metrics are normalized by their respective values

for [0-4], [0-4], and [0-50] class ranges, respectively.
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Figure 6. Truncation variation of pre-trained StyleGAN models on LSUN-Bedroom, LSUN-Cat and FFHQ. Metrics are normalized by

their respective values at the lowest truncation value.

Figure 7. Truncation variation of pre-trained StyleGAN2 models on LSUN-Church, LSUN-Horse and FFHQ. Metrics are normalized by

their respective values at the lowest truncation value.

the previous experiment in Figures 8 and 9. In general, we

observe that the change in the ratio of diversity assessment

is higher when using fewer neighbors. This result further

supports our previous observations in Section 3.2.1.

4.3. Correlation with Human Evaluation

We further evaluated the correlation of our metric to hu-

man evaluation on language generation. To achieve this,

we use the human scores assigned to 10 different language

models presented by Cı́fka et al. [5]. In their work, they

generated 200 sentences from a variety of autoencoders as

well as a language model and asked 3 human evaluators to

assess them on a 5-point Likert scale, ranging from gibber-

ish (1) to human-generated sentences (5). In the end, each

model was assigned a score representing the average of its

sentence median.

We assessed each of the 10 language models using the

previously discussed metrics by generating 10k sentences

per model and comparing it to 10k real samples provided

by the authors. Since we are now dealing with textual data,

we get the embedding representation of each sentence by

feeding them to the Universal Sentence Encoder or USE [4].

Moreover, we compared all metrics against the forward and

reverse cross-entropy results provided by Cı́fka et al. [5],

which were calculated using a pre-trained language model

trained on English Gigaword [23].

Methods Forward CE Reverse CE FD PRD IMPAR FTI

Pearson (r) 0.606 0.440 0.879 0.702 0.860 0.910

Spearman (p) 0.697 0.491 0.952 0.879 0.915 0.927

Table 1. Absolute Pearson and Spearman correlations to human

evaluation on language generation. FTI shows the highest Pearson

correlation out of all methods while outperforming all methods

except FID on Spearman correlation.

To evaluate the assessment assigned to each model by

each evaluation metric, we calculated the Pearson and

Spearman correlations to human evaluation. Results are

shown in Table 1. FTI shows a higher Pearson correlation

than all the other metrics. Regarding Spearman correlation,

FTI is only outperformed by FID. Nevertheless, our metric

shows a high degree of ranking correlation to human evalu-

ation.

A visualization of the rankings of the different models

obtained by using each evaluation metric is further illus-

trated in Figure 10. It is easy to observe that the recently

proposed topological metrics, as well as FID, show a higher

resemblance to human-assessed ranking than more tradi-

tional metrics, i.e. Forward CE and Reverse CE. Additional

experiments on evaluation of sentence quality and diversity

can also be found in the Appendix.
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Figure 8. Truncation variation of pre-trained StyleGAN models using a different number of neighbors k on LSUN-Bedroom, LSUN-Cat

and FFHQ. Results are normalized by their respective values at the lowest truncation value.

Figure 9. Truncation variation of pre-trained StyleGAN2 models using a different number of neighbors k on LSUN-Church, LSUN-Horse

and FFHQ. Results are normalized by their respective values at the lowest truncation value.

5. Conclusion

Accurately evaluating the performance of machine-

generated content is of utmost importance. More specifi-

cally, assessing the generated data both in terms of quality

and diversity may help in improving the generation process

by shedding some light on where a specific generation sys-

tem is lacking. Stimulating sample diversity while main-

taining high-quality samples is an active and important area

of research in generative models [17, 21, 22, 30, 26].

On top of the proposal of a novel and effective evaluation

metric, this work provides an in-depth look at the perfor-

mance of recently proposed metrics on several synthetic ex-

periments as well as in terms of correlation to human eval-

uation. With a wide range of the performed experiments,

which utilize both image and textual data, we showed the

overall superiority of our method, as well as the shortcom-

ings of current approaches.

In the future, we plan to extend this study to finer-grained

textual representations, such as contextualized word embed-

dings. This would enable a thorough comparison of the cur-

rent methods, as well as our own, for conditional language

generation, such as machine translation and text summa-

rization. In the end, an ideal evaluation metric should be

able to be applied in different contexts and data types, rang-

ing from unconditional to conditional data generation tasks.

Forward CE Reverse CE FID

PRD IMPAR FTI (ours)

Figure 10. Ranking assessment of the 10 language models with

different metrics. Diagonal representations show a higher correla-

tion to human evaluation.
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