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Abstract

Pose Graph Optimization (PGO) is an important prob-

lem in Computer Vision, particularly in motion estimation,

whose objective consists of finding the rigid transformations

that achieve the best global alignment of visual data on a

common reference frame. The vast majority of PGO ap-

proaches rely on iterative techniques which refine an initial

estimate until convergence is achieved. On the other hand,

recent works have identified a global constraint which has

cast this problem into the matrix completion domain. The

success which both these formulations have had in comput-

ing accurate solutions efficiently has been overshadowed

by large-scale industrial applications such as autonomous

flight, self-driving cars and smart-cities, where it is nec-

essary to fuse numerous images covering large areas but

where each one of them has few pairwise observations. We

propose a highly efficient algorithm to solve PGO which

leverages the sparsity of the data by combining the Krylov-

Schur method for spectral decomposition with Cholesky

LDL factorization. Our method allows for high scalability,

low computational cost and high precision, simultaneously.

1. Introduction

The registration of 3D point sets obtained by LiDARs,

RGB-D and stereo cameras is one of the core problems in

Robotics and Computer Vision, with applications ranging

from dense scene reconstruction to localization. For two

points sets, Iterative Closest Point (ICP) [3, 20] is a com-

mon procedure to solve the registration problem. This class

of algorithms requires an initialization and iterates between

estimating point correspondences and computing the opti-

mal transformation between them.

Consider now that we have a set of point clouds corre-

sponding to different views of the same scene. The differ-

ent point sets may be obtained via an array of 3D scanners.

Alternatively, they may represent the visual data acquired

by a single observer as it moves through space. Both sit-

Figure 1: Camera trajectory, loop closures and 3D recon-

struction of the Burghers dataset [25] using our algorithm.

uations have seen a rise in popularity recently, with appli-

cations such as smart-cities and autonomous transportation

systems, e.g. self-driving cars and drones, where the reg-

istered 3D data may be used to perform object detection,

tracking and mapping. For known point correspondences,

the rigid transformations that allow for an optimal registra-

tion of the point sets can be solved for in closed-form via

Generalized Procrustes Analysis [9]. For unknown corre-

spondences, optimization strategies analogous to ICP have

been proposed [22]. However, such methods are compu-

tationally inefficient even for moderately sized registration

tasks. To circumvent this issue, Pose Graph Optimization

(PGO) is the method of choice in Simultaneous Localiza-

tion and Mapping (SLAM) and 3D reconstruction (Fig. 1).

PGO consists of estimating a set of rigid transformations,

or poses, given a subset of pairwise measurements of their

ratios. The latter can be computed e.g., by ICP algorithms

initialized with 2D image matches. By associating each

rigid transformation measurement M̃ij , from point cloud

i to point cloud j, to an edge (i, j) ∈ E, we obtain a sim-

ple graph G = (V,E) which, if connected, can be used to

derive a cost function that is minimized by the global trans-

formations Mi, for i ∈ V , that best fit the measured data.
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An example of a possible PGO statement is

argmin
{M1,...,Mn}∈SE(3)n

∑

(i,j)∈E

||M̃ij −MiM
−1
j ||

2
F . (1)

In real world applications, guaranteeing globally optimal

solutions to PGO is paramount. However, this optimiza-

tion task is a high-dimensional and non-convex problem.

Second-order methods bootstrapped with robust initializa-

tions can converge to the sought-after optimum. Neverthe-

less, they do not scale well. On the other hand, even if

certain relaxations of the original problem allow for more

efficient implementations, their solutions may be far from

those of the original problem.

We address PGO in the context of point cloud registra-

tion. The desiderata for our algorithm are: scalability, effi-

ciency and accuracy. While existing methods, namely those

proposed in [2, 7, 17, 19] satisfy a subset of these require-

ments, they usually incur an efficiency accuracy trade-off.

This paper improves upon the spectral synchronization al-

gorithm proposed by Arrigoni et al. [2] and employs the

optimality verification techniques in SO(3) put forward by

Eriksson et al. [12] in order to better approximate the global

optimum of the Maximum Likelihood (ML) function de-

rived by Carlone et al. [6].

We developed an efficient algorithm to solve PGO in

SO(3), also known as rotation averaging, and SE(3) that ac-

counts for the high degree of sparsity that is common to

the applications we are considering. Our solution is com-

puted in two stages. The first consists of the Krylov-Schur

algorithm [21] for spectral decomposition of large sparse

matrices. The second boils down to solving a sparse lin-

ear system via Cholesky LDL factorization. Not only is our

method considerably faster than the state-of-the-art but also

we show empirically that our solution is either optimal or

lies in the basin of attraction of the global optimum.

A C++ implementation of our algorithm is available on-

line: https://github.com/gabmoreira/maks

2. Related work

The literature on PGO can be segmented into three dif-

ferent clusters: Maximum Likelihood Estimation (MLE)

via nonlinear iterative solvers; suboptimal relaxations

which do not guarantee local optimality but can be used to

bootstrap other methods; optimality verification and glob-

ally optimal methodologies.

MLE is arguably the most popular approach to PGO. The

optimization problem it gives rise to, which is both non-

convex and high-dimensional, is usually tackled via state-

of-the-art Gauss-Newton and Levenberg-Marquardt meth-

ods. Noteworthy examples of such solvers are g2o by Kum-

merle et al. [15] and GTSAM by Dellaert et al. [10]. To

ensure global convergence however, these techniques rely

on initializations in the basin of attraction of the global op-

timum. This problem has been addressed by Carlone et al.

[6], who studied different rotation initialization techniques.

In SO(3), Tron et al. [23] established a link between

graph consensus algorithms and the Riemannian gradient

descent on the SO(3) manifold. In spite of its good con-

vergence properties, this technique is arguably slower than

most approaches. Martinec et al. [17] addressed the same

problem by means of a chordal relaxation, whereby the so-

lution to a least-squares problem is projected to SO(3). De-

spite its inherent suboptimality, it scales well and can be

used to initialize iterative solvers. Other remarkable works

in rotation averaging include the seminal paper by Hartley

et al. [14], a Quasi-Newton method set forth by Chatterjee

et al. [8] and more recently, a deep learning approach by

Purkait et al. [18].

In contrast to the formulations mentioned hitherto, Ar-

rigoni et al. [1] have cast PGO into the Low-Rank and

Sparse (LRS) decomposition domain. The relaxation under-

lying this methodology allows it to work both in SE(3) and

SO(3), but lends itself to invariably suboptimal solutions.

Foregoing the sparse term, introduced to capture outliers,

this approach degenerates to the well studied problem of

low-rank matrix completion [5] [13]. In another paper, the

same authors derived a different relaxation which admits a

closed-form solution that can be computed efficiently via

spectral decomposition [2].

In recent literature, globally optimal solutions have been

the focus of extensive research. Carlone et al. [6] derived

the Lagrangian dual problem for PGO in SE(3), which can

be used to validate an estimate as the global optimum and,

in certain cases, allows for the direct retrieval of the optimal

solution. A similar strategy was adopted to solve rotation

averaging in SO(3) by Eriksson et al. [12], who put forward

a method to solve the semidefinite program corresponding

to the dual problem. Alternatively, Dellaert et al. [11] per-

form this optimization task on manifolds of higher dimen-

sion than SO(3). Their algorithm yields optimal solutions

under certain assumptions. A faster and certifiably correct

approach for PGO in SE(3) via a semidefinite relaxation

was proposed by Rosen et al. [19].

While PGO research seems to converge toward globally

optimal algorithms, these are still too computationally ex-

pensive for real-time applications. As we will demonstrate,

under a high Signal-to-Noise Ratio (SNR), our solution is a

good approximation of the global optimum and can be com-

puted in a fraction of the time of state-of-the-art methods.

3. Proposed approach

Let G = (V,E) be a simple and connected graph with

|V | = n the number of poses and {R̃ij , t̃ij} for (i, j) ∈ E
the rigid transformation measurement from pose i to pose

j. To render algebraic manipulation more tractable we will
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henceforth make use of the following block-matrix notation.

Let t ∈ R
3n and R ∈ SO(3)n ⊂ R

3n×3 be defined as

t =
[
t⊤1 . . . t⊤n

]⊤
(2)

R =
[
R

⊤
1 . . . R

⊤
n

]⊤
, Ri ∈ SO(3) (3)

with {Ri, ti}i=1,...,n the rigid transformation correspond-

ing to the i-th pose. Let θ = {R, t} and y =

{R̃ij , t̃ij}(i,j)∈E be the set of parameters and observa-

tions, respectively. Assuming an isotropic Gaussian gener-

ative noise model with variance σ2
t for the translation mea-

surements, an isotropic Langevin noise model with con-

centration parameter 1/σ2
R for the rotations [4] and inter-

independence amongst the random variables involved, the

log-likelihood function is given by

log L(θ|y) = −
1

2σ2
t

∑

(i,j)∈E

||t̃ij − ti +RiR
⊤
j tj ||

2

+
1

σ2
R

∑

(i,j)∈E

tr(R̃ijRjR
⊤
i ). (4)

PGO can be formulated as seeking θ∗ = {R∗, t∗} that min-

imizes the negative log-likelihood, i.e.,

θ∗ = argmin
θ∈SO(3)n×R3n

−log L(θ|y). (5)

The optimization task from (5) is high-dimensional and

non-convex. Notwithstanding, provided there is an estimate

R̂ close to R
∗, solving for translations is a least-squares

problem. We can thus ponder the validity of separating the

optimization into two subproblems: R, which is known in

the literature as rotation averaging and T , which computes

the set of optimal translations for a given R̂.

R : argmax
R∈SO(3)n

tr(R̃ijRjR
⊤
i ) (6)

T : argmin
t∈R3n

∑

(i,j)∈E

||t̃ij − ti + R̂iR̂
⊤
j tj ||

2 (7)

Provided there is a high SNR, which we formalize as

∀ (i, j) ∈ E : t̃ij ≈ t∗i − R̃ijt
∗
j , (8)

the aforementioned separation of (5) is valid (see supple-

mentary material). In computer vision applications e.g.,

RGB-D registration, (8) is often verified since the relative

transformations can be accurately estimated by means of

ICP algorithms initialized from 2D image matches. In the

subsequent sections, we will present a solution to problem

R, which we then use to solve T .

3.1. Rotation averaging via spectral decomposition

In order to solve R, we will show that a good approxi-

mation of the global optimum R
∗ can be found by means

of spectral decomposition, under the high SNR hypothesis

we put forward. Furthermore, the respective eigenvalues,

which are implicitly computed in the process, allow us to

assess the optimality of the solution.

We will stack the rotation measurements R̃ij in a sym-

metric block matrix R̃ ∈ R
3n×3n, defined as

R̃ =





R̃ij if (i, j) ∈ E

I3 if i = j

03 otherwise,

(9)

where I3 ∈ R
3×3 and 03 ∈ R

3×3 denote the identity matrix

and null matrix, respectively. By doing so, we can restate

rotation averagingR as seeking R
∗ such that

R
∗ = argmin

R∈SO(3)n
− tr (R⊤

R̃R). (10)

Drawing from the work of Eriksson et al. [12], let Λ ∈
R

3n×3n be a symmetric diagonal block matrix defined as

Λ =



Λ1 . . . 0

...
. . .

...

0 . . . Λn


 . (11)

For all stationary points R∗, there will be Λ
∗ such that

(Λ∗ − R̃)R∗ = 0. (12)

This estimate will be the global optimum if

Λ
∗ − R̃ � 0. (13)

According to [2], in the trivial case with σR = 0, the op-

timal Lagrange multiplier is Λ
∗ = D ⊗ I3 + I3n, where

D ∈ R
n×n is the graph degree matrix. In fact, the symmet-

ric matrix

S := Λ
∗ − R̃ = (L⊗ J3) ◦ R̃, (14)

where L ∈ R
n×n denotes the graph Laplacian and J3 ∈

R
3×3 an all-ones matrix, is positive semidefinite, with rank

3(n− 1). Moreover, its nullspace intersects SO(3)n.

For noisy measurements, we found empirically that

the expected value of the smallest eigenvalue of S, con-

verges monotonically to a positive scalar, for increasing σR.

Therefore, while in general S becomes positive definite for

noisy measurements, within the validity of the high SNR

hypothesis, its smallest eigenvalue should be close to zero.

Under this assumption, there will be R̂ ∈ SO(3)n such that

SR̂ ≈ 0. (15)
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Our solution to problem R consists thus of computing

the three eigenvectors of S corresponding to the smallest

eigenvalues and then projecting them to SO(3)n by solving

n orthogonal Procrustes problems. This estimate can be ac-

cepted as the global optimum, provided the absolute value

of smallest eigenvalue lies below a positive threshold.

For large sparse matrices (a common occurrence in

SLAM problems), a small subset of eigenvectors can be

computed via the Krylov-Schur algorithm [21], or equiv-

alently, the restarted Lanczos method since the matrix is

symmetric. In order to compute the three eigenvectors cor-

responding to the smallest eigenvalues (in absolute value)

of S, this method starts by building an orthonormal basis

{u1, . . . , up} for the Krylov subspace of

(
S− σI3n

)−1
, (16)

where σ denotes the spectral shift, in our case close to zero.

This is accomplished by iteratively computing vk+1 via

vk+1 =
(
S− σI3n

)−1
uk (17)

and then orthogonalizing it against the previous vectors to

produce uk+1. We can leverage the symmetry of the shifted

matrix in (17) by computing its Cholesky LDL factorization

beforehand and then using it to solve for vk+1.

These iterations represent a dominant fraction of the to-

tal computational cost of the eigensolver. In our implemen-

tation, we set the dimension of the Krylov subspace to 20

and found that, for small σR, this value allowed for the con-

vergence of the three eigenvectors containing the rotation

estimates. It is thus reasonable to assume that, for highly

sparse problems, this task can be performed efficiently.

3.2. Optimizing for translations via Cholesky LDL

For a set of rotation estimates R̂, the optimal translations

can be computed by solving a symmetric linear system with

the same pattern of zeros as the one used in the Krylov-

Schur method. Let b ∈ R
3n be defined as

b =




∑
(1,j)∈E

1
2 (t̃1j + R̂1R̂

⊤
j R̃j1t̃1j)

...∑
(n,j)∈E

1
2 (t̃nj + R̂nR̂

⊤
j R̃jnt̃nj)


 . (18)

The derivative of the log-likelihood w.r.t. t is given by

∂

∂t
log L(θ|y) =

(
(L⊗ J3) ◦RR

⊤
)
t+ b. (19)

It follows then that the solution to the convex problem T
can be obtained by solving

(
(L⊗ J3) ◦ R̂R̂

⊤
)
t+ b = 0. (20)

Since the term in parentheses is symmetric, we can use

Cholesky LDL factorization to solve for t. The advantage of

doing so comes from the fact that the Krylov-Schur method

makes use of the same solver. Since the factorized matrices

share the same pattern of zero entries, the symbolic decom-

position performed by the solver before starting the Krylov

iterations, is valid afterwards, when optimizing for transla-

tions. This results in a considerable performance gain. Our

algorithm for PGO in SO(3) and SE(3) will be hereafter re-

ferred to as MAKS (Motion Averaging via Krylov-Schur).

3.3. Iteratively reweighted spectral decomposition

Since the computation of pairwise transformations via

ICP is prone to generate outliers, we embedded MAKS

in an Iteratively Reweighted Least Squares (IRLS) frame-

work, in order to identify model-incoherent rotation mea-

surements. This method works as follows.

A weight matrix W ∈ R
n×n is initialized with ones.

Iteratively: the block matrix R̃ with the measurements,

weighted by W i.e., (W ⊗ J3) ◦ R̃, is used to compute

the eigenvector solution R̂, let λ1 be the associated small-

est eigenvalue; an error matrix P ∈ R
n×n is computed

containing the errors of all the edges of the graph; rotation

measurements with an error above a certain threshold η are

replaced in R̃ by their estimate R̂iR̂
⊤
j ; the weight matrix

is updated as W ←W ◦ ρ(P) (where ρ is an elementwise

loss function); the non-diagonal entries of W are row-wise

normalized so that they sum up to the number of non-zero

entries and the main diagonal of W is set to ones; finally,

W is replaced by its symmetric component. These steps are

repeated until |λ1| falls below a predefined threshold.

We used an elementwise exponential loss function, with

parameters a and b, defined as follows

ρ(P; a, b) = a+ b exp

(
π −

P

2

)
. (21)

The reasoning behind this algorithm comes from the knowl-

edge that, in the case without outliers, λ1 should be close

to zero. By iteratively updating the weights, the transfor-

mations which remain unexplained by the eigenvector over

many iterations incur increasingly larger penalties. Conse-

quently, outlier transformations will have an increasingly

smaller impact on the spectrum and eigenspaces.

4. Evaluation and experiments

In this section we present the results of several PGO sim-

ulations and benchmarks used to assess the performance of

our algorithm. All the tests were conducted on an Intel®

Core i7-4700HQ @ 3.4GHz with 16GB of RAM. MAKS

was implemented in C++ using the Eigen template library

for linear algebra optimized with Intel® MKL.
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4.1. Rotation averaging

In order to assess the quality of a set of rotation estimates

and quantify its error, we will use three metrics often fea-

tured in the literature: the mean (MN), the median (MD)

and the root-mean-square error (RMSE). These are com-

puted for the set of geodesic distances in SO(3) [14], be-

tween an estimate and the global optimum ofR or between

an estimate and the corresponding ground-truth.

4.1.1 On the optimality of our solution

We begin the analysis of the proposed rotation averaging

algorithm by an empirical study on the optimality of our

solution. Our goal is to show that, assuming a small noise

standard deviation σR, our solution is in the basin of attrac-

tion of the global optimum and can be accepted as optimal

with a negligible angular error.

Consider three random graphs Gi = (V,Ei) with |V | =
5750 and a variable set of edges. The graphs have the

following algebraic connectivities (Fiedler values) F1 =
0.005, F2 = 0.015, F3 = 0.1. To each edge of the graph

we assigned a ground-truth rotation corrupted by isotropic

Langevin noise, with σR varying from 0.5 to 3.5 deg. We

used MAKS to compute a set of rotation estimates and the

Riemannian gradient descent on SO(3) [23] to converge to-

ward the nearest stationary point. The stopping criterion

was defined as the Riemannian gradient having a Frobenius

norm smaller than 10−8. This stationary point was then

used to compute the Lagrange multiplier estimate Λ̂, ac-

cording to (12). Finally, we consider this stationary point to

be the global optimum (13) if |λmin(Λ̂− R̃)| ≤ 10−6.

The suboptimality of our solution, as measured by the

RMSE in degrees, with respect to the global optimum is

plotted in Fig. 2. Regardless of the graph, and for all σR

we were able to converge to the optimal solution from our

estimate. More importantly however, is the fact that the an-

gular RMSE between our estimate and the global optimum

is considerably small. This suboptimality error appears to

decrease as the connectivity of the graph increases.

4.1.2 Benchmarks

In order to test our solution with real data, we used 12 real

rotation averaging datasets assembled by Wilson et al. [24].

These datasets contain not only noisy observations of the

relative rotations but also ground-truth information obtained

through Bundle Adjustment.

Due to the large percentage of outlier transformations

in the datasets considered, MAKS is expected to perform

poorly. Consequently, we resort to IRLS-MAKS, parame-

terized with a = −1.75, b = 0.85 and η = π/2. Our itera-

tive method was benchmarked against a novel deep learning

approach proposed by Purkait et al., NeuRoRa [18], which

0.5 1 1.5 2 2.5 3 3.5
10

-5

10
-4

10
-3

10
-2

10
-1

Figure 2: RMSE between our estimate and the global opti-

mum for three graphs with n = 5750, different connectivi-

ties F and variable σR. Averaged over 10 simulations.

combines two neural networks that suppress outliers and es-

timate rotations. A second benchmark was the algorithm

devised by Chatterjee et al. [8], based on a Quasi-Newton

optimization scheme using a l
1

2 -norm kernel function. For

these algorithms, the results we present are those set forth

in [18]. Finally, we also compare our results to IRLS EIG-

SE(3) by Arrigoni et al. [2], for which the authors’ MAT-

LAB code can be found online.

The ground-truth error was computed for three metrics

defined in Section 4.1. The results are presented in Table

1. Our solution outperforms that of Chatterjee et al. [8] for

nearly all metrics and datasets. The same cannot be said

about NeuRoRa which produces results comparable or bet-

ter than ours in certain datasets. However, IRLS-MAKS

fares better overall, especially in terms of the MD error.

By comparing our errors with those of the IRLS method by

Arrigoni et al. [2], we conclude that the latter is surpassed

in every dataset and metric. While the eigendecomposition

step is the same in both algorithms, our iterative reweighting

scheme guarantees the symmetry of the block matrix, uses

a different loss function and replaces low-weight measure-

ments by their estimates. We did not conduct any analysis

on CPU time since IRLS-MAKS and IRLS EIG-SE(3) are

implemented in MATLAB.

4.2. PGO in SE(3)

To assess the performance of MAKS in 3D-SLAM we

optimized six datasets by Carlone et al. [6]. Three of them

were simulated (Sphere, Torus3D, Grid3D) and the rest

were built from visual data (Garage, Cubicle, Rim). Since

ground-truth information is unavailable, we will rely on the

likelihood function to compare the different approaches.
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Graph IRLS-MAKS (ours) Chatterjee et al. [8] Purkait et al. [18] Arrigoni et al. [2]

Dataset |V | |E| MN MD RMSE MN MD RMSE MN MD RMSE MN MD RMSE

Alamo 627 97296 2.3 0.6 6.9 4.2 1.1 12.7 4.9 1.2 16.1 3.9 1.3 12.1

Ellis Island 247 20297 1.4 0.3 5.4 2.8 0.5 10.4 2.6 0.6 12.8 3.1 0.8 10.5

Yorkminster 458 27729 2.0 0.9 5.1 3.5 1.6 8.4 2.5 0.9 6.6 3.8 1.8 9.4

Montreal Notre Dame 474 52424 1.1 0.3 6.3 1.5 0.5 7.5 1.2 0.6 2.7 1.9 0.6 11.2

Vienna Cathedral 918 103550 3.4 0.9 10.2 8.2 1.2 27.8 3.9 1.5 9.9 8.6 1.6 28.6

Piazza del Popolo 354 24710 3.1 0.5 6.4 4.0 0.8 8.4 3.0 0.7 9.0 3.9 1.0 9.5

Union Square 930 25561 4.3 3.3 7.7 9.3 3.9 22.4 5.9 2.0 17.6 6.9 5.4 13.1

NY Library 376 20680 1.9 0.8 3.9 3.0 1.3 6.9 1.9 1.1 2.9 3.7 2.1 7.8

Notre Dame 553 103932 2.1 0.5 8.0 3.5 0.6 14.6 1.6 0.6 6.4 3.9 1.2 14.9

Roman Forum 1134 70187 3.0 2.6 5.4 3.1 1.5 10.2 2.3 1.3 5.5 26.1 4.6 44.0

Tower of London 508 23863 2.7 1.7 5.7 3.9 2.4 9.1 2.6 1.4 5.8 4.5 2.6 10.6

Madrid Metropolis 394 23784 4.7 1.0 11.5 6.9 1.2 17.3 2.5 1.1 6.6 9.8 4.4 18.7

Table 1: Graph characteristics and comparison between IRLS-MAKS and other rotation averaging algorithms.

For each dataset we computed the global pose estimates

using MAKS and EIG-SE(3) [2]. For the latter we used

the authors’ MATLAB implementation. Due to the promi-

nence of the chordal relaxation method [17] in the literature

as an initialization for iterative solvers, we benchmarked

this technique as well, using a C++ implementation. Since

neither of these methods is optimal, we resort to Gauss-

Newton (g2o) [15] initialized from our solution to obtain the

global maximum of the likelihood function (verified with

SE-Sync [19]). A maximum of 10 iterations was set for all

datasets, despite some of them converging in less than that.

The log-likelihood maximum attained and the CPU time re-

quired by each method are presented in Table 2. As an ex-

ample, in Fig. 3 we show the camera trajectory resulting

from our optimization of Garage and Cubicle.

Since Garage and Cubicle are the datasets with the small-

est eigenvalues (in absolute value), we posit that these pose

graphs were accurately optimized using MAKS. The exper-

iments confirm this, since 10 Gauss-Newton iterations did

not increase the value of the log-likelihood by a significant

amount. This is also the case for Grid3D and Torus3D, in

spite of their larger eigenvalues. For these four datasets, our

solution is a good approximation of global optimum.

The only datasets for which there is a considerable dif-

ference between the global optimum and our estimate are

Sphere and Rim. This disparity is common to all the subop-

timal methods considered, ours attaining the highest objec-

tive among them. The Sphere case is particularly remark-

able. We hypothesize that the lackluster performance of

MAKS is due to the configuration of the pose graph itself.

The fact that it simulates the poses of a robot traveling on a

spherical surface, combined with an adjacency matrix made

up of k-diagonals, results in nearly constant relative rota-

tions. Since its smallest eigenvalue is considerably larger

than those of the other datasets, we can place Sphere out-

side the applicability domain of our method.

Figure 3: Trajectories estimated by MAKS and loop clo-

sures. Top: Garage (n=1661). Bottom: Cubicle (n=5750).

When comparing MAKS to EIG-SE(3) one notices that,

except for the Garage dataset, the latter produces poorer

results. The discrepancy between these otherwise similar

methods stems from the fact that EIG-SE(3) performs a sin-

gle eigendecomposition to obtain four eigenvectors which
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Graph MAKS (ours) Chordal [17] EIG-SE3 [2] Gauss-Newton [15]
Dataset |V | |E| λ1 log L tCPU(s) log L tCPU(s) log L tCPU(s) log L

∗

tCPU(s)

Parking garage 1661 6275 4.2e-7 1.88e4 0.03 1.88e4 0.28 1.41e4 1.78 1.88e4 0.22
Torus3D 5000 9048 3.9e-3 2.71e4 0.20 2.71e4 1.19 2.69e4 4.04 2.71e4 7.01
Grid3D 8000 22236 8.7e-3 6.64e4 0.83 6.64e4 5.35 6.58e4 2.11 6.64e4 492.17
Cubicle 5750 16869 9.0e-6 3.77e4 0.23 3.75e4 1.53 3.74e4 2.12 3.77e4 3.65
Rim 10195 29743 1.7e-5 6.67e4 0.46 6.67e4 2.71 6.64e4 7.81 6.69e4 10.69
Sphere 2200 8647 2.2e-1 1.66e4 0.16 1.33e4 0.78 -5.17e5 0.43 2.06e4 3.04

Table 2: Graph characteristics and comparison between MAKS, Chordal relaxation, EIG-SE(3) and Gauss-Newton (g2o).

are then projected to SE(3)n. Consequently, even if the ro-

tation estimates should, in theory, be the same, its transla-

tion estimates are, in general, not optimal when considering

the rotation estimates computed. The chordal method is the

only suboptimal relaxation that produces results compara-

ble to ours. However, we attain higher objectives in Cubi-

cle, Sphere and Rim. Furthermore, the computation of the

eigenvalues in MAKS allows for an optimality assessment.

A similar procedure in the Chordal method would translate

to a higher CPU time.

In terms of CPU time, our compiled C++ implementa-

tion of MAKS outperforms the other methods. We fare bet-

ter than Gauss-Newton (g2o) in all the datasets, even if the

CPU time for the latter is dependent upon the number of

iterations. As an example, the optimization carried out on

Grid3D using our algorithm yields approximately the same

result as Gauss-Newton, but it is nearly 600 times faster.

Furthermore, the CPU time we have indicated for this solver

does not take into account the initialization, which dictates

how well it can perform. The Chordal relaxation, imple-

mented in C++, also lags behind MAKS by a considerable

amount. A conclusive statement on the CPU time of EIG-

SE(3) cannot be made at this stage since this method was

originally implemented in MATLAB.

4.3. Dense 3D reconstruction

We now justify the applicability of our PGO solution to

the problem of registering multiple point clouds obtained

from RGB-D cameras. We implemented a RGB-D reg-

istration pipeline that estimates pairwise rigid transforma-

tions via ICP, initialized with RANSAC-filtered 2D image

matches computed with SIFT [16]. This set of pairwise

transformation estimates is used to build a pose graph which

we optimize with MAKS, in order to obtain the camera tra-

jectory and subsequently reconstruct the 3D scene.

We tested our pipeline using four RGB-D datasets:

Burghers, Stonewall, Sports car and Lounge from a collec-

tion by Zhou et al. [25]. Due to the large overlap between

adjacent frames in the first two datasets, we registered them

with a stride of 10 images. The last two were registered in

their entirety. The four 3D scenes were fully reconstructed

and are shown in Figs. 4 5, 6 and 7.

In all the datasets reconstructed, the smallest rotation

averaging eigenvalue, which we use to assess optimality

according to (13), had a magnitude no greater than 10−5.

This is in accordance with our claim that, when considering

RGB-D registration, pairwise transformations can be esti-

mated with a high SNR by means of ICP algorithms. We

can therefore expect our PGO solution to be, in these cases,

a good approximation of the global optimum.

Regarding CPU time, MAKS took 0.02 seconds for the

smallest dataset (Stonewall with 271 poses) and 0.35 sec-

onds for the largest (Sports car with 6523 poses). With such

CPU times, our algorithm lends itself to real-time PGO ap-

plications, namely 3D-SLAM and online reconstruction.

5. Conclusions

On the one hand, MLE is capable of modeling PGO with

a high degree of accuracy. Nonetheless, the optimization

strategies involved are often too cumbersome and require

good initializations in order to attain the global optimum.

On the other hand, light-weight relaxations often fail to

achieve the same degree of precision as MLE. Our solu-

tion to the otherwise difficult problem of PGO, when appli-

cable, outpeforms the state-of-the-art in efficiency without

compromising precision.

The empirical results we presented validate the claims

we made throughout this paper and allow us to assert

the following. Under isotropic Langevin noise, MAKS

produces a good approximation of the rotation averaging

global optimum. Considering outliers, our IRLS frame-

work proved to be more accurate than the state-of-the-art,

when tested in Bundle Adjustment datasets. For PGO in

SE(3), our approach, combining the Krylov-Schur method

for spectral decomposition with Cholesky LDL factoriza-

tion, is faster than the state-of-the-art and optimal under

high SNR. This is usually the norm in computer vision ap-

plications, namely RGB-D registration, as evidenced by the

3D scene reconstructions produced by our pipeline.
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Figure 4: 3D reconstruction of the Sports car dataset [25]

with 6523 poses and 22207 edges. CPU time: 350ms.

Figure 5: 3D reconstruction of the Stonewall dataset [25]

with 271 poses and 888 edges. CPU time: 20ms.

Figure 6: 3D reconstruction of the Burghers dataset [25]

with 1124 poses and 4118 edges. CPU time: 40ms.

Figure 7: 3D reconstruction of the Lounge dataset [25] with

3000 poses and 15102 edges. CPU time: 150ms.
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