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Abstract

Data augmentation is a key practice in machine learning

for improving generalization performance. However, find-

ing the best data augmentation hyperparameters requires

domain knowledge or a computationally demanding search.

We address this issue by proposing an efficient approach to

automatically train a network that learns an effective distri-

bution of transformations to improve its generalization. Us-

ing bilevel optimization, we directly optimize the data aug-

mentation parameters using a validation set. This frame-

work can be used as a general solution to learn the opti-

mal data augmentation jointly with an end task model like a

classifier. Results show that our joint training method pro-

duces an image classification accuracy that is comparable

to or better than carefully hand-crafted data augmentation.

Yet, it does not need an expensive external validation loop

on the data augmentation hyperparameters.

1. Introduction

Deep learning methods are based on large models in

which the number of parameters is much higher than the

dimensionality of the input data as well as the number of

available samples [20, 46]. In this setting, overfitting is a

major problem [49]. Standard regularization techniques ap-

plied directly to the model parameters only add very gen-

eral knowledge about the parameter values, which leads

to modest improvement in the final model accuracy [37].

Adding training samples artificially generated by apply-

ing predefined transformations to the initial samples, which

is referred to as data augmentation, has shown to be a

promising regularization technique to increase a model per-

formance [21]. However, the selection of the best data

augmentation is challenging and requires specific domain

knowledge. Indeed, data transformations can be valid only

for specific domains and heuristically chosen transforma-

tions, for example by transferring transformations useful in

a domain into another can be counterproductive. For in-
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Figure 1: Model training. In an epoch, the classifier pa-

rameters ω are trained in the standard supervised way in the

inner loop. Jointly, the data augmentation parameters are

trained on the validation set in the outer loop using an on-

line differentiable method.

stance, a data augmentation transformation like horizontal

flip is valid for natural images because, in nature, the hor-

izontal mirror of an object is visually still a valid object.

However, applied to a dataset containing numbers or let-

ters, it can generate a non-existing symbol or even a differ-

ent symbol of the alphabet, which would confuse the model

training.

A simple way to define the best data augmentation is to

use expert knowledge to define the best transformations and

their parameters for a given dataset. However, this is not

practical, as for each single dataset, an expert should be con-

sulted to obtain a possibly useful set of transformations and

their parameters, which is not always possible due to cost

constraints or limited expert knowledge availability.

To mitigate this challenge, it is possible to select those

transformations heuristically, and then find their optimal pa-

rameters using validation data. Conventionally, a hyperpa-

rameter search is performed across different sets of transfor-

mations, and the one that leads to the best validation accu-

racy is selected as the optimal set of transformations. This

approach is appealing as it allows the model to learn the best

transformations directly from the data, but it is not scalable.

Given a large range of transformations to test, retraining the
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algorithm every time with a different transformation set is

computationally very demanding [9].

In this work, we address the problem of how to learn

the data augmentation that maximizes the validation accu-

racy efficiently by proposing a method based on bilevel op-

timization. With this framework, we aim at identifying im-

age transformations that minimize the validation loss while

training the end task model. However, as described in sec-

tion 3 and shown in Fig. 1, instead of solving the complete

bilevel optimization problem, we approximate it with an on-

line version where in every iteration a new set of transfor-

mations is learned and adapted to the learning phase.

We summarize our contributions as follows: i) we pro-

pose an online, differentiable approach for learning the opti-

mal data augmentation regime using a validation set. As this

method is differentiable, we can efficiently optimize a large

transformation network that learns to perform data augmen-

tation automatically; ii) we show that our proposed model

using different sets of transformations achieve comparable

or better results than conventional methods on five differ-

ent datasets. Further improvements were shown with our

method on a medical imaging dataset where effective trans-

formations are difficult to define.

The remainder of the paper is structured as follows. We

conduct a literature review in Section 2. In Section 3 we ex-

plain how to approximate our bilevel optimization problem

such that we can jointly learn the optimal data augmenta-

tion and the classifier. In Section 4 we define the experi-

mental setup. Finally, we present our experimental results

and draw conclusions about the presented work in Section

5, and 6, respectively.

2. Related Work

Data augmentation consists in creating new data points

from existing ones in order to get a larger training set. It was

found to be essential for achieving state-of-the-art image

classification results [22].

Data augmentation transformations are usually chosen

heuristically based on expert domain knowledge. For nat-

ural images, usual transformations are image flip, rotation

and color changes [41]. More complex transformations

such as occluding parts of an image [12] or blending im-

ages [28, 53] seem also to be useful. These transformations

can significantly improve the task performance. However,

there is no guarantee that they are optimal nor that they are

even useful at all. To avoid the manual selection of trans-

formations, recent studies have investigated automatic data

augmentation learning. We distinguish those methods be-

tween GAN-based and AutoAugment-based approaches.

GAN-based Generative Adversarial Networks

(GANs) [18] can generate realistic new samples of a

certain dataset or class, thus they can be adapted for data

augmentation. Mirza and Osindero [35] and Odena et al.

[38] proposed to generate images conditioned on their

class that could be directly used to augment a dataset.

CatGAN [48] on the other hand, performs unsupervised

and semi-supervised learning as a regularized information

maximization problem [26] with a regularization based on

the generated samples. Also based on GAN, but directly

used for data augmentation, DAGAN [1] conditions the

augmented image on the input image. TripleGAN [7] and

Bayesian data augmentation [50] train a classifier jointly

with the generator. These approaches generate general

image transformations, but in practice, it is not as perfor-

mant as using predefined transformations. TANDA [42]

is the only GAN-based approach that uses predefined

transformations. It defines a large set of transformations

and learns how to combine them to generate new samples

that follow the same distribution as the original data. This

approach is better, but it is still based on the assumption

that the augmented data should follow the same distribution

as the original data. Instead, we argue that data augmen-

tation should improve the performance of the classifier,

independently from the visual similarity of the generated

data.

AutoAugment AutoAugment [9] is a data augmentation

method that learns sequences of transformations that maxi-

mize the classifier accuracy on a validation set. This objec-

tive is better than simply reproducing the same data distribu-

tion as in GAN-based models, as it favors transformations

that generalize well on unseen data. However, it is com-

putationally expensive as it performs the complete bilevel

optimization by training the classifier in the inner loop un-

til convergence for each set of evaluated transformations.

Some solutions to reduce the computational cost are pro-

posed in follow-up works. Fast AutoAugment [29] opti-

mizes the search space by matching the density between the

training set and the augmented data. Alternatively, Popu-

lation Based Augmentation (PBA) [23] focuses on learn-

ing the optimal augmentation schedule rather than only the

transformations. However, even if these approaches reduce

the computational cost of AutoAugment, they do not lever-

age gradient information. Faster AutoAugment [19] does

this by combining AutoAugment with a GAN discriminator

and considering transformations as differentiable functions.

OHL-Auto-Aug [30] uses an online bilevel optimization ap-

proach and the REINFORCE algorithm on an ensemble of

classifiers to estimate the gradient of the validation loss and

learn an augmentation probability distribution. RandAug-

ment [10] goes further by showing that a same performance

level as AutoAugment can be obtained by randomly select-

ing transformations from the predefined pool and just tune

the number of transformations to use and a global (same

for all transformations) magnitude factor. However, this ap-

proach also requires prior knowledge of useful transforma-

tions.
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Hyperarameter Learning Our work has similarities with

techniques used in the hyperparameter optimization field.

Hyperparameters tuning is important to obtain the best

performances when training neural networks on a given

dataset. Classic approaches assume that the learning model

is a black-box and use methods like grid search, random

search [5, 6], Bayesian optimisation [47], or a tree-search

approach [24]. These approaches are simple but expensive

because they repeat the optimization from scratch for each

sampled value of the hyperparameters and so are only ap-

plicable to low dimensional hyper-parameter spaces. A dif-

ferent line of research is to leverage the gradient of these

(continuous) hyperparameters (or hyper-gradients) to per-

form the hyper-optimization. The first work proposing

this idea [3], shows that the implicit function theorem can

be used to this aim. [13] was the first work to propose

a gradient-based method using a bilevel optimization ap-

proach [8] to learn hyperparameters. Using a bilevel opti-

mization approach to train a neural network is challenging,

as usually there is no closed-form expression of the func-

tion learned in the inner loop (Section 3). To address this,

Maclaurin et al. [34] and later Franceschi et al. [15] pro-

posed methods to reverse the forward pass to compute the

gradient of the validation loss. However, these methods are

applicable only when the number of hyperparameters and

the complexity of the models are limited due to the memory

needed to save the intermediate steps. Another approach to

address the computational hurdle in the inner loop is to cal-

culate an approximation of the gradient like in Pedregosa

[40] Luketina et al. [32] or MacKay et al. [33]. Our method

differentiates from those by using truncated back propaga-

tion to estimate the gradient of the validation loss. Finally,

note that hyper-parameter optimization presents some sim-

ilarities to meta learning as shown in Franceschi et al. [16].

For instance, in MAML [14], a shared model initialization

is learned to minimize the validation loss and therefore im-

prove the generalization capabilities of the model.

3. Proposed Data Augmentation Method

Consider a labeled set X := {xi, yi}
N
i=1, where xi is an

input image, yi the associated class label, N the number of

samples and X̂ the set of transformed images. We formu-

late the problem of identifying effective data augmentation

transformations as a bilevel optimization problem. In this

setup, the augmenter Aθ : X → X̂ is parametrized by θ and

is used to minimize the loss L on the validation data Xval

in the outer loop. In the inner loop, the classifier parame-

ters ω are optimized on the training data Xtr in the standard

supervised way. This formulation can be written as:

θ∗ = argmin
θ

L(Xval, ω
∗) (1)

s.t. ω∗ = argmin
ω

L(Aθ(Xtr), ω). (2)

While optimizing a few hyperparameters on the validation

data is feasible with black-box approaches such as grid and

random search [4] or Bayesian optimization [47], it is not

efficient. With bilevel optimization, our aim is to efficiently

learn an entire neural network Aθ (possibly with thousands

of parameters θ) which defines a distribution of transforma-

tions that should be applied on the training data to improve

generalization.

Gradient descent was shown to be an efficient method for

optimizing parameters of large networks. In problems such

as architecture search [31], the parameters can be directly

optimized with gradient descent (or second order methods)

against the training and validation data. However, this is not

the case for data augmentation. The reason is that the trans-

formation network Aθ is optimized to maximize the valida-

tion score, but applies transformations only on the training

set. Therefore, first order methods would not work. The aim

of data augmentation is to introduce transformations during

the training phase that can make the model invariant or par-

tially invariant to any transformations that can occur at test

time. If we optimize the transformation network directly

on the validation data, the model will simply select triv-

ial solutions such as the identity transformation. This ap-

proach has been used for object localization [25] and it did

not improve the model generalization performance as much

as data augmentation. To solve this issue, new methods re-

lied on reinforcement learning instead of gradient descent

to learn effective data augmentation [9, 23, 29].

In this work, we show that in the case of a differentiable

augmenter Aθ, there is a simple, efficient way to find op-

timal data transformations based on gradient descent that

generalize well on validation data. We formulate our prob-

lem as an approximation to bilevel optimization by using

truncated back-propagation as it allows our method to: i)

efficiently estimate a large number of parameters to gener-

ate the optimal data augmentation transformations by gra-

dient descent; ii) obtain an online estimation of the opti-

mal data augmentation during the different phases of the

training, which can also be beneficial [17]; iii) change the

training data to adapt to different validation conditions as in

supervised domain adaptation.

Although approximate bilevel optimization has already

been proposed for hyperparameter optimization [15, 16,

45], in this paper we show that it can be used for training

a large, complex model (the augmenter Aθ network) in or-

der to learn an effective distribution of transformations.

3.1. Approximate Online Bilevel Optimization

As shown in Eq. 1 and 2, the problem of finding the

optimal data augmentation transformations Aθ can be cast

as a bilevel optimization problem. This problem can be

solved by iteratively solving Eq. 2 to find the optimal net-

work weight ω∗, given the parameters of the transformation
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(a) Forward pass. (b) Backward pass.

Figure 2: Computational graph of our model at iteration t = J . K is the number of gradient unfolding steps, and J is

the number of inner loop iterations after which θ gets updated. The case where K=J=T (T being the iteration of the classifier

convergence) is the complete bilevel optimization as in Eq.1 whereas K=J=1 corresponds to updating θ at each mini-batch

(K = 1), suing only one step of gradient unfolding (J = 1).

θ and then updating θ:

θ ← θ − ηθ∇θL(Xval, ω
∗) (3)

where ηθ is the learning rate used to train the augmenter

network.

However, as the augmentations are to be applied only on the

training dataset and not on the validation set, calculating
∂L(Xval,ω

∗)
∂θ

is not trivial. To enable this calculation, we

use the fact that the weights ω of the network are shared

between training and validation data and use the chain rule

to differentiate the validation loss L(Xval, ω
∗) with respect

to the hyperparameters θ. In other words, instead of using

a very slow black-box optimization for θ, we can exploit

gradient information because the model parameters ω∗ are

shared between the validation and the training loss.

We define the gradient of the validation loss with respect to

θ as follows:

∇θL(Xval, ω
∗) =

∂L(Xval, ω
∗)

∂θ

=
∂L(Xval, ω

∗)

∂ω∗

∂ω∗

∂θ

(4)

By defining G(t) as the gradient of the training loss at itera-

tion t:
G(t) = ∇ωL(Aθ(Xtr), ω

t) (5)

we can write ∂ω∗

∂θ
in Eq. 4 as:

∂ω∗

∂θ
=

T−1∑

i=1

∂ω(T )

∂ω(i)

∂ω(i)

∂G(i−1)

∂G(i−1)

∂θ
(6)

where T is the iteration when the classifier converges.

As ω∗ represents the model weights at training conver-

gence, they depend on θ for each iteration of gradient de-

scent. Thus, to compute ∂ω∗

∂θ
, one has to back-propagate

throughout the entire T iterations of the training cycle. An

example of this approach is in Maclaurin et al. [34]. This

approach is feasible only for small problems due to the large

requirements in terms of computation and memory. How-

ever, as optimizing ω∗ is an iterative process, instead of

computing ∂ω
∂θ

only at the end of the training loop, we can

estimate it at every iteration t:

∂ω∗

∂θ
≈

∂ω(t)

∂θ(t)
=

t∑

i=1

∂ω(t)

∂ω(i)

∂ω(i)

∂G(i−1)

∂G(i−1)

∂θ(i)
, (7)

This procedure corresponds to dynamically changing θ dur-

ing the training iterations (thus it becomes θ(t)) to minimize

the current validation loss based on the training history. Al-

though this formulation is different from the original ob-

jective function, adapting the data augmentation transfor-

mations dynamically with the evolution of the training pro-

cess can improve generalization performance [17]. This re-

laxation is often used in constrained optimization for deep

models, in which constraints are reformulated as penalties

and their gradients are updated online, without waiting for

convergence, to save computation [39]. However, in our

case, we cannot write the bilevel optimization as a single

unconstrained formulation in which the constraint in ω∗ is

summed with a multiplicative factor that is maximized (i.e.,

Lagrange multipliers), because the upper level optimization

should be performed only on θ, while the lower level opti-

mization should be performed only on ω. Nonetheless, even

with this relaxation, estimating ∂ω∗

∂θ
still remains a chal-

lenge as it does not scale well. Indeed, the computational

cost of computing ∂ω(t)

∂θ(t) grows with the number of iterations

t as shown in Eq. 7. To make the gradient computation con-
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stant at each iteration we use truncated back-propagation

similarly to what is commonly used in recurrent neural net-

works [51]:

∂ω(t)

∂θ̂
≈

t∑

i=t−K

∂ω(t)

∂ω(i)

∂ω(i)

∂G(i−1)

∂G(i−1)

∂θ(i)
, (8)

where K represents the number of gradient unfolding that

we use. Fig. 2b. shows the computational graph used for

this computation.

Additionally, as Williams and Peng [51], we consider a sec-

ond parameter J which defines the number of inner loop

training iterations after which θ is updated, in other words

how often the computation of the gradients of θ is per-

formed. The situation where K = J = T is the exact

bilevel optimization as shown in Eq. 1 while K = J = 1
corresponds to updating θ at each iteration, in our case mini-

batch (K = 1), using only one step of gradient unfolding

(J = 1). A theoretical analysis of the convergence of this

approach is presented in Shaban et al. [45].

3.2. Augmenter Networks

We present augmenter networks that can perform two

types of transformations: geometrical and color.

Geometrical transformation is a good form of data aug-

mentation, because it simulates the fact that in the real world

the same object can be located at multiple positions and

seen from different viewpoints. We use the transforma-

tion model of spatial transformer networks [25], but for data

augmentation instead of data alignment. Thus, as illustrated

in Fig. 1, the augmenter is composed of a module that gener-

ates a set of transformation parameters followed by a mod-

ule that applies the generated transformation to the original

image. In our experiments, we consider scenarios where

the augmenter network learn affine transformations as well

as scenarios where it learns only translation. In this case,

only two values are learned (translation values respectively

on x and y axis). Note that the learned transformations are

not conditioned on the input image but defined only based

on random noise.

Color transformations considered are: hue, saturation, con-

trast and brightness. In this case, the augmenter receives

as input a random noise vector and generate a single value

representing the amplitude of each color transformation.

4. Experimental Setup

4.1. Datasets

In our experiments, we consider the five following

datasets:

CIFAR10 [27] is a dataset composed of 60,000 32x32 nat-

ural color images distributed in 10 different classes (6,000

images per class). This dataset is split into a training set of

50,000 images and a test set of 10,000 images.

CIFAR100 [27] is an extension of CIFAR10 dataset. It con-

tains the same number of images at the same resolution, but

they are distributed in 100 classes instead of 10.

ImageNet [44] is a dataset of 1.28 million natural color im-

ages in the training set and 50,000 images in the test set.

The image size is variable, so in our experiments, we resize

them to a resolution of 224x224.

Tiny ImageNet is a subset of ImageNet [44] containing 200

classes and images resized to 64x64. Each class has 500

training images, 50 validation images, and 50 test images.

Since the test labels are not available, the validation set is

used as test set and 20% of the training set is used for vali-

dation.

Finally, BACH [2] is a dataset of 400 breast cancer histol-

ogy images of resolution 2048 x 1536 distributed in 4 bal-

anced classes of 100 images. As there is no test set publicly

available, we use in our experiments 50% of the dataset for

training and validation and 50% for test.

4.2. Implementation Details

Our model is composed of a classifier and an augmenter

network. To facilitate fair comparison of the results, we use

in our experiments the same classifiers as in previous works:

BadGAN [11], ResNet18 [20], ResNet50 [20] and Wide-

ResNet-28-10 [52]. BadGAN is a simple CNN based archi-

tecture composed of 9 convolutional layers with Leaky Re-

LUs and a MLP classifier. ResNet18 and ResNet50 are re-

spectively 18 and 50 layers deep neural network with resid-

ual connections and WideResNet 28-10 is a ResNet network

with 28 layers and a width factor of 10.

The augmenter learning the geometric and color trans-

formations is a MLP that receives a noise vector as input and

generates the transformation parameters. We experimented

with three sizes. The small network has an input and output

size of n, n being the number of hyperparameters to opti-

mize (6 for affine transformations, 2 for translation and 1

for each color transformations), and it has two layers with

respectively n and 10n neurons. The medium one has an

input size of 100 and two layers of 64 and 32 neurons. The

large one has an input size of 100 and four layers of 512,

1024, 124 and 512 neurons. In order to have differentiable

affine and color transformations, we use the Kornia [43] li-

brary and the affine grid and grid samples functions of the

torchvision package of pytorch framework.

In all experiments, we use 20% of the training set to form

the validation set. Although in principle we usually use a

separate validation set for training the augmenter, in prac-

tice, we noticed that reusing the training data in a variant

of this holdout approach (the training set is randomly split

into train and validation at each epoch) yields better results.

However, it is important that the batch of samples used to

learn the augmenter is different from the one used to train

the classifier to ensure that the model learns data augmenta-

tion parameters that generalize well. In preliminary experi-

ments, we tried different values for the frequency of updat-
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ResNet18 / CIFAR10 Trans. Affine Cost

Baseline 88.55 88.55 1

Predefined 95.28 94.59 > 60
Transf. invariant (STN) 92.14 90.31 1.1

Validated magnitude 94.58 93.43 11.5

Our model + HFlip 95.35 95.16 5.3

Table 1: Impact and training cost of different geometric

data augmentation strategies on classification accuracy

on CIFAR10. Considering only translation and affine trans-

formations, our approach is faster than methods requiring a

validation loop and is more efficient than predefined data

augmentation, STN and validated magnitude of predefined

data augmentation.

ing θ J and the number of steps of back-propagation K, but

they did not show relevant improvements. Therefore, for

all our experiments, we use K = J = 1. In practice, the

classifier is updated after each training mini-batch and the

augmenter after each validation mini-batch. The only pre-

defined transformation used by our model is the horizontal

flip (vertical for BACH) as it is not differentiable.

5. Results

The goal of our method is to learn data augmentation au-

tomatically. Our experiments compare the performance of

different classifiers without data augmentation (baselines),

the same classifiers with the best-known hyperparameters

for data augmentation (predefined), state of the art methods

and our method. We experiment with two groups of trans-

formations: geometric and color transformations.

5.1. Geometric Transformations

In this section, we evaluate our model by investigating

learned geometric transformations.

In a first experiment, we assess the computational effi-

ciency of our method and the utility of the learned geomet-

ric transformations for the classification task. In Tab. 1 we

compare the performance of our method on CIFAR10 (with

ResNet18) against several methods in terms of accuracy and

training cost for translation and affine transformations. We

define our baseline as a training without any data augmen-

tation and we consider its training time cost as 1. Prede-

fined represents a classifier trained with the usual standard

geometric data augmentation: horizontal flip and random

translation between -4 and 4 pixels along x and y axis. To

estimate the training cost of this scenario, we consider the

general case where the best data augmentation setting is not

known and many different values have to be tested using

a grid or random search. For instance, for the 6 parame-

ters of an affine transformation, and 2 different values to

try for each parameter, the number of models to validate is

26 = 64. In the third case, the augmenter is trained to be

transformation invariant similarly to the spatial transformer

networks [25]. The transformations generated by the aug-

CIFAR-10 BadGAN ResNet18

Aug.-Class. Tr. Aff. Tr. Aff.

Small 93.65 93.62 95.35 95.16

Medium 93.75 93.63 95.25 95.06

Large 93.65 93.39 95.00 94.83

Table 2: Impact of architecture on classification accu-

racy. Increasing the classifier size improves the model per-

formance. Increasing the augmenter size has no significant

impact on the final classification accuracy.

menter are applied on training as well as on test and the up-

date of the augmenter parameters θ is done on the same data

as the update of the classifier parameters ω. This approach

has a very low computational cost (1.1, just the overhead

of applying the augmenter) and its accuracy is better than

using no data augmentation, but far from a model trained

with a good data augmentation. Finally, we consider a vali-

dated magnitude approach that selects only a single param-

eter defining the magnitude of the transformation parame-

ters from which an actual transformation is sampled from.

This is similar to the strategy used in RandAugment [10].

This performs surprisingly well but is still inferior to our

model and with a higher cost for validating the magnitude

of the transformations. The last row presents the results of

our approach. For both translation only and affine transfor-

mations, we obtain better results than the other approaches.

In terms of computational cost, our approach is around 5
times slower than a basic training without data augmenta-

tion. However, as our approach learns the data augmen-

tation parameters directly and does not need to loop over

possible values, it is already 14x faster than the simple case

of predefined data augmentation described above where we

consider only 2 possible values for each parameter.

In a second experiment, we investigate the influence of

the augmenter network and the classifier size on the perfor-

mance of a model trained on CIFAR10. In Tab. 2, results

show that a larger classifier (from BadGAN to ResNet18)

improves the performance. However, the size of the aug-

menter network does not have a significant impact on the

accuracy of the classifier. Thus, in the following experi-

ments, we use the small augmenter, which is faster to train.

In a third experiment, we investigate the efficiency of

learned transformations against heuristically chosen ones.

For this, we consider the medical imaging dataset BACH, as

possibly useful data augmentation for histological images is

not trivial to define as opposed to natural images. The usual

heuristically chosen geometric transformations for medical

images are vertical flip and affine transformations. In Tab. 3,

we compare our model learning affine transformations to a

baseline trained without data augmentation, with vertical

flip only and finally with vertical flip and predefined affine

transformations: random translation between -4 and 4 pix-

els along x and y axis, random scale with factor between

0.5 and 2 and rotation between -10 and 10 degrees. Results
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ResNet18 / BACH Acc.

Baseline 49.50

Baseline + only VFlip 46.00

Baseline + VFlip + Affine 50.60

Our model(affine) + VFlip 56.00

Table 3: Impact of geometric data augmentation on

classification accuracy on BACH. Vertical flip alone de-

creases the model performance. Used in combination with

affine transformations, it improves the classification accu-

racy. Best performances are obtained using learned affine

transformations.

ResNet18 / CIFAR10 Acc.

Baseline 88.55

Baseline + Color Jitter 88.63

Baseline + Affine + HFlip 94.59

Baseline + Affine + Color Jitter + HFlip 94.96

Our model(color) 94.18

Our model(color) + Color Jitter 94.63

Our model(affine + color) + HFlip 95.16

Our model(affine + color) + HFlip + Color Jitter 95.18

Table 4: Impact of color and affine transformations on

classification accuracy on CIFAR10. Transformations in

parentheses are learned, others are predefined. For this

dataset, both color and affine transformations improve the

classification accuracy. Best performances are obtained

with a combination of transformations of both types.

show that only using vertical flip, which is a common trans-

formation in medical imaging is reducing the performance

of the classifier whereas using a broader range of affine

transformations is yielding a better model performance than

using no augmentation. Our model, using only vertical flip

as predefined augmentation, obtains a much better final ac-

curacy, which shows that the learned transformations are

more useful for the classifier than the hand defined ones.

5.2. Color Transformations

In this section, we investigate the impact of color trans-

formations alone and in combination with affine transfor-

mations on different datasets.

In a first experiment, we study color transformations

alone and in combination with affine transformations on CI-

FAR10. For the predefined color jitter, we use the same set-

tings as [9]. We consider 2 versions of our model, the first

one learning only color transformations and the second one

learning color and affine transformations. In Tab. 4, we can

see that in both cases, the learned transformations are yield-

ing better results than predefined ones, which illustrates the

efficiency of our approach for color transformations. The

best results are obtained when combining color and affine

transformations.

In a second experiment, we repeat the same protocol as

in the previous experiment but on the BACH dataset. As

there is no usual color jitter value for this dataset, we use

the same default setting as for CIFAR10. In Tab. 5, we can

ResNet18 / BACH Acc.

Baseline 49.50

Baseline + Color Jitter 43.90

Baseline + VFlip 46.00

Baseline + VFlip + Color Jitter 44.90

Baseline + Affine + VFlip 50.60

Baseline + Affine + VFlip + Color Jitter 43.00

Our model(color) 54.60

Our model(color) + Color Jitter 52.40

Our model(affine + color) + VFlip 56.50

Our model(affine + color) + VFlip + Color Jitter 49.70

Table 5: Impact of color and affine transformations

on classification accuracy on BACH. Transformations in

parentheses are learned, others are predefined. Heuristically

chosen color jitter parameters have a negative impact on the

classifier accuracy whereas learned color transformations

improve the training. Best performances are obtained with

a combination of learned color and affine transformations.

Figure 3: Qualitative results. The images of the first col-

umn are original images, the following ones are images

transformed by our augmenter at different epochs. The first

three rows contain images from Tiny ImageNet, the next

two rows from BACH, and the last two rows from Ima-

geNet.

see that using a heuristically chosen color jitter in the pre-

defined data augmentation leads to a significant degradation

of the classifier performance. This confirms that a good data

augmentation strategy in one domain is not always transfer-

able to another and that it is safer to let the model learn the

optimal transformations. This also shows that for histolog-

ical images, classifiers are very sensitive to color modifica-

tions. Best results are obtained by learning a combination

of color and affine transformations.
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CIFAR10 CIFAR100 Tiny ImageNet ImageNet BACH

ResNet18 ResNet18 ResNet18 ResNet50 ResNet18

Baseline 88.55 68.99 59.69 69.39 49.5

Predefined 94.69 73.61 61.10 76.02 50.6

Ours (affine) 95.16 74.31 62.92 76.10 55,7

Ours (full) 95.42 76.10 63.61 76.20 56.5

Table 6: Accuracy of our model on different datasets.

ImageNet results reported are Top1. For all datasets, our

model performs better than a classifier trained only with

standard predefined data augmentation.

5.3. Evaluation on Different Datasets

We now evaluate our approach on different datasets. In

addition to the CIFAR10 and BACH results, we report in

Tab. 6 also results on CIFAR100, Tiny ImageNet and Im-

ageNet. Predefined transformations used for CIFAR100

and Tiny Imagenet are the same as defined for CIFAR10

in 3.2. Predefined transformations for Imagenet are a resize

to 256x256 followed by a random crop of size 224x224,

horizontal flip and color transformations as in [20] . Results

show that our model performs better than a classifier trained

only with predefined transformations on the five datasets

considered already with learned Affine transformations, but

performances are even better when adding color transfor-

mations (Full). This shows that our approach can be applied

to datasets with different characteristics. Note that it is suit-

able not only for large scale datasets like ImageNet, but also

for high resolution images like in BACH (2048x1536).

5.4. Comparison with SotA Methods

In Tab. 7, we compare our model to state-of-the-art meth-

ods on CIFAR10, CIFAR100 and ImageNet. Predefined

transformations are the same as described in 5.3. Results

show that on CIFAR10 and using ResNet18 as classifier,

our method obtains a better accuracy than GAN-based auto-

matic data augmentation learning methods. AutoAugment

has a slightly better accuracy, but note that our model ob-

tains very close results with a smaller network. On bigger

networks like Wide ResNet 28-10 and ResNet 50, our ap-

proach performs very close to search-based methods. The

performance gap is explained by the fact that the search-

based methods are using more transformations, in particular

non-differentiable transformations, to train the end classi-

fier. On the other end, our model requires less prior knowl-

edge as it does not require to define a list of possible trans-

formation and to perform an additional loop to learn the

best augmentation policy from this predefined list. Con-

sidering this, it represents an interesting trade-off between

training speed and accuracy, especially for datasets where

potentially useful augmentations are not trivial to define.

On Fig. 3, we show some examples of transformations

learned during the training process. The first 3 rows show

examples on Tiny ImageNet. What is interesting to note

is that at the beginning of the training (left) transforma-

tions tend to be strong, while towards the end of the training

Classifier CIFAR10 CIFAR100 ImageNet

Baseline ResNet18 88.55 68.99 -

Predefined ResNet18 91.18 73.61 -

Bayesian DA [50] ResNet18 91.00 72.10 -

DAN [36] BadGAN 93.00 - -

TANDA [42] ResNet56 94.40 - -

AutoAugment [9] ResNet32 95.50 - -

Ours ResNet18 95.42 74.31 -

Baseline WRN 28-10 94.83 69.90 -

Predefined WRN 28-10 95.76 81.10 -

AutoAugment WRN 28-10 97.40 82.90 -

Fast AA WRN 28-10 97.30 82.70 -

PBA WRN 28-10 97.40 83.30 -

RandAugment WRN 28-10 97.30 83.30 -

Our model WRN 28-10 96.44 81.90 -

Baseline ResNet50 - - 69.39/89.41

Predefined ResNet50 - - 76.02/92.84

Faster AA ResNet50 - - 76.50/93.20

AutoAugment ResNet50 - - 77.60/93.80

Fast AA ResNet50 - - 77.60/93.70

RandAugment ResNet50 - - 77.60/93.80

Our model ResNet50 - - 76.20/92.90

Table 7: Comparison with other models. ImageNet re-

sults reported are Top1/Top5. Our model based on affine

and color transformations outperforms previous GAN-

based models and performs at a level very close to search-

based approaches. Those approaches perform better by con-

sidering also non-differentiable transformations but our ap-

proach requires less prior knowledge and no policy search

loop, which makes it easier to train and more suitable for

datasets where predefining data augmentation is not trivial.

(right) they are smaller and tend to approach identity. This

behavior can also be seen during training on BACH (row 4

and 5) and ImageNet (row 6 and 7).

6. Conclusion

We have presented a novel approach to automatically

learn the transformations needed for effective data augmen-

tation. It is based on an online approximation of the bilevel

optimization problem defined by alternating between opti-

mizing the model parameters and the data augmentation hy-

perparameters. Thus, we can train the classifier network and

an augmenter network jointly to generate the right trans-

formations at every epoch. We evaluated the proposed ap-

proach with different models against a variety of datasets

and transformations. The obtained results were compara-

ble or better than the results obtained from defining hand-

engineered transformations. This approach brings us a step

closer to having a fully automated learning system that re-

quires minimal human intervention.
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