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Abstract

In many domains, large image collections are key ways

in which information about relevant phenomena is retained

and analyzed, yet it remains challenging to use such data in

research and practice. Our aim is to investigate this prob-

lem in the context of a forensic unlabeled dataset of over

1M human decomposition photos. To make this collection

usable by experts, various body parts first need to be iden-

tified and traced through their evolution despite their dis-

tinct appearances at different stages of decay from “fresh”

to “skeletonized”. We developed an unsupervised tech-

nique for clustering images that builds sequences of sim-

ilar images representing the evolution of each body part

through stages of decomposition. Evaluation of our method

on 34,476 human decomposition images shows that our

method significantly outperforms the state of the art clus-

tering method in this application.

1. Introduction

Evolving images with conceptual likeness when the

similarity is declining over time are not uncommon, yet

such data confounds clustering approaches that rely on mea-

sures of image similarity as the early stages of the same con-

ceptual object may bear no visual resemblance to the late

stages. In the case of human decomposition, a hand appears

very different in the fresh stage compared to when it is de-

cayed (Figure 1). Supervised techniques might fare better

in such situations, but the creation of the labels may have

prohibitive costs exacerbated by the inability to do crowd-

sourcing when domain experts (as in our case forensic an-

thropologists) may be scarce.

This paper introduces a technique for clustering evolving

images in the context of human decomposition data. Specif-

ically, the goal of this work is to jointly cluster body parts

and decomposition stages within subjects and to trace them

Code available at https://github.com/saramsv/SChISM.

through their decay process, which spans from “fresh” to

“skeletal”. Such an unsupervised approach, if successful,

would reduce the manual labeling task required to extract

domain specific features needed for key forensic tasks such

as time of death estimation and, more generally, human de-

composition research and analysis [22, 23].

The key point of clustering is to segment a large col-

lection of observations into a smaller set of groups of sim-

ilar observations, which can help in understanding large

datasets. Traditionally, clustering methods group images

based on the similarity of features extracted from them.

With adequate feature representations, image clustering

methods have achieved good results [7, 12, 13, 19] on pop-

ular image datasets such as ImageNet, MNIST, COIL100,

and VOC2007 [8, 9, 26, 11]. Guérin et al. [13] used pre-

trained CNNs on common datasets such as ImageNet to

map images to feature representations and then clustered

them. Other unsupervised frameworks introduce clustering

losses to jointly learn ConvNet features and image clusters

in an end-to-end manner [3, 10, 18, 32, 34, 4]. However,

we are not aware of any work that clusters image datasets

with evolving content based on their semantic similarity in

an unsupervised fashion.

In human decomposition data, although images repre-

senting same objects may change only slightly from one

time to the next, these small changes accumulate over a long

observation period, making the first image look completely

unlike the last one. Our approach to address this problem is

to use a sliding window technique inspired by data stream

clustering [1] along with feature representations extracted

from pre-trained CNNs [13, 27]. First, we create small se-

quences, that we call snippets, of similar images by maxi-

mizing similarities within a sliding window and then stitch-

ing these snippets to effectively capture the evolution of the

objects based on overlaps and a dynamic inclusion crite-

ria. This stitching results in sequences where images of the

same sequence represent the same object (body part) and

captures all stages of decomposition from fresh to skeletal.

These sequences are essentially clusters of images with a
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Figure 1: Image examples of two classes, foot and hand, are

shown in early (left) and late (right) decomposition stages

temporal attribute. We refer to our method SChISM as Se-

mantic Clustering via Image Sequence Merging.

To evaluate our method, since to our knowledge there

is no other work tackling the same or closely similar prob-

lem, we compared SChISM with two works that have re-

ported to outperform other unsupervised clustering meth-

ods. First is a pre-trained CNN-based image clustering tech-

nique [13] which does not involve any model training. The

second technique is DeepCluster [4] which is the state of

the art clustering based on unsupervised visual represen-

tation learning. We use the general clustering metric, pu-

rity [20] for comparison. We also introduce new goodness-

of-fit metrics that are more suitable for datasets with evolv-

ing content in Section 4.2.

In addition to above comparisons, we also tested

SChISM on a collection of mugshot photos called

MORPH [25] that contains mugshots of different individ-

uals over time (ranging from a few days to a few years

apart). This dataset has similar characteristics to the de-

composition dataset, where the goal is to trace and recog-

nize faces as they age. Results show that SChISM is capa-

ble of clustering images with 92.30% purity in the human-

decomposition data whereas the pre-trained CNN-based im-

age clustering and a trained version of DeepCluster resulted

in 83.50% and 85.99% purity respectively while all three

methods were set to generate the same number of clusters.

In addition, clustering the mugshots using SChISM resulted

in 99.88% purity for 11 subjects in 15 clusters.

In the rest of this paper, we briefly survey related work

in Section 2. We then describe the details of our method in

Section 3. Section 4 describes the datasets used in this work

to evaluate SChISM, our evaluation technique, and results.

We then conclude the paper with a conclusion in Section 5.

2. Related work

An evolving dataset, for instance images of human de-

composition, can be clustered based on stages of evolution,

such as the decomposition state or based on the conceptual

object depicted in the image, such as the body part. Multi-

ple Clustering methods have emerged as a result of seeking

alternative clusterings that group a given dataset into clus-

ters that exhibit different aspects of similarity. The works

in [2, 24, 35] build clusters based on dissimilarity and the

quality of the clusters, by forcing new clusters to be dif-

ferent than existing ones. In the meta-clustering method

presented in [5], several alternative clusterings are found

so that users can decide what set of clusters fit their need

best. Similarly in [17], authors find multiple clusterings by

minimizing the correlation between them through an objec-

tive function. In [6], alternative clusterings are obtained by

maximizing the likelihood of each of the alternative cluster-

ings over the data, while minimizing the similarity between

them.

In all of these methods, each set of clusters is based on

a single criterion. In our case however, we aim to jointly

cluster the data based on two criteria: the concept of a body

part and the concept of the decomposition stage.

Multi-view clustering emerged from attempts to cluster

objects based on their semantic and conceptual similarities

even though they might have different appearance [33, 15].

Although it might seem that we can map our problem to

multi-view clustering by considering body parts as classes

and different camera positions as the views, there is a funda-

mental difference that makes multi-view methods less suit-

able for the end goal of our work. In our case, clusters that

include images of the same object with multiple views also

evolve over time due to decomposition. Thus, the same

view of the same body part appears differently depending

on the stage of the decomposition.

Recent work has explored the combination of image

clustering and deep representation learning [21, 29, 13].

Guérin et al. [13] studied the effect of using feature repre-

sentations obtained from pre-trained CNNs on image clus-

tering and showed that using feature representations gener-

ated using such networks results in better quality clusters.

Other works [34, 30, 4, 4] present end-to-end methods

for unsupervised feature representation learning of images.

Yang et al. proposed a recurrent framework for joint unsu-

pervised learning of deep representations and image clusters

by leveraging the fact that good representations are benefi-

cial to image clustering which can be used to supervise the

representation learning process [34]. In another work [30],

authors trained a task-specific deep architecture for cluster-

ing. In DeepCluster, Caron et al. [4] present an end-to-end

method that consists of a collaboration between clustering

and classification for feature representation learning in large

scale datasets in an unsupervised manner. In our work, we
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utilize deep learning representations as in the above. How-

ever, these methods cannot address the implicit constraints

imposed by, for example, temporally evolving objects such

as the process of human decomposition alone.

Our method is partially inspired by techniques in the area

of data stream clustering, which is used to monitor, for ex-

ample, urban traffic and live update of stock trading. Stream

clustering deals with large amounts of data that cannot be

stored in memory and thus random access is not possible.

Algorithms used for this purpose handle the evolution and

changes in the number of clusters as new batches of data

come in. One common approach in stream clustering is to

use a sliding window, introduced by Aggarwal et. al [1], to

keep track of how cluster centers change as new data points

are streamed into the algorithm. Aggarwal et. al [1] used

a sliding window instead of one-pass clustering to provide

a better understanding of evolving behavior of the clusters.

Several other methods [16, 36] have been built on this idea

to improve the efficiency and accuracy of stream clustering.

However, the problem that we are tackling in this work

cannot be directly mapped to stream clustering. In the case

of evolving objects, not only does the number of clusters

vary from one observation to another, but also the over-

all object representations change dramatically through time.

However, inspired by past works, we use a sliding window

along with a dynamic inclusion criteria to build a sequence

of evolving images belonging to the same class.

3. Method

The goal of our method is to group large collections of

unlabeled but semantically-related images. Even though

semantically-related, the images may have distinct appear-

ances due to, for example, evolution over time or represent-

ing different context. We further assume that we have par-

tial metadata such as the timestep for each image and some

implicit constraints such as the presence of images for some

semantic concepts at each timestep.

First, we want to emphasize that such situations are not

uncommon in cases where the image collection is subject to

certain rules or protocol. Second, we would like to leverage

the semantic relationships and implicit constraints to pro-

duce a fully unsupervised clustering algorithm that is ca-

pable of using these constraints to produce more accurate

semantic clusters. Conceptually, our approach can be de-

scribed as a penalized optimization problem where we op-

timize for the visual similarity of images within groups but

penalize for the violation of the implicit constraints.

In the case of our dataset, the context metadata includes

the subject and timestep. Each body part represents a dis-

tinct semantic concept. Decomposition makes the images

of the same body part look different over time and our im-

plicit constraints are defined by the data collection protocol

that requires images of each body part at each observation.

We do not, however, have body-part labels in our metadata.

While image similarity can easily group each body part

into a single cluster for a specific short duration in time

where the state of decomposition is the same, similarity

breaks down over longer periods. To address this, we pe-

nalize sequences representing short timespans or sequences

with long time gaps. In essence, we aim to minimize the

loss function of the following kind:

loss =
1

|S|
(

|S|∑

k=1

(1− (

|Sk|∑

j=1

|Sk|∑

i=1

Sim(xi, xj))) +
1

|Sk|
) (1)

where S denotes the generated sequences, Sk is the k-th se-

quence, |S| is the total number of sequences and |Sk| is the

total number of images in the k-th sequences, and xi is the

i-th image in a given sequence. The entire parameter search

space is extremely large as there are 9 different classes for

which images have to be clustered per timestep and then se-

quenced through 50 timesteps on average for each subject,

for a total of 500 subjects (million images). To make this

search feasible, we break it into two stages: 1) grouping of

images into short sequences (snippets) that maximizes the

similarity within that snippet, and 2) stitching the snippets

into longer sequences (final clusters) with minimal gaps.

In the remainder of the paper we use the term snippets to

refer to partially constructed semantic clusters and use the

term stitching to denote the process of iteratively enlarging

these incomplete semantic clusters via semantic similarity.

We use this terminology to highlight the difference between

the merging of images into clusters based on image similar-

ity and based on semantic similarity as specified in the loss

function above. The two terms were chosen to indicate that

semantic similarity concerns the challenge of constructing

contiguous time sequences of the semantic concepts.

Our method consists of three main steps, shown in Fig-

ure 2. First, we generate feature representations from input

images using a CNN model pre-trained on ImageNet [8]

(Section 3.1). Second, we group images into snippets (Sec-

tion 3.2), and finally, we stitch similar snippets together to

form long sequences (Section 3.3). In the following, the

details of each step are provided.

3.1. Producing Image Features

In evolving image data such as images of human decom-

position, each timestep has a group of images, subsets of

which belong to various classes. We denote these images

by imgti ∈ N , where t ∈ {1, 2, · · · , T}, i ∈ {1, 2, · · · ,m}
for T timesteps and m images per timestep, and N repre-

sents the set of all images. Note that the number of classes

in each timestep is less than or equal to m since multiple

images in each timestep may belong to the same class.

The first step in our method is to extract from each image

feature representations that are used to capture image char-

acteristics and serve as a basis for comparisons. For this,
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Figure 2: The overall architecture of our proposed method is shown. Step 1: Input images are mapped to feature vectors.

Step 2: The neighboring feature vectors, are then compared to each other and snippets of similar images are created. We

use a sliding window on the timesteps to find the neighboring feature vectors (shown in Figure 3). Step 3: Snippets are then

stitched together to form longer sequences that capture the entire evolution of objects.

we feed the images into a pre-trained CNN model exclud-

ing the last fully-connected and softmax layers. In this work

we used ResNet50 [14]. Other CNNs such as Inception [28]

may also be used. The resulting features are then stored as

feature vectors for each input image. In the case of using

ResNet, each vector has a length of 2048. We denote the

feature representation for image i from timestep t as Rti.

Inspired by Caron et al. [4], we reduce the length of these

representations to 256 using Principle Component Analy-

sis [31] to improve the overall run-time of our method.

3.2. Window­based Sequencing

In the decomposition data, typically there are one or

more images representing the same class at each timestep.

Additionally, the same decomposition stage may corre-

spond to multiple consecutive timesteps and the time span

may vary for different body parts. For example, the first and

last 3 timesteps might represent fresh and skeletal stages re-

spectively. As a result, there is often more image level sim-

ilarity within the images of the same decomposition stage

rather than across stages, which makes it a challenge to find

and trace all stages of decay for a specific class without con-

fusing it with other classes.

SChISM leverages the fact that images from neighbor-

ing timesteps are more similar to one another in terms of

their local features than those from more distant timesteps.

We use this constraint in our data to reduce the size of our

search space and create sequences of similar images from

the same class over time. Given a series of consecutive

timesteps T , we define a sliding window W . Each image

representation Rti in W is compared to all of the images

within the window except for the images of its correspond-

ing timestep (Figure 3). If the similarity between Rti and

another image Rt′j where t′ ∈ W and t′ 6= t, is greater

than a threshold, Rt′j is added to the short sequence (snip-

pet) that Rti is a member of. If such a snippet does not exist,

it is created with the two images included.

Figure 3: Each image in timestep t is compared to all im-

ages in other timesteps within the boundary of the sliding

window W . After comparing all images of t, the sliding

window is moved forward by one timestep.

When image classes change over time, the level of sim-

ilarity between images of the same classes may vary de-

pending on the timesteps and the state of the decomposition.

Therefore, if a constant threshold is used to decide if an im-

age should or should not be added to a snippet, classes may

be miss-linked. We use a dynamic threshold to overcome

the varying similarities. The threshold is set to

max(α× Simmax(Rti, Rt′), β) (2)

where α and β are constant values. This process results in a

series of snippets in which images that have the most sim-

ilarity throughout time are connected, essentially grouping

an image class along with its evolution. For image com-

parison, any two vectors, Rti and Rt′j , are compared using

cosine similarity as

Similarity(Rti, Rt′j) =
Rti.Rt′j

‖Rti‖ . ‖Rt′j‖
. (3)
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3.3. Stitching Short Sequences

Due to the possibility of having multiple images for each

class at any given timestep, the resulting snippets may have

image or time overlaps. To maximize the length of final

sequences for each class, we use three levels of stitching.

First, we stitch snippets that share one or more images.

We call this image-overlap stitching.

Second, we stitch snippets with temporal overlaps pro-

vided that their similarity is above a constant threshold. To

do so, we sort the images in each snippet based on their cor-

responding timesteps and find snippets that have time over-

laps. For each pair of snippets, we set the one that starts with

images from earlier timesteps as the first and the other one

as the second. The tail of the first snippet is compared with

the head of the second. The comparison is done by mea-

suring the cosine similarity between every two image pair

in the time overlap. If the average similarity of the over-

lap is greater than η, the two snippets are stitched together

to form a longer sequence. Note that η < β. While this

gives a second chance to stitch snippets of the same class

that have not yet been grouped together using the moving

window, reducing β does not have the same effect. That is

because β considers inter-image similarity, while η consid-

ers inter-snippet similarity.

Third, we attempt at stitching snippets with the goal of

filling the gaps that we do not expect them to have based

on implicit constraints on the data, namely knowledge of

the possible timesteps that exist in the data for a particular

subject. To this end, each snippet is only compared against

snippets of images that have time intersection with the miss-

ing timesteps in the current snippet. The comparison is done

using cosine similarity between the average feature vectors

of the two compared snippets. The snippets with the highest

similarity are then stitched together.

4. Experimental Setup

In order to evaluate SChISM, we used images depicting

human decomposition as our primary dataset as well as the

MORPH dataset. Both datasets are described in Section 4.1.

In section 4.2, evaluation metrics are provided. The clus-

ter evaluation process and interface are described in Section

4.3. Finally, we present the results in Section 4.4.

4.1. Datasets

4.1.1 Human Decomposition Dataset

This image collection consists of one million photos taken

of decomposing humans donated to the Forensic Anthropol-

ogy Center in an 8-year period. These subjects are placed

into what is known as the “Body Farm” where the different

stages of decomposition are studied. The photos are taken

periodically from various angles to capture different stages

of body decomposition.

The images are taken daily and stored based on an ID

associated with the subject and the date of the photograph.

The photographer has a protocol to follow, so that all por-

tions of the body are captured. However, due to different

body placement positions and the changing of photogra-

phers over the years, the content of the photos is always

changing and difficult to predict.

The main classes in this dataset are arm, hand, leg, foot,

full body, torso, backside, head, plastic (which covers the

body in some pictures), and stake (subject identifier). The

number of images taken from the bodies for each day varies.

While on average, 36 photos were taken each day, the min-

imum number of photos was 1 and the maximum was 358.

Additionally, the number of days that each body is kept in

the “Body Farm” varies for different subjects depending on

how fast they decay.

4.1.2 MORPH Dataset

The MORPH dataset [25] contains mugshots collected over

a span of 5 years with images of the same subject taken in

real world conditions and not in controlled environments.

The dataset also contains metadata in the form of age, gen-

der, and race. The dataset has 55, 134 images of 13, 618
subjects. Having information about the age of the subjects

for any given mugshot, we created a similar condition to our

dataset by considering the age as the timestep concept.

4.2. Metrics

The goal of our method is to group images from the

same body parts together, even-though they may look dif-

ferent due to decay, such that the inclusion of images of the

same body part from all possible consecutive timesteps in

the same cluster is maximized while the gaps in each clus-

ter are minimized.

To evaluate the clusters produced by SChISM, we use

the purity metric [20] which is defined as the ratio of cor-

rectly clustered images with respect to the dominant class

in clusters, to the size of the clusters as in the following:

Purityclass =

∑#clusters

c=1 Cc −Mc∑#clusters

c=1 Cc

(4)

where C is the set of clusters for the given class and M is

the number of misclustered images. However, because pu-

rity increases with an increase in the number of clusters, it

cannot assess the quality of clusters with evolving contents

alone. Therefore, we also define three new metrics namely

1) gap, 2) number of essential clusters, and 3) inclusion.

Gap is defined as the number of missing images cor-

responding to consecutive timesteps in each cluster. For

example, if a subject is photographed over 10 sessions,

the corresponding timesteps are {t1, t2, · · · , t10}. For
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a given body part of the same subject if it is pho-

tographed in every session, the ideal scenario for the re-

sulting cluster should include images corresponding to all

timesteps. If the timesteps captured in the cluster are

{0, 0, 1, 1, 0, 1, 1, 1, 1, 0} (1 if there is an image correspond-

ing to the timestep in the cluster, 0 otherwise), the gap sizes

are {2, 1, 1} (the total gap for the cluster is 4) and the size

of the snippets are {2, 4} (total length of the sequence is 6).

The smaller the total gap values are the better the clusters

are, in terms of tracing decomposition.

Clustering may result in multiple clusters for each class.

To identify the most relevant clusters for each class, we de-

fine the essential-cluster metric, which is the number of

non-subset clusters produced for a given class. As an ex-

ample for an essential cluster, if clusters C1 and C2 in-

clude images for the same class corresponding to timesteps

{t1, t2, t4, t5, t6} and {t5, t6} respectively, C1 is considered

as an essential cluster rather than C2, since C2 is a subset

of C1. The lower the number of essential clusters for each

body part (class) the better the performance of the cluster-

ing method is. In another word, the ideal scenario for each

body part is to have one single cluster that includes images

for all timesteps. Note that this evaluation metric can only

be calculated with known class labels.

Inclusion is defined as the total number of timesteps in-

cluded in the essential clusters for each body part. In other

words, it indicates how many timesteps for each class are

captured within essential clusters.

4.3. Cluster Evaluation

The human decomposition dataset is not labeled. In or-

der to evaluate the performance of SChISM, we labeled a

subset of the dataset to be used as test data. We developed

a web interface to facilitate the labeling process and visual

evaluation. Using the interface, one can label the cluster

with a class name as well as selecting images that are incor-

rectly assigned to a given cluster with respect to the domi-

nant class in the cluster. We used this interface to facilitate

and speed up the manual labeling of our test data which

include 34, 476 images corresponding to 10 randomly se-

lected subjects from the human decomposition dataset.

4.4. Results

In order to test our method, we used the 34, 476 labeled

images mentioned in Section 4.3. We compared the result-

ing clusters from SChISM with those obtained from a naive

baseline as well as the following methods from [13] and [4]:

a) pre-trained CNN-based image clustering, b) pre-trained

DeepCluster, and c) trained DeepCluster, on the 34, 476 se-

lected images using metrics introduced in Section 4.2 as

well as the purity metric.

The naive baseline simply uses a non-trained CNN to

map the images to feature representations and then clusters

them using KMeans. Pre-trained CNN-based image clus-

tering [13] is a trained version of the naive baseline method

where the network is pre-trained on a common dataset such

as ImageNet and then feature representations obtained from

applying the network on our test data is fed to KMeans

for clustering. We used ResNet50 as the CNN for both

approaches for the sake of comparison with SChISM. The

pre-trained DeepCluster method [4] consists of clustering

our test data using DeepCluster pre-trained on ImageNet.

Finally, we compared our results with trained DeepClus-

ter which is trained on our data. Note that training Deep-

Cluster is an unsupervised process. We did not compare

against a supervised method such as training or fine-tuning

a CNN on our data since our method is unsupervised and

we do not have training data. The purity histograms for pre-

trained CNN-based image clustering, trained DeepCluster,

and SChISM are shown in Figure 4.

Table 1 shows the average purity for each class (body

part) across all 10 subjects, as well as additional statistics.

The number of clusters used for all methods was set equal

to the number of clusters obtained from SChISM which

was, on average, 72 clusters for each subject. The hyper-

parameters used in our implementation of SChISM were

α = 0.99, β = 0.7, η = 65 and W = 4. Our analysis on

different values for α, β, and η show that the higher the val-

ues, the more restrictive the inclusion criterion becomes and

therefore results in a larger number of sequences and clus-

ters and higher purity values. Lower values however, result

in loosening the criterion, smaller number of sequences and

clusters, and lower purity values. Higher values for W in-

creases the chance of images from distant days being com-

pared with each other and therefore increases computation.

Note that while increasing SChISM’s hyper-parameter

values results in more clusters and consequently higher pu-

rity, higher number of clusters has the same effect in other

unsupervised clustering methods as well. However, Fig-

ure 4 shows that SChISM results in higher purity for the

same number of clusters as used by other methods.

In addition, we further evaluated our method using the

number of essential clusters, gaps, and the inclusion met-

rics introduced in Section 4.2. The results along with a vi-

sualized example of the clusters generated for one subject

are shown in Figure 6. As Figures 6a and 6b indicate, im-

ages from similar number of timesteps are captured using

smaller number of essential clusters in SChISM compared

to that of pre-trained CNN-based image clustering and the

trained DeepCluster. This indicates that sequences are gen-

erally longer in SChISM than in the other methods. In addi-

tion, we noticed that some classes can have zero clusters in

the other methods. For example, for class ‘arm’, the other

methods did not produce any cluster for some of the sub-

jects. Such scenarios do not happen in SChISM due to its

temporal matching. Furthermore, histograms on gaps for
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(a) (b) (c)

Figure 4: Purity histogram for the clusters from pre-trained CNN-based image clustering, trained DeepCluster and SChISM. The majority

of the clusters obtained using SChISM have purities higher than 84% for the same number of clusters.

Table 1: Average purity per body part as well as mean, standard deviation, median and min for all clusters with at least 5

images are provided. These values are averaged for the 10 selected subjects. The number of clusters for all methods were set

to the same value obtained from SChISM for a fair comparison.

Method
Average purity per class (%) Statistics

Stake Foot Head Full Plastic Torso Arm Leg Back Hand
Average

Purity
Std Med Min

Naive baseline 49.71 79.78 79.57 76.49 68.01 65.78 60.09 80.18 56.86 76.11 72.71 18.78 25.73 74.02

Pre-trained CNN 99.27 88.004 92.29 75.02 94.22 78.33 77.16 81.77 69.03 83.31 83.50 11.78 85.13 52.49

Pre-trained DeepCluster 96.57 81.34 91.69 77.29 96.11 78.53 78.05 78.14 62.41 81.93 81.24 14.89 83.12 31.82

Trained DeepCluster 96.85 90.73 94.07 84.97 90.89 79.91 87.92 82.87 69.93 86.76 85.99 11.37 88.52 49.72

SChISM 99.14 95.42 96.21 88.03 96.96 85.88 88.23 87.32 84.58 95.41 92.30 7.27 91.93 72.22

Figure 5: Example clusters obtained using SChISM.

all clusters with more than 5 members generated using pre-

trained CNN-based image clustering, trained DeepCluster,

and SChISM are shown in Figures 6f, 6g, and 6h and show

that clusters generated using SChISM have minimum gaps

compared to the other methods. We consider clusters with

less than 5 members as outliers with images that do not cap-

ture body parts and could not be stitched to any of the larger

sequences. We did not include the naive baseline and the

pre-trained DeepCluster since pre-trained CNN-based im-

age clustering and trained DeepCluster are the more accu-

rate versions of the two respectively. Purity values for all

approaches, however, are shown in Table 1.

Finally, we clustered mugshot images using SChISM to

assess the performance of our method on a different dataset

with temporal evolving content. We selected subjects with

at least 5 timesteps which resulted in 417 images from 11
subjects. We then used SChISM to group images based on

subjects irrespective of their age (date of the mugshot). The

result and statistics on the clusters are shown in Table 2.

Figure 5 shows two clusters generated using SChISM for

foot and a subject at ages 41, 50, 51 and 52 from the de-

composition and the MORPH datasets.

5. Conclusion

Unsupervised clustering is useful for making sense of

large unlabeled image collections, and can be used to ac-

celerate manual labeling of such collections. Real-world

image datasets with evolving features, however, pose chal-

lenges. We presented an unsupervised clustering technique

that leverages the evolutionary characteristics and creates

sequences of similar images over time using a neighboring

comparison strategy with a dynamic inclusion criteria. We

also introduced several metrics suitable for collections rep-

resenting evolution of objects and evaluated our method on

a large collection of images depicting human decomposition
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Table 2: Statistics on clusters generated for the MORPH dataset using SChISM.

#Test images #Subjects #Clusters Avg. purity Std. Med. Min.

MORPH 417 11 15 99.87% 0.48 100% 98.14%

(a) (b)

(c) Pre-trained ResNet50 (d) Trained DeepCluster (e) SChISM

(f) Pre-trained ResNet50 (g) Trained DeepCluster (h) SChISM

Figure 6: (a) and (b) compare pre-trained CNN-based image clustering, trained DeepCluster, and SChISM through the number of essential

clusters and number of timesteps captured for each body part (inclusion). The plots show that SChISM was able to capture same or higher

number of timesteps in smaller number of essential clusters. (c), (d) and (e) compare the clusters generated from the methods for one

subject respectively through a visualization. Color indicates the number of images in each timestep and cluster. The plots indicate that

SChISM generates clusters with longer sequences and with less gaps in timesteps compared to the other methods. (f), (g), and (h) show

gap histograms for clusters and indicate that clusters generated using SChISM have minimum gaps compared to the other methods.

as well as the MORPH dataset. We further compared our

method with a naive baseline, pre-trained CNN-based im-

age clustering, pre-trained DeepCluster, and trained Deep-

Cluster. Results show that our method produces clusters

with higher purity, shorter gaps, and better inclusion for the

human decomposition images compared to the other meth-

ods conditioned to produce the same number of clusters.
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