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Abstract

As a rapidly growing medium, volumetric video is gain-

ing attention beyond academia, reaching industry and cre-

ative communities alike. This brings new challenges to

reduce the barrier to entry from a technical and eco-

nomical point of view. We present a system for robustly

and autonomously performing temporally coherent tracking

for volumetric sequences, specifically targeting those from

sparse setups or with noisy output. Our system will de-

tect and recover missing pertinent geometry across highly

incoherent sequences as well as provide users the option

of propagating drastic topology edits. In this way, afford-

able multi-view setups can leverage temporal consistency

to reduce processing and compression overheads while

also generating more aesthetically pleasing volumetric se-

quences.

1. Introduction

Volumetric video creation through multi-view capture

and processing of photo-realistic 3D human performances

is an active research field that involves different disciplines

such as computer vision, computer graphics and 3D geome-

try processing. The increasing interest in this field has been

powered by new developments in immersive technologies

(i.e., augmented, virtual and mixed reality), as these ap-

plications require more realistic and human content. To

capture these realistic human performances, one typically

needs a multi-camera system that records the performer

from different viewpoints, such as the one proposed by Col-

let et al. [4] or Guo et al. [8], which uses more than one

hundred high-end cameras (including infra-red projectors

and cameras) to achieve the best reconstruction possible in

a very controlled environment. In these systems, 3D re-

construction algorithms are run on a per-frame basis and

the output is a sequence of 3D models (i.e., an independent

mesh and texture image per frame). Some methods address

this problem by enforcing temporal coherence in the 3D re-

construction process [19, 20, 21], however, to avoid stor-

ing large amounts of data per frame it becomes necessary

to apply a mesh tracking algorithm that introduces tempo-

ral consistency in the sequence and enables the reuse of a

significant amount of data. This compression can be facili-

tated by keeping the same topology for as long as possible

throughout the sequence and updating only the mesh vertex

positions. Furthermore, to enable heterogeneous sequences

with variations in the mesh geometry and topology, it is

necessary to split the sequence into regions controlled by

keyframe meshes, similar to methods employed in video en-

coding. The current state of the art for mesh tracking in this

manner works well when consecutive meshes are very simi-

lar to each other which is the case for high-end setups; how-

ever, they can fail when applied to capture methods which

use sparser camera setups [12, 24] or even monocular sys-

tems [26, 27] where there is a significant amount of noise,

or if geometry is lost (for example a hand or entire limb)

due to the challenging capture conditions. Our proposed

approach prioritises generality and scalability by applying

temporal coherence to an unstructured series of meshes in a

completely autonomous fashion, requiring no system priors,

and supporting the challenging conditions presented above.

Lastly, our system allows for the recovery of missing geom-

etry and enables the user to introduce geometry edits that

can be seamlessly propagated through the sequence. In par-

ticular, the proposed system presents the following contri-

butions towards tracking noisy volumetric data from sparse

multi-view capture:

• An automatic, similarity-driven keyframe selection

process based on spherical harmonics that minimises
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Figure 1. We present a robust, autonomous method for tracking volumetric sequences which can detect missing geometry and propagate

user edits. Pictured left to right are step-by-step visualizations of the process. The input to our system is a temporally incoherent and

noisy sequence of meshes. We perform pairwise registration using abstraction layers, volumetric segmentation and a keyframing system

which allows for user edits, e.g. the hand recovered in red. We establish correspondences which maintain edits and propagate geometry

throughout a graph-based deformation process.

keyframes and supports varying geometry and topol-

ogy.

• A volume-based segmentation and registration method

for robust tracking of volumetric sequences.

• A tracking system that enables missing geometry re-

covery and realistic propagation of user edits.

2. Related Work

Mesh Tracking. Mesh tracking and registration algo-

rithms, especially when representing the shape and appear-

ance of humans, are an essential part of volumetric video

processing pipelines. Such systems use variably dense ar-

rays of RGB and depth cameras to perform per-frame 3D

reconstruction [4, 8], while other methods use monocular

RGBD sensors [7, 35, 37, 38] and online character template

generation [29, 30, 35, 36]. For each of these systems mesh

tracking and registration is a fundamental process, ensuring

temporal coherence for visual appeal and reduction of data

overheads.

The use of a template-driven method helps constrain the

problem focus toward reliable pose estimation. With recent

developments in monocular 3D pose algorithms [3, 33],

similarly, single-camera performance capture systems can

produce reliable results [10, 34]. However, even if one

was to take pose estimation for granted, the template de-

formation can still become a challenging task and quite

often the approach will be some amalgamation of a cus-

tomised avatar fitted to a pre-defined parametric model such

as SMPL [18]. While the use of a template generally pro-

duces robust results, these systems cannot capture dynamic

changes in topology without the use of some adaptive sur-

face deformation. Habermann et. al [10] present a hybrid

of pose-driven template deformation as well as graph-based

surface alignment driven by 2D keypoints. While this sys-

tem is more capable of modelling the dynamic motion of

clothing, it is still unable to capture drastic changes in topol-

ogy which would stray from the input template such as the

introduction of new objects or changing clothes.

Some approaches acknowledge this problem and instead

opt for the use of an evolving, canonical model which is

constructed over the course of the capture [6, 23, 35]. These

methods are well adapted to modelling temporally sensi-

tive, high-frequency details and can faithfully produce tem-

porally coherent models from noisy RGBD data. How-

ever, these systems are input-limited to the use of depth

sensors which may not be as widely available or scalable

as commodity RGB cameras. For the proposed work we

seek to improve content created from scalable studio setups,

some of which employ multiple arrays of RGB and infra-

red structured light sensors [4, 8] while others present ex-

tremely flexible and economical sparse arrays of commod-

ity cameras only [12, 24]. Given a sequence of unstructured

meshes generated from such setups, the general approach

towards adding temporal coherence is to perform keyframe-

based tracking of sequential mesh pairs. Like many of the

previously addressed tracking algorithms, this work also

leverages the deformation graph of [31]. The correspon-

dences which guide the deformation in such graph-based

approaches are often based on constrained ICP variants [16]

or supported by photometric data [5]. Few systems address

the scenario of missing geometry [11] and even so, they re-

quire strong priors and robust skeleton estimation. In con-

trast the proposed work requires no priors and doesn’t im-

pose any constraints on the mesh topology or number of

independent components.

Keyframe Detection. Many sequential tracking sys-

tems for unstructured mesh sequences rely on some form

of keyframing system in order to select the ideal candidate

frames to begin tracking. Collet et. al [4] propose a num-

ber of heuristics metrics for keyframe selection based on the

genus, surface area and number of connected components.

These metrics are combined to formulate a feasibility score

which is used to drive the keyframe selection.This approach

is reasonably suited to consistent, high-quality input which
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would be expected from the system presented in [4]. How-

ever, when applied to the highly inconsistent data typical

of sparse setups, any metric directly dependant on the in-

put topology becomes uninformative (e.g. the mesh genus

can be wrongly represented if the mesh presents numerous

small holes). This same issue is present in the work by Guo

et al. [8], which solves a discrete Markov Random Field in-

ference problem to minimise the number of keyframes and

reduce artifacts, but relies on the error of a mesh deforma-

tion method that takes very detailed and accurate mesh se-

quences. Huang et. al [11] present a keyframe selection sys-

tem based on pose variance, however their approach relies

on accurate skeleton fitting along with image and silhouette

priors. While this approach works well for relatively high-

quality data, when applied to the noisy data expected from

sparse setups the skeleton-optimization approach becomes

unreliable. Furthermore the joint-vertex skinning can suf-

fer where the body shape is obscured by loose clothing.

Our work instead opts for an autonomous keyframe system

based on shape similarity via spherical harmonics descrip-

tors. By using spherical harmonics as an abstract shape de-

scriptor, a shape similarity map can be built that is robust to

frequent and disruptive noise in the input sequence.

3. Method Overview

We propose a tracking system that applies spatio-

temporal coherence whilst also remaining faithful to the un-

derlying motion and structure of the captured volumetric se-

quence. This is a challenging task as the input to such a sys-

tem typically involves a lot of temporal noise, can present

high-speed motion and may require demanding shape defor-

mation, especially if the sequences are captured with sparse

camera setups. We propose a system which requires no pri-

ors other than the input mesh sequence and can be equally

evaluated on any volumetric video platform which gener-

ates unstructured mesh sequences.

As abundant noise and irregularity can be expected, the

proposed method seeks to generate simplistic representa-

tions of the input data for some steps of the system via

abstraction layers, without the use of model fitting or tem-

plates in order to maintain generality. Abstraction layers are

generated by detaching the vertex data from the mesh, fil-

tering outliers and small unconnected components, and ap-

plying an adaptive isotropic remeshing [25] which results

in a quasi-uniformly distributed set of sample points with

sufficient density. This creates an abstraction of the input

mesh which supports some key aspects of our system such

as the preliminary step of automatic keyframe mesh selec-

tion driven by shape-similarity (Section 4). They are also

used in the following step for establishing dense volumetric

correspondences capable of detecting missing geometry and

propagating user edits (Section 5). These correspondences

drive a sequential registration by means of a deformation

Figure 2. Shape similarity descriptors are used to generate a simi-

larity score for each mesh which is used to define tracking regions.

Keyframe meshes are selected by using a feasibility score within

regions and tracking is then performed sequentially outwards from

the keyframe mesh toward region boundaries.

graph (Section 6). Finally, we apply a post-processing step

in the form of a dynamic 3D Kalman filter applied to mesh

vertices tracked across a region (Section 7).

4. Similarity-Driven Automatic Keyframe

Mesh Selection

The goal of the keyframing system is to simultaneously

minimize the cumulative error from sequential tracking and

select the minimum number of meshes, N , which can en-

capsulate the shape and motion represented by an unstruc-

tured sequence of meshes, M{1..T}. With this goal in mind

we propose a system which partitions M{1..T} into sequen-

tial groups based on shape similarity. Thus, given a shape-

similarity score for all meshes in the sequence which indi-

cates a per-frame similarity to the other meshes, we infer

that highly dissimilar frames will introduce errors when at-

tempting to track back against other meshes in the sequence.

The central metric exercised in this process is the shape-

similarity score. In order to establish shape similarity in

a computationally effective manner, rotation-invariant de-

scriptors, di, are generated for each mesh using the spheri-

cal harmonic representation system by Kazhdan et. al [14].

With this metric, we compute a similarity matrix among all

meshes, [did
⊤
j ]1≤i,j≤T , where the value at [di, dj ] is the dot

product of di and dj . Mesh similarity score is then defined

as the mean value of the matrix per row. To reduce high

frequency variance, this one dimensional signal can then be

filtered using a moving average filter.

Figure 2 illustrates the process further by plotting a typ-

ical similarity score overlaid by the determined tracking re-

gions and keyframe meshes determined as above. From

these keyframes the framewise registration will be per-

formed outwardly toward region boundaries. By defining

region boundaries on frames with low similarity score we

effectively isolate the error that would be introduced by at-

tempting to force dissimilar frames to register to adjacent
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Figure 3. The abstraction and segmentation process as a precursor

to segment-based alignment. A typical 25K vertex mesh is reduced

to 4.5K and segmented.

frames. Despite filtering high-frequency variance in the

similarity score, we still employ a fixed minimum separa-

tion value λmin between selected minima i.e. region bound-

aries, which maintains a minimum keyframe to frame ratio.

Within each region, a keyframe must be selected which

produces the smallest cumulative error when tracked se-

quentially towards the region boundaries. Collet et al. [4]

propose a feasibility score based on hueristically deter-

mined characteristics of the mesh topology, specifically the

surface area, genus and number of connected components.

For noisy input this score is unreliable and incoherent. In-

stead we apply the score to abstracted representations of

the input meshes which filters out high-frequency topol-

ogy noise and provides coherent input. We further mod-

ify the equation to accommodate the larger impact of genus

over surface area on keyframe selection and add a nega-

tive weight for region boundary proximity to discourage

keyframe selection adjacent to tracking region boundaries.

5. Dense Volumetric Correspondences

Given a selection of keyframes and defined regions, the

tracking process is performed outwardly from the keyframe

up to the region boundaries as shown in Figure 2. Each

pair-wise mesh registration is driven by robust, volumet-

ric correspondences and a topologically coherent deforma-

tion graph. We use the abstraction-layer meshes on both

the source and the target mesh, as a robust framework for

matching reliably significant details. The use of abstraction

means that the correspondence accuracy and cost is rela-

tively constant regardless of the size of the input.

The abstraction layers are used as the basis to estab-

lish dense pairwise correspondences preserving robustness

to missing geometry. This is done by volumetrically seg-

menting them, and performing a series of alignments from

the source layer to the target layer via matching segments.

To ensure a reasonable alignment there must be consistent

segmentation between the source and target abstraction lay-

Figure 4. Segmentation map is transferred from the source abstrac-

tion layer to the target abstraction layer. Any missing segments are

fused and flagged for rigid ICP.

ers, so we need to segment the former and transfer that same

segmentation to the latter.

Our approach follows the idea of a pseudo-semantic seg-

mentation, i.e., creating segments at sharp changes in vol-

ume which generally resemble the boundaries of joints and

limbs. In comparison with traditional animation rigs, this

approach is motivated by the idea that articulated motion

tends to be most non-rigid at joints and less so along bones.

Thus, we prioritise the semi-rigid parts of the mesh to drive

the correspondences. The pseudo-semantic segmentation

map is created using the shape diameter function as pro-

posed by Shapira et. al [28] and it is organised in a hierar-

chy from least-connected to most-connected components as

a guide for resolving segmentation issues. For example, if

the segmentation creates many small components, they are

fused to the least-connected neighboring segment. Thus,

fusion tends to occur from limb-ends towards the central

component. Figure 3 shows the abstraction layer creation

for a typical mesh and the segmentation result.

A global rigid ICP alignment is performed between the

source and target abstraction layers prior to transferring the

segmentation of the source layer to the target abstraction

layer. Semi-sparse matches between target and segmented

source are then calculated using ICP with strict normal

alignment tolerance. Typically, in the case of missing geom-

etry (e.g., a limb or other thin structure) there is a large mis-

match in segment size. So we perform a coherence check to

compare the size of a segment between the source and target

abstraction layers and if a mismatch is detected, the segment

is flagged to be fused with its nearest connected neighbor.

The flagged segments are recorded and will aligned differ-

ently so as to preserve the structure. Figure 4 illustrates

typical segmentation transfer from source to target.

Once the segment map has been successfully transferred,

a segment-wise alignment is performed using an augmented

version of the Coherent Point Drift (CPD) algorithm [22],

applied to the point cloud respresented by the vertices of the

meshes. In some cases large segments can be encountered,

for example, the central chest region or instances of multi-

ple fused segments. Instead of applying the standard CPD
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algorithm and encountering performance bottlenecks due to

size, we provide the following adaptation to the CPD algo-

rithm which allows for upscaling the alignment that would

register two smaller point clouds. This effectively approxi-

mates the alignment of a large dataset for the computational

cost of a significantly smaller one. If the source and target

segment are relatively large clouds S and T respectively,

then given some uniformly downsampled clouds s and t,
the alignment via standard CPD is given as:

s′ = s+GstW (1)

where the aligned cloud s′ is calculated as the input cloud

plus the affinity matrix Gst times a weighted transformation

matrix W , which is solved in the main part of the CPD algo-

rithm. Following this calculation, if Gst is replaced by the

affinity matrix between s and S i.e. GsS, the alignment can

be upscaled to the original size of S by a second application

of Equation 1:

S′ = s′ +GsSW (2)

Where W is the same transformation matrix solved for in

Equation 1. This upscaling naturally simplifies the align-

ment calculated for W but requires much less computation

time. Considering that at a segmentation level the align-

ment is approximately rigid, so any loss of accuracy due to

scaling is negligible. This process is applied to all segments

with the exception of those flagged with missing geometry.

These segments instead undergo a purely rigid ICP align-

ment to prevent deforming a segment into a target which is

significantly absent. This segment-based alignment of the

source abstraction layer to the target abstraction layer can

now be used to drive the deformation graph optimization.

6. Deformation Graph Construction and Ap-

plication

After the first abstraction layer has been coarsely aligned

with the target mesh via segment-based registration, a sec-

ond layer of abstraction is created from the aligned first

layer to assist in generating the structure for the deformation

graph which will be used to smoothly reshape the source

mesh towards the target. In brief, the deformation graph

framework consists of a set of nodes evenly distributed

about a mesh with edges connecting regions of influence.

Each node n represents a rotation Rj and translation tj for

a set of nodes nj = n1..nJ . Thus, for any particular mesh

M of vertices vmǫM , the transformed vertex v
′

m is given

by:

v
′

m =
∑

njǫN(vm)

w(vj , nj) [Rj(vm − nj) + nj + tj ] (3)

Where N(vm) is the set of nodes which influence vm and

w(vj , nj) is the skinning weight of a given node towards

vm, following the work of Li et al. [16]. The translations

and rotations for each node are found by formulating them

as a non-linear optimization problem. We model the opti-

mization problem in this work on the cost function of Guo

et al [9], driven by the aforementioned correspondences.

6.1. Detail Synthesis

Regardless of tracking accuracy, the nature of keyfram-

ing will introduce popping artifacts as the topology changes

across a region boundary. To address this issue, one could

attempt to directly re-align the output topology to the tem-

porally coherent fine details in the input sequence as in [15].

This approach works best when the input noise is relatively

small and fine surface details deform slowly. Given that the

input to our system may exhibit extremely large perturba-

tions due to noise, this approach will produce incoherent re-

sults. Instead we opt for a boundary-blending interpolation

technique, analogous to deblocking filters used in decom-

pression [17]. Given region sets of 0 < r ≤ R containing

tracked frames rt, for timesteps t ∈ [0..T ], we perform a

boundry-crossing alignment of the last frame in (r − 1)t=T

to the first frame in rt=0 as if it were a normal pair-wise

alignment. We then perform a highly non-rigid surface

alignment by relaxing the rigidity parameters which creates

a detail layer for synthesising surface level details. For each

step between the final frame and the keyframe in (r − 1)
we perform a LERP operation between the detail layer and

coarse alignment in order to create a gradient between the

deformations. Using cached transformations from the track-

ing process we can invert and accumulate them as needed to

back-project the LERP states to each time step between the

last frame in the region and the keyframe. This same pro-

cess is repeated in the forward direction from (r − 1) to r.

This approach has the advantage of being completely robust

to surface noise as well as significantly reduced computa-

tional cost of reverse tracking and fusion due to the reuse of

cached transformations.

7. Sequence Smoothing

Temporal noise may still be observed in the final result

despite the smooth nature of the as-rigid-as-possible defor-

mation framework. This noise usually takes the form of

high frequency flickering of the vertex positions and can be

visually unappealing. However, given a sequence of meshes

which now share the same topology it becomes possible to

filter the vertex positions over time against high frequency

noise. To achieve this we apply a standard 3D Kalman fil-

ter [13] to the new vertex positions within the calculated re-

gions treating the keyframe as the initial position and each

subsequent frame as a set of observations. The transition

matrix used is a simple linear motion model for points in 3D

Cartesian coordinates in order to maintain complete gener-

ality and avoid introducing constraints via any inherent as-
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t t+1 t+2 t+3
Figure 5. Autonomous keyframe selection: (top) input from a se-

quence featuring many similar topology changes. (mid) proposed

algorithm which identifies a keyframe at t>t+3 and tracks from

t>3 toward t. (bottom) the system of Collet et. al [4] which at-

tempts to resolve the geometry change by stretching before even-

tually giving up and creating a new keyframe at t=t+2.

sumptions of a more complex motion model. Regarding

the model parameters, a small process noise Q and larger

measurement noise R is used such that R/Q ≈ 1e2, thus

prioritizing smoother motion over observations. In prac-

tice this Kalman filter can inhibit motion over time and lead

to noticeably larger popping effects between keyframes. To

reduce this we would like the Kalman filter to be most effec-

tive when underlying motion is small and to ignore vertices

with large per-frame displacement vectors. To address this

we perform an offline motion dynamics analysis per ver-

tex and use the displacement deltas to negatively impact the

model correction. To this effect we reduce the lag of “gen-

uine motion” and apply the filter in an adaptive manner.

8. Results

In the following section we validate the proposed method

with quantitative, qualitative and ablation studies. We eval-

uate the keyframe selection metric in comparison to the fea-

sibility score heuristic presented by Collet et. al [4]. We

also assess the accuracy of the proposed correspondence

and deformation framework against the state of the art using

numerous challenging sequences, free from temporal noise

as a baseline for ground-truth evaluation. Furthermore, we

perform qualitative evaluation of several sequences with

different levels of noise and artifacts, captured with sparse

multi-view setups. Finally, we demonstrate the application

of the geometry recovery, edit propagation and smoothing

aspects through realistic examples.

8.1. Keyframing

To evaluate our proposed method for keyframe selection

we illustrate the results of the similarity score compared

to the feasibility metric proposed by [4] when applied to

Ours Collet et. al [4]

Max Error 0.0651 0.0662

Median Error 0.0205 0.0208

# Keyframes 13 19

Table 1. Keyframe evaluation on twirl sequence containing 170

frames with large topological changes and fast motion. Errors cor-

respond to Hausdorff distance in relative units.

(A) (B)
Figure 6. Detail Synthesis: (A) and (B) show a topology change

where tracking regions meet. (A) uses the temporal detail synthe-

sis of Li et. al [15] while (B) is the proposed method.

a challenging sequence with drastic topology changes, Fig-

ure 5. Furthermore, this sequence was captured in a budget

studio using 12 RGB cameras and contains a lot of struc-

tured noise. We demonstrate the tracking results for this se-

quence using the proposed keyframe sequence against the

greedy-selection algorithm proposed by Collet et. al [4].

The proposed approach produces smaller error while signif-

icantly reducing the number of keyframes needed, Table 1.

8.2. Tracking Evaluation

We evaluate the performance of our system against two

state of the art approaches which best represent common

techniques in surface-based non-rigid registration. The

most general of which being Amberg et. al [1] which is

applicable to any type of surface or motion and attempts to

iteratively solve vertex positions globally with locally vary-

ing ”stiffness”. Lately, however more systems closely re-

semble that of [9], iteratively solving point-to-plane corre-

spondence driven deformation graphs. To objectively eval-

uate the performance of our method we use the dataset from

Vlasic et. al [32] which features mesh sequences generated

by animating a pre-defined template. In this way the input

can be considered free from reconstruction artefacts which

establishes a reliable reference point for common error met-

rics like Hausdorff distance [2]. We also present qualita-

tive results of each approach applied to a mix of the above

dataset as well as volumetric data captured from multi-view

capture setups. Furthermore, we demonstrate the ability of

our system to propagate user edits and recover lost geome-

try by conducting experiments which would replicate some

expected user edits or volumetric capture failure modes.
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Sequence
Max Error Median Error

Ours [9] [1] Ours [9] [1]

Crane 0.0424 0.3432 0.3753 0.0019 0.0338 0.0278

Jumping 0.2002 1.4723 0.3549 0.0019 0.0382 0.0145

Bouncing 0.0891 0.9982 0.4234 0.0027 0.0565 0.0151

Handstand 0.0054 0.6450 0.1706 0.0009 0.0023 0.0032

Swing 0.2386 0.4298 0.0813 0.0031 0.0185 0.0074

Table 2. Ground-truth evaluation of tracking. Figures are rela-

tive to the scale of the input data. Results are given as Maximum

Hausdorff Error (max) and Median Hausdorff Error (med).

8.2.1 Ground Truth Evaluation

For a fair evaluation of the tracking error introduced by

each system, each dataset was given the same keyframes

and tracking regions. In this way the error metric provides a

direct indication of the correspondence robustness and de-

formation fidelity. The results of Table 2 shows that our

system introduces fewer errors in multiple ground-truth se-

quences which exhibit highly dynamic and varying motions.

8.2.2 Qualitative Evaluation

It can be seen from Figure 7 that where fast motion is con-

cerned, the proposed system shows robustness in both cor-

respondence matching and large deformation. In contrast

to [9] the use of volumetric correspondences over standard

normal-constrained ICP methods allows for reliable match-

ing along fast pose changes. The as-rigid-as-possible defor-

mation constraint prevents any large pose changes in [9] de-

spite the likely errors in correspondences resulting in either

largely unchanged poses or extreme deformations where the

solver struggled to converge. This is evident in (b) for all

cases of Figure 7. In contrast, the naive global deformation

of [1] exhibits very little robustness to bad correspondences

and can compress thin structures due to fast motion. This is

most clearly seen in the hands and feet in (c) where we see

a larger range of motion has led to surface compression due

to nearest-neighbour correspondences.

8.2.3 Persistent Geometry Evaluation

We demonstrate the ability of our system to recover and

propagate pertinent features in some conventional and chal-

lenging sequences captured from multi-view volumetric

systems. In particular Figure 8 illustrates a sequence which

was highly occluded and contained a fast moving football

being volleyed. Large sections of the mesh exhibit intermit-

tent missing portions as well as difficulty reconstructing the

ball, sometimes across many sequential frames. Our geom-

etry aware system was able to retain important features in-

cluding the ball, while still registering to the underlying mo-

tion. In comparison, template or skeleton-based approaches

are simply unable to track foreign objects without manual

intervention.

We further illustrate geometry propagation in Figure 9

as well as a sample case for user edits. In such a case

the reconstruction failed to recover the finger detail in the

hand of the actor (top right). The user may edit the nearest

keyframe(s) and manually restore the data in any 3D mod-

elling software. Afterwards, the system inherently detects

the absent geometry through the tracking process and will

propagate the edit throughout the frames influenced by the

given keyframe. The system is also capable of much larger

edits such as the addition of props. The added geometry

becomes rigidly tracked along with the nearest connected

component and thus it realistically follows the underlying

motion while maintaining intact structure.

8.3. Detail Synthesis

We compare our detail synthesis approach to that of Li

et. al [15] which was subsequently used by Guo et. al [9]

and present the results in Figure 6 of a typical noisy se-

quence from a sparse camera studio setup. The benefits of

the proposed boundary-aware detail synthesis can be seen

as a smoother transition across frames while the approach

of Li et. al [15] produces a sharp boundary transition with

large topology changes, resulting in noticeable popping ef-

fects. In addition, the proposed method is robust to input

noise as it only seeks to smooth tracking region boundaries

while the synthesis of Li et. al [15] manifests input noise in

the hands and hair.

8.4. Smoothing

Smoothing not only helps to reduce high-frequency,

flickering motions, it also improves the quality of propa-

gated user edits and recovered geometry without the need

for expensive 3D flow. Referring back to the recovered fast-

moving football in Figure 8 (Right, light blue), the motion

of the ball becomes static in the recovered frames from hav-

ing no connected reference segment to propagate to. The

smoothing filter helps to interpolate the motion between the

static frames and the next observation of the ball. Figure 8

(Right, dark blue) illustrates the ablation results where the

smoothing process can help interpolate the missing motion.

Thus, the smoothing and interpolating motion greatly im-

proves the temporal coherence of the end result.

9. Conclusions and Future Work

We present a robust autonomous tracking algorithm

which can detect discrepancies in input data and can prop-

agate pertinent geometry. The system outperforms the state

of the art for available datasets and requires no priors of the

input sequence. Dense volumetric correspondences through
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source target (a) (b) (c) source target (a) (b) (c)

source target (a) (b) (c) source target (a) (b) (c)

Figure 7. Qualitative results of some challenging sequences containing fast motion. Presented for each sequence are: the source, final

target, (a): the proposed method, (b): Guo et al. [9], (c): Amberg et al.[1]. In each case the results are the output of successively tracking

the frames between the source and target.

Figure 8. Fast moving objects can be lost or cause occlusions (left,

top row). The proposed system can track multiple moving ob-

jects and provide geometry recovery (left, bottom row). Pictured

right (light blue) are 3 successive frames tracked without motion

smoothing. Pictured right (dark blue), the same 3 frames where

interpolation has occurred as a result of motion smoothing.

shape abstraction provide an indiscriminate shape registra-

tion framework which is robust to large or fast motions. Fur-

thermore, our system allows for drastic alterations of the

input mesh which can be reliably integrated with the un-

derlying motion, enabling a new domain for creative free-

dom and post-production. While the presented approach is

robust and achieves large data reductions, it still requires

keyframes which is a larger workload than solving for a

global template. It would be desirable to extend this work to

create a global template without resorting to the constraints

of parametric templates or pre-defined animation rigs. Also,

while 3D Kalman smoothing produces visually appealing

results, it could likely be improved upon with further explo-

ration of its many evolutions. It is hoped that this approach

may inspire further work towards low-end, cost-effect vol-

umetric video such that the popularity of the medium may

continue to flourish beyond niche groups within academia

and industry toward the creative communities.

Figure 9. Geometry recovery & propagation. Top left: A miss-

ing leg is recovered from a walking sequence. Top right: A user

manually restores the hand to a keyframe which is then propa-

gated. Bottom: User edits may also be extreme additions such

as props.(a) source, (b) target, (c) edited source (d) propagated to

target over multiple frames
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