
Ontology-driven Event Type Classification in Images

Eric Müller-Budack1, Matthias Springstein1, Sherzod Hakimov1, Kevin Mrutzek2, Ralph Ewerth1,2

1TIB - Leibniz Information Centre for Science and Technology, Hannover, Germany
2Leibniz University Hannover, L3S Research Center, Hannover, Germany

{eric.mueller, matthias.springstein, sherzod.hakimov, ralph.ewerth}@tib.eu

Abstract

Event classification can add valuable information for se-

mantic search and the increasingly important topic of fact

validation in news. So far, only few approaches address im-

age classification for newsworthy event types such as nat-

ural disasters, sports events, or elections. Previous work

distinguishes only between a limited number of event types

and relies on rather small datasets for training. In this pa-

per, we present a novel ontology-driven approach for the

classification of event types in images. We leverage a large

number of real-world news events to pursue two objectives:

First, we create an ontology based on Wikidata comprising

the majority of event types. Second, we introduce a novel

large-scale dataset that was acquired through Web crawl-

ing. Several baselines are proposed including an ontology-

driven learning approach that aims to exploit structured in-

formation of a knowledge graph to learn relevant event rela-

tions using deep neural networks. Experimental results on

existing as well as novel benchmark datasets demonstrate

the superiority of the proposed ontology-driven approach.

1. Introduction

Digital media and social media platforms such as Twit-

ter have become a popular resource to provide news and

information. To handle the sheer amount of daily published

articles in the Web, automated solutions to understand the

multimedia content are required. The computer vision com-

munity has focused on many visual classification tasks such

as object recognition [18, 19, 20, 23, 42], place (scene) clas-

sification [41], or geolocation estimation [26, 30, 34, 37]

to enable semantic search or retrieval in archives and news

collections. But news typically focus on events with a high

significance for a target audience. Thus, event classifica-

tion in images is an important task for various applications.

Multimedia approaches [22, 27, 29] have exploited visual

descriptors to quantify image-text relations that can help to

understand the overall multimodal message and sentiment

or might even indicate misinformation, i.e., Fake News.

Despite its clear potential, so far only few approaches [6,

11, 21, 24, 39] were proposed for the classification of real-

world event types. Datasets for event classification mostly

cover only specific event categories, e.g., social [2, 6, 28],

sports [24], or cultural events [13]. To the best of our

knowledge, the Web Image Dataset for Event Recogni-

tion (WIDER) [39] is the largest corpus with 50,574 images

that considers a variety of event types (61). Nonetheless,

many types that are important for news, like epidemics or

natural disasters, are missing. Due to the absence of large-

scale datasets, related work has focused on ensemble ap-

proaches [4, 5, 36] typically based on pre-trained models for

object and place (scene) classification and the integration of

descriptors from local image regions [3, 14, 17, 39] to learn

rich features for event classification. We believe that one of

the main challenges is to define a complete lexicon of im-

portant event categories. For this purpose, Ahsan et al. [6]

suggest to mine Wikipedia and gathered 150 generic social

events. However, the experiments were only conducted on

WIDER as well as on two datasets, which cover eight social

event types and a selection of 21 real-world events. Progress

in the field of Semantic Web has shown that it is possible to

define a knowledge graph for newsworthy events [15, 16]

but has not been leveraged by computer vision approaches

yet. Particularly the relations between events extracted from

a knowledge base such as Wikidata [35] provide valuable in-

formation that can be utilized to train powerful models for

event classification.

In this paper, we introduce a novel ontology along

with a dataset that enable us to develop a novel ontology-

driven deep learning approach for event classification. Our

primary contributions can be summarized as follows:

(1) Based on a set of real-world events from EventKG [15,

16], we propose a Visual Event Ontology (VisE-O) contain-

ing 409 nodes describing 148 unique event types such as

different kinds of sports, disasters, and social events with

high news potential that can be created with little supervi-

sion. It covers the largest number of event types for im-

age classification to date. (2) In order to train deep learn-

ing models, we have gathered a large-scale dataset, called
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Figure 1. Exemplary subset of the Ontology (complete version is provided on our GitHub page1) and images of the proposed Visual Event

Classification Dataset (VECD). Leaf Event Nodes (orange) and Branch Event Nodes (gray) are extracted based on relations (e.g., ”subclass

of”) to a set of Events (blue) using the Wikidata knowledge base. The nodes connected by the green path define the Subgraph of basketball

to the Root Node (yellow). The combination (union) of all Subgraphs defines the Ontology. Definitions are according to Section 3.1.

Visual Event Classification Dataset (VisE-D), of 570,540
images crawled automatically from the Web. It contains

531,080 training and 28,543 validation images as well as

two test sets with 2,779 manual annotated and 8,138 Wiki-

media images. Figure 1 depicts some example images.

(3) We provide several baselines including an ontology-

driven deep learning approach that integrates the relations

of event types extracted from structured information in the

ontology to understand the fundamental differences of event

types in different domains such as sports, crimes, or natu-

ral disasters. Experimental results on several benchmark

datasets demonstrate the feasibility of the proposed ap-

proach. Dataset and source code are publicly available.1

The remainder of this paper is organized as follows. In

Section 2 we review related work. The ontology and dataset

for newsworthy event types is presented in Section 3. In

Section 4 we propose an ontology-driven deep learning ap-

proach for event classification. Experimental results for

several benchmarks are presented in Section 5. Section 6

summarizes the paper and outlines areas of future work.

2. Related Work

Since there are different definitions of an event, ap-

proaches for event classification are diverse and range from

specific actions in videos [33, 40] over the classification of

more personal events in photo collections [10, 11, 38] to

the classification of social, cultural, and sport events in pho-

tos [17, 24, 36, 39]. In the sequel, we mainly focus on works

1Our project is available on the EventKG website and on GitHub:

EventKG: http://eventkg.l3s.uni-hannover.de/VisE

GitHub: https://github.com/TIBHannover/VisE

and datasets for the recognition of events and event types in

images with potential news character.

Early approaches for event classification have used

handcrafted features such as SIFT (Scale-Invariant Feature

Transform) to classify events in particular domains like

sports [21, 24]. As one of the first deep learning approaches

Xiong et al. [39] trained a multi-layer framework that lever-

ages two convolutional neural networks to incorporate the

visual appearance of the whole image as well as interactions

among humans and objects. Similarly, several approaches

integrated local information from image patches or regions

extracted by object detection frameworks [3, 14, 17] to

learn rich features for event classification. In this respect,

Guo et al. [17] proposed a graph convolutional neural net-

work to leverage relations between objects. Another kind

of approaches applies ensemble models and feature combi-

nation [4, 5, 36] to exploit the capabilities of deep learn-

ing models trained for different computer vision tasks, most

typically for object recognition and scene classification. In

the absence of a large-scale dataset for many event types,

Ahsan et al. [6] suggest to train classifiers based on images

crawled for a set of 150 social event concepts mined from

Wikipedia, while Wang et al. [36] apply transfer learning to

object and scene representations to learn compact represen-

tations for event recognition with few training images. For a

more detailed review of deep learning techniques for event

classification, we refer to Ahmad and Conci’s survey [1].

There are many datasets and also challenges such as the

MediaEval Social Event Detection Task [28] and ChaLearn

Looking at People [13] for event classification. But they

mostly cover specific domains such as social events [2, 28],
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cultural events [13], or sports [24]. In addition, the datasets

are either too small [24] to train deep learning models or

contain very few event classes [2]. Other proposals have

introduced datasets and approaches to detect concrete real-

world news events [6, 13, 14], but only distinguish between

a small predefined selection. To the best of our knowledge,

WIDER (Web Image Dataset for Event Recognition) [39]

is the most complete dataset in terms of the number of

event categories that can be leveraged by deep learning ap-

proaches. It contains 50,574 images for 61 event types. But

many important event types for news such as epidemics or

natural disasters are missing.

3. Ontology and Dataset

In contrast to prior work, this section presents an on-

tology and dataset for event classification that covers a

larger number of event types with news character across

all domains such as sports, crimes, and natural disasters.

Based on definitions for terms and notations (Section 3.1),

we suggest an approach that leverages events identified by

EventKG [15, 16] to automatically retrieve an ontology that

can be refined with little supervision (Section 3.2). Im-

ages for event types in the resulting Visual Event Ontolo-

gy (VisE-O) are crawled from the Web to create the Visu-

al Event Classification Dataset (VisE-D) according to Sec-

tion 3.3.

3.1. Definitions and Notations

In this section, we introduce definitions and notations

that are used in the remainder of the paper. Figure 1 con-

tains supplementary visualizations to clarify the definitions.

Event: As in the EventKG [15], we define a set E of con-

temporary and historical events of global importance (e.g.,

2011 NBA Finals in Figure 1) in this paper.

Ontology, Root Node, Event Node, and Relation: The

Ontology is a directed graph composed by a set of Event

Nodes N and their corresponding Relations R as edges. Re-

lations R are knowledge base specific properties such as

”subclass of” in Wikidata that describe the interrelations

of Event Nodes N . All parent nodes n 2 N that connect

a specific Event e 2 E to the Root Node are denoted as

Event Nodes. The Root Node nR 2 N (e.g., occurrence

in Figure 1) matches the overall definition of an Event and

represents a parent node that is shared by all Events.

Leaf and Branch Event Node: The Leaf Event Nodes

NL ⇢ N such as basketball are the most detailed Event

Nodes without children in the Ontology. They group Events

of the same type, e.g., 2011 NBA Finals �! basketball (Fig-

ure 1). Event Nodes, e.g., ball game with at least one child

node are referred to as Branch Event Nodes NB ⇢ N .

Subgraph: A Subgraph SL is a set of all Event Nodes

SL = {nL, . . . , nR} ⇢ N that relate to a specified Leaf

Event Node nL 2 NL while traversing to the Root Node nR.

3.2. VisE-O: Visual Event Ontology

3.2.1 Knowledge Base and Root Node Selection

Several knowledge bases such as DBpedia [9], YAGO [31],

or Wikidata [35] are available. We investigated them in

terms of event granularity and correctness. At this time, the

whole DBpedia ontology contains less than 1,000 classes.

Thus, the granularity of potential event types is very coarse

and for instance some types of natural disasters are ei-

ther assigned to wrong (Tsunami �! television show) [8] or

generic classes (Earthquake �! thing) [7]. As mentioned by

Gottschalk and Demidova [15], YAGO also contains noisy

event categories. On the contrary, Wikidata offers fine-

granular event types and relations, as shown in Figure 2,

and is therefore used as knowledge base in this work. We

have selected occurrence (Q1190554) as the Root Node of

the Ontology since it matches our definition of an Event.

3.2.2 Initial Event Ontology

In this paper, a bottom-up approach is applied to automat-

ically create an event ontology. Based on a large set of

|E| = 550,994 real-world events from EventKG [15, 16],

we recursively obtain all parent Event Nodes from Wiki-

data. For Event Nodes only relations of the type ”subclass

of” (P279) are considered since they already describe spe-

cific categories. For Events we additionally allow the prop-

erties ”instance of” (P31) and ”part of” (P361) as possible

relations to increase the coverage, because some events like

2018 FIFA World Cup Group A are not a ”subclass of” an

Event Node but ”part of” a superordinate event, in this case

2018 FIFA World Cup. Finally, we remove all Event Nodes

that are not connected to the Root Node. As illustrated in

Figure 1, the resulting Subgraphs define the Ontology.

However, we identified several problems in the initial

Ontology as illustrated in Figure 2. (1) There are differ-

ences in the granularity and some of the fine-grained Leaf

Event Nodes, e.g., ATP tennis tournament or Nepalese lo-

cal election, might be hard to recognize; (2) In particular,

sports-centric Leaf Event Nodes such as association football

match and association football team season are ambiguous;

(3) Some Event Nodes, e.g., software license do not repre-

sent an Event according to the definition in Section 3.1.

3.2.3 Event Class Disambiguation

As pointed out in the previous section, most Leaf Event

Nodes related to sports are visually ambiguous since they

represent the same type of sport. The Wikidata knowledge

base distinguishes between sports seasons, sports compe-

titions, etc. Although this structure might make sense for

some applications, we aim to combine Event Nodes that re-

late to the same sports type. Unfortunately, this is not pos-

sible with the initial Ontology that relies on Relations of the
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Figure 2. Exemplary subset of the initial Ontology after the extraction of all relations from Wikidata (left) and respective final Ontology

after applying the proposed approaches for event class disambiguation and refinement (right). Blue Event Nodes might be too fine-granular.

Green nodes are semantically and visually similar to other Event Nodes in the Ontology. Orange nodes do not represent an Event according

to the definition in Section 3.1. Best viewed in color. Different versions of the ontologies can be explored on our GitHub page1.

type ”subclass of”. As illustrated in Figure 2 (green nodes),

Event Nodes of different sports domains (e.g., volleyball

team season and association football team season) relate to

a particular type of competition (in this case team season)

before they relate to another Event Node of the same sports

type (association football match). In order to solve this is-

sue, value(s) for the Wikidata property ”sport” (P641) (if

available) for each Event and Event Node were extracted

and used as Relation. As a result, sports events were com-

bined according to their sports category rather than the type

of the competition as shown in Figure 2 (right). In addi-

tion, we delete all Event Nodes that are a parent of less than

a minimum number of |E|min = 10 Events to reduce the

granularity of the resulting Leaf Event Nodes.

These strategies lead to an Ontology that is more appro-

priate for computer vision tasks. However, it can still con-

tain irrelevant Event Nodes. Furthermore, scheduled events

such as elections or sports festivals occur more frequently

than unexpected or rare events such as epidemics or natu-

ral disasters. Therefore, Leaf Event Nodes that represent

scheduled event types more likely fulfill the filtering cri-

teria |E|min and are consequently very fine-grained (e.g.,

elections in different countries) making them hard to distin-

guish. Thus, we decided to manually refine the Ontology.

3.2.4 Event Ontology Refinement

Two co-authors were asked to manually refine the Ontol-

ogy to create a challenging yet useful and fair Ontology for

image classification. To pursue this goal, the Ontology was

refined according to two criteria: (1) reject Event Nodes that

do not match the Event definition in Section 3.1 and (2) se-

lect the most suitable Leaf Event Nodes to prevent ambi-

guities. For example, election was chosen as a represen-

tative Leaf Event Node since its children contain different

Ontology
Ontology Statistics Dataset Statistics

|E| |Ê| |N | |NL| |R| |IT | |IV | |IB | |IW |

Initial 527k 236k 6,114 3,578 7,545 — — — —

Disamb. 530k 164k 2,288 1,081 3,144 — — — —

Refined 530k 447k 409 148 635 531k 29k 2,779 8,138

Table 1. Number of Event Nodes |N |, Leaf Event Nodes |NL|,
Relations |R|, and images |I| for training (T), validation (V) and

test (B - VisE-Bing, W - VisE-Wiki). |E| is the number of Events

that relate to any Event Node in the Ontology, and |Ê| the number

of Events that can be linked unambiguously to a Leaf Event Node.

types of elections (e.g., by-election) and elections in dif-

ferent countries (e.g., elections in Spain) that might be too

hard to distinguish. As we can use the hierarchical infor-

mation to automatically assign the children to the selected

Leaf Event Nodes and simultaneously remove all resulting

Branch Event Nodes as candidates, only around 500 anno-

tations were necessary to label all (2,288) Event Nodes. Fi-

nally, we manually merged 30 Leaf Event Nodes such as

award and award ceremony that are semantically similar but

could not be fused using the Ontology.

The statistics for all variants of the Ontology are shown

in Table 1 and reveal that the refined Ontology is able to

link the most Events to Leaf Event Nodes. In the prelimi-

nary Ontologies, many Events are children of Branch Event

Nodes and it is not possible to use them to query example

images for Leaf Event Node as explained in the next section.

3.3. VisE-D: Visual Event Classification Dataset

Data Collection: To create a large-scale dataset for the

proposed Ontology we defined different queries to crawl

representative images from Bing. A maximum of 1,000 im-

ages (500 without restrictions and another 500 uploaded

within the last year) using the names of the Leaf Event

2931



Nodes were crawled. In addition, the names of popu-

lar Events related to a Leaf Event Node that happened af-

ter 1900 were used as queries to increase the number of

images and reduce ambiguities (e.g., Skeleton at the 2018

Winter Olympics for Skeleton in Figure 1). In this regard,

a sampling strategy (details are provided on our GitHub

page1) was applied to set the number of images downloaded

for an Event based on its popularity (number of Wikipedia

page views) and date to prevent spam in the search results.

Ground-truth Labels: We provide two ground-truth

vectors for each image based on the search query. (1) The

Leaf Node Vector yL 2 {0, 1}|NL| indicates which of the

|NL| = 148 Leaf Event Nodes are related to the image,

and serves for classification tasks without using Ontology

information. Note that yL is multi-hot encoded as a queried

Event (e.g, SpaceX Lunar Tourism Mission ! spaceflight

and expedition) can relate to multiple Leaf Event Nodes.

(2) The multi-hot encoded Subgraph Vector yS 2 {0, 1}|N |

denotes which of the |N | = 409 Event Nodes (Leaf and

Branch) are in the Subgraphs of all related Leaf Event

Nodes and allows to learn from Ontology information.

Splits: We were able to download about 588,000 im-

ages, which are divided into three splits for training (90%),

validation (5%), and test (5%). For the test set we only use

images from Events that relate to exactly one Leaf Event

Node. Test images that are a duplicate (using the image

hash) of a training or validation image are removed.

VisE-Bing Test Set: Two co-authors verified whether

or not a test image depicts the respective Leaf Event Node.

Each co-author annotated a maximum of ten valid images

for each Leaf Event Node to prevent bias. They received dif-

ferent sets to increase the number of images. We obtained

2,779 verified test images, with 20 images for most (109) of

the 148 Leaf Event Nodes. The dataset statistics are reported

in Table 1 and in the supplemental material on GitHub1.

VisE-Wiki Test Set: To create another larger test set, we

downloaded all Wikimedia images for each Leaf Event Node

and its child Events using the Commons category (P373)

linked in Wikidata. Despite Wikimedia is a trusted source,

we noticed some less relevant images for news, e.g., historic

drawings or scans. We applied a k-nearest-neighbor classi-

fier based on the embeddings of a ResNet-50 [18] trained

on ImageNet [12]. For each test image in VisE-Bing, we

selected the k = 100/|Ina | nearest images, where |Ina | is

the number of annotated images of the Leaf Event Node

n 2 NL in VisE-Bing. The test set comprises 8,138 images

for 146 of 148 classes (statistics available on GitHub1).

4. Event Classification

In this section, we propose a baseline classification ap-

proach (Section 4.1) and more advanced strategies as well

as weighting schemes to integrate event type relations from

the Ontology in the network training (Section 4.2).

4.1. Classification Approach

As shown in Table 1 the refined Ontology contains

|NL| = 148 Leaf Event Nodes. As a baseline classifier,

we train a convolutional neural network that predicts Leaf

Event Nodes without using ontology information. The Leaf

Node Vector yL = (y1
L
, . . . , y

|NL|
L

) from Section 3.3 is used

as target for optimization. During training the cross-entropy

loss Lc based on the sigmoid activations ŷL of the last fully-

connected layer is optimized:

Lc = �
X|NL|

i=1

yiL · log ŷiL (1)

4.2. Integration of Ontology Information

In order to integrate information from the proposed On-

tology in Section 3.2, we use the multi-hot encoded Sub-

graph Vector yS = (y1
S
, . . . , y

|N |
S

) introduced in Sec-

tion 3.3 that includes the relations to all |N | = 409 Event

Nodes as a target. We consider two different loss func-

tions. As for the classification approach, we apply the cross-

entropy loss on the sigmoid activations ŷS of last fully-

connected layer to define an ontology-driven loss function:

Lcel

o = �
X|N |

i=1

yiS · log ŷiS (2)

As an alternative, we minimize the cosine distance of the

predicted ŷS and the ground truth yS Subgraph Vectors:

Lcos

o = 1�
yS · ŷS

kySk2 kŷSk2
(3)

The granularity and the number of Event Nodes within

the Subgraphs of Leaf Event Nodes varies for different do-

mains, e.g., sports, elections, or natural disasters. As a

consequence, the loss might be difficult to optimize. In ad-

dition, Branch Event Nodes such as action or process rep-

resent general concepts that are shared by many Leaf Event

Nodes. Some Branch Event Nodes are also redundant since

they do not include more Leaf Event Nodes as their children.

4.2.1 Redundancy Removal

We delete every Branch Event Node that relates to the same

set of Leaf Event Nodes compared to its child nodes in

the Ontology. These nodes are redundant since they do

not include any new relationship information. As a re-

sult, we are able to reduce the size of the Subgraph Vec-

tor yS 2 {0, 1}|N | from |N | = 409 to |NRR| = 245.

4.2.2 Node Weighting

To encourage the neural network to focus on Leaf Event

Nodes and more informative Branch Event Nodes in the

Ontology, we investigated two weighting schemes. Based
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on one of the schemes, each entry in the ground-truth yS

and predicted ŷS Subgraph Vectors is multiplied with its

corresponding weight before the loss according to Equa-

tion (2) or (3) is calculated.

We propose a Distance Weight γn based on the distance

of an Event Node n 2 N to all connected Leaf Event Nodes

in the Ontology. First, the length ln of the shortest path in-

cluding self loops (a node is always in its own path ln > 0)

to each connected Leaf Event Node is determined. The aver-

age length ln of these paths is used to calculate the weight:

γ
n =

1

2(l
n
−1)

. (4)

This weighting scheme encourages the network to learn

from Event Nodes that are close to the Leaf Event Nodes.

They describe more detailed event types which are harder to

distinguish. Please note, that the average length ln changes

if the redundancy removal (Section 4.2.1) is applied.

Similarly, we calculate a Degree of Centrality

Weight ωn for each Event Node n 2 N based on the num-

ber cn of Leaf Event Nodes connected to an Event Node n
and the total number of Leaf Event Nodes |NL| = 148:

ω
n = 1�

cn � 1

|NL|
. (5)

According to Equation (5) the weights of all Leaf Event

Nodes are set to ω
n = 1, 8n 2 NL (denoted as ωL), while,

for instance, the Root Node nR is weighted with ω
nR ⇡ 0

because it is connected to all Leaf Event Nodes. Thus, the

network should focus on learning unique event types such

as tsunami or carnival rather than coarse superclasses that

relate to many Leaf Event Nodes. While the maximum

weight of Branch Event Nodes using the Distance Weights

is 0.5 and defined by the nodes closest to the Leaf Event

Nodes (ln = 2), their corresponding Degree of Centrality

Weight can be close to ωL. To put more emphasis on Leaf

Event Nodes, we set their weights to ωL > 1. We set these

weights to ωL = 6 as discussed in detail in Section 5.3.1.

4.2.3 Inference

The classification approach predicts a Leaf Node Vector ŷL

that contains the probabilities of the |NL| = 148 Leaf Event

Nodes that can be directly used for event classification. On

the other hand, the ontology-driven network outputs a Sub-

graph Vector ŷS with probabilities for all |N | = 409 or

|NRR| = 245 (with redundancy removal) Event Nodes in

the Ontology. There are several options to retrieve a Leaf

Node Vector ŷL for classification using ŷS .

(1) We retrieve the probabilities ŷo

L
that are part of the

predicted Subgraph Vector ŷS . (2) Similar to Equation (3),

the cosine similarity of the predicted Subgraph Vector ŷS

to the multi-hot encoded Subgraph Vector yn

S
of each Leaf

Event Node n 2 NL is measured to leverage the proba-

bilities of Branch Event Nodes. Note that the ground truth

and predicted Subgraph Vectors are first multiplied with the

used weights during network training. As a result, we obtain

|NL| = 148 similarities that are stored as ŷcos

L
2 R

|NL|.

The elementwise product ŷL = ŷo

L
� ŷcos

L
is used as

prediction for the ontology approach, we found that this

combination worked best in most cases. Results using the

individual probabilities can be found on our GitHub page1.

5. Experimental Setup and Results

In this section, the utilized network architecture and pa-

rameters (Section 5.1), evaluation metrics (Section 5.2) as

well as experimental results (Section 5.3) are presented.

5.1. Network Parameters

We used a ResNet-50 [18] as the basic architecture

for the proposed approaches. They were optimized using

Stochastic Gradient Descent (SGD) with Nesterov momen-

tum term [32], weight decay of 1⇥ 10−5, and a batch size

of 128 images. To speed-up the training, the initial learning

rate of 0.01 is increased to 0.1 using a linear ramp up in the

first 10,000 iterations. Then, a cosine learning rate anneal-

ing [25] is applied to lower the learning rate to zero after

a total of 100,000 iterations. The model that achieves the

lowest loss on the validation set is used for the experiments.

5.2. Evaluation Metrics

We report the top-1, top-3, and top-5 accuracy using

the top-k predictions in the Leaf Node Vector ŷL (Sec-

tion 4.2.3). But the accuracy does not reflect the similarity

of the predicted to the ground-truth Leaf Event Node with

respect to the Ontology information. For this reason, we

create a multi-hot encoded Subgraph Vector y
Ŝ
2 {0, 1}|N |

representing the whole Subgraph Ŝ of the predicted (top-1)

Leaf Event Node n̂. Note, that the full Subgraph Vector

with dimension |N | = 409 is created to generate compa-

rable results for models trained with and without redun-

dancy removal. We propose to measure the cosine simi-

larity (CS; similar to Equation (3)) and Jaccard Similarity

Coefficient (JSC; Equation (6)) between y
Ŝ

and the ground-

truth Subgraph Vector yS of the test image to quantify the

similarity based on all |N | = 409 Event Nodes:

JSC =

�

�yS � y
Ŝ

�

�

1

kySk1 ·
�

�y
Ŝ

�

�

1
·
�

�yS � y
Ŝ

�

�

1

(6)

5.3. Experimental Results

In this section, the results of our proposed approaches are

presented. It includes a comparison of the ontology-driven

approaches to the classification baseline (Section 5.3.1), an

analysis of results for specific event types (Section 5.3.2),

and an evaluation on other benchmarks (Section 5.3.3).
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Loss WS RR
Accuracy

JSC CS
Top1 Top3 Top5

C Lc 77.4 89.8 93.6 84.7 87.7

Ocel Lo 67.5 83.3 88.5 81.1 85.4

Ocel
ω

Lcel
o ω, ωL = 1 68.1 83.7 88.9 81.1 85.3

Ocel
6ω

Lcel
o ω, ωL = 6 79.8 91.0 94.0 86.6 89.2

Ocel
6ω

+RR Lcel
o ω, ωL = 6 X 81.7 91.5 94.5 87.9 90.3

Ocel
γ

Lcel
o γ 66.6 83.5 89.1 78.3 82.8

Ocel
γ

+RR Lcel
o γ X 73.2 86.8 91.3 82.6 86.2

Ocos Lcos
o 67.6 77.8 81.8 82.6 86.7

Ocos
ω

Lcos
o ω, ωL = 1 72.7 84.1 87.2 84.5 87.9

Ocos
6ω

Lcos
o ω, ωL = 6 80.2 90.6 93.4 86.3 88.9

Ocos
6ω

+RR Lcos
o ω, ωL = 6 X 80.8 90.1 93.1 86.9 89.4

Ocos
γ

Lcos
o γ 81.1 90.2 93.1 87.1 89.7

Ocos
γ

+RR Lcos
o γ X 80.7 90.3 93.1 86.9 89.5

COcel
6ω

+RR Lc + Lcel
o ω, ωL = 6 X 81.5 91.8 94.3 87.5 90.0

COcos
γ

Lc + Lcos
o γ 81.9 90.8 93.2 87.9 90.4

Table 2. Results on VisE-Bing using different loss functions,

weighting schemes (WS), and ontology redundancy removal (RR).

5.3.1 Ablation Study

The results of the proposed approaches on VisE-Bing are

presented in Table 2. The performances of the ontology-

driven approaches are significantly worse without applying

any weighting scheme, because the correct prediction of the

majority of Event Nodes in a Subgraph is already sufficient

to achieve low loss signals. However, the ontology-driven

approaches greatly benefit from the weighting schemes and

clearly outperform the classification baseline. As discussed

in Section 4.2.2, a higher weight ωL for Leaf Event Nodes

needs to be assigned using the Degree of Centrality Weights

to balance the impact of Branch and Leaf Event Nodes on

the overall loss. Thus, we increased the weight to ωL = 6
as it approximately corresponds to the average number of

Branch Event Nodes in all |NL| = 148 Subgraphs.

Both loss functions Lcel
o and Lcos

o achieve similar re-

sults in their best setups. Models trained with Lcos
o work

well with both weighting schemes, while models optimized

with Lcel
o are better with the Degree of Centrality Weight.

We believe they are more tailored towards single-label clas-

sification tasks and benefit from the higher weights ωL = 6
of Leaf Event Nodes. We were able to achieve slightly bet-

ter results combining both loss functions, since it puts more

emphasis on the prediction of Leaf Event Nodes while still

considering ontology information.

The best results with respect to top-1 accuracy, JSC,

and CS were achieved by combining the classification and

ontology-driven cosine loss term with Distance Weights.

The cosine loss is in general more stable when training with

and without redundancy, which could indicate that it is more

robust to changes in depth and size of the Ontology. Fur-

thermore it works well with the Distance Weight which does

not require an extra weight for Leaf Event Nodes.
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53.3
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80.0
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75.0

poli�cal conference (20)
40.0academic conference (20)

45.0

robbery (20)
85.0

terrorist a�ack (20)
60.0

ceremony (80)
92.5

Olymic Games ceremony (20)

award ceremony (20)
95.0

wedding (20)
100.0

natural disaster (177)
85.3

disaster (438)
74.2

epidemic (19)
57.9

avalanche (20)
75.0

earthquake (20)
90.0

tsunami (17)
64.7

wildfire (20)
100.0

industrial disaster (17)
17.6

occurrence (2779)
Top1: 81.9

protest (20)
90.0

sport (1316)
92.2

poker (20)
100luge (20)

90.0

basketball (20)
100.0

windsurfing (20)
90.0 tennis (20)

100.0

celes�al event (60)
98.3

meteor shower (20)
100.0

eclipse (20)
95.0

supernova (20)
100.0

80.0

54.5
kidnapping (11)

Figure 3. Top-1 accuracy and number of images (in brackets) for a

selection of Event Nodes on VisE-Bing using the CO
cos

γ approach.

The results correspond to the mean top-1 accuracy of all (also

those that are not shown) related Leaf Event Nodes. The Ontol-

ogy is simplified for better comprehensibility.

GT: fireworks event

Top-3 predictions:

1. fireworks event

2. Olympic Games Ceremony

3. solar/lunar eclipse

GT: rugby
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1. rugby
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3. American football

GT: police brutality

Top-3 predictions:

1. protest

2. police brutality

3. terrorist attack

GT: epidemic
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1. epidemic

2. public health emergency

3. nuclear accident

GT: carnival

Top-3 predictions:

1. carnival

2. party
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GT: flood
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1. earthquake

2. cyclone/tornado

3. flood

a b

c d

e f

Photo by Tamara 

Kulikova (CC BY-SA 4.0)

Photo by JacobRuff

(CC BY 2.0)

Photo by CDC Global

(CC BY-2.0)

Photo by Ruben Ortega

(CC BY-SA 4.0)
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Figure 4. Correctly (green) and incorrectly (red) classified exam-

ples of the CO
cos

γ network model from VisE-Wiki.

5.3.2 Performance for Individual Event Types

The top-1 accuracy for a selection of Event Nodes and qual-

itative results of the COcos
γ

model are provided in Fig-

ure 3 and 4. The proposed approach achieves good re-

sults for a majority of event types. Misclassification can

be typically explained by the visual similarity of the respec-

tive events. For example, images for tornado, tsunami, and

earthquake are often captured after the actual event and the

consequences of these natural disasters can be visually sim-

ilar as illustrated in Figure 1 and 4f. It also turned out, that

classes such as protest, earthquake, and explosion are pre-

dicted very frequently, because they depict visual concepts

that are also part of other events. For instance, images of

the event types police brutality, vehicle fire, and economic

crisis are frequently classified as protest since they depict

typical scenes of riots or demonstrations (Figure 4e). The
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best results were achieved for sports-centric event types,

which is not surprising as they are usually unambiguous.

In general, the performance for scheduled event types such

as election and sport is better compared to unexpected or

rare events. We assume the main reason is that journalists

usually broadcast live coverage of scheduled events, while

photos of crimes (e.g., robbery, terrorist attack) and natural

disasters are rare and mostly captured by amateurs.

5.3.3 Comparisons on other Benchmarks

We considered several benchmarks including the novel

VisE-Wiki (Section 3.3) test dataset as well as WIDER [39],

SocEID [6], and RED [6]. These benchmarks have different

characteristics, which allows us to evaluate the ontology-

driven approach in various setups. WIDER comprises

50,574 Web images for 61 event types. The Social Event

Image Dataset (SocEID) consists of circa 37,000 images but

contains only eight social event classes, while Rare Events

Dataset (RED) is comparatively small and contains around

7,000 images from 21 real-world events. We used the splits

provided by the authors for WIDER [39] and SocEID [6].

For RED we randomly used 70% of the dataset for training

and 30% for testing, as suggested by Ahsan et al. [6]. The

splits are provided1 to allow fair comparisons.

As WIDER, SocEID, and RED do not provide an On-

tology, we have manually linked the classes (e.g., soccer

to association football (Q2736) in WIDER) to Wikidata to

define the set of Leaf Event Nodes. Then, we created the

Ontologies (provided on our GitHub repository1) according

to Section 3.2.2. The models are mostly trained with the

parameters from Section 5.1. Due to the smaller dataset

sizes the number of training iterations was reduced to 2,500
for RED and 10,000 for SocEID and WIDER. Cosine learn-

ing rate annealing [25] was applied from the beginning to

lower the learning rate from 0.01 to zero after the speci-

fied amount of iterations. The results for our approach and

other comparable solutions that use a single network and

the whole image as input are presented in Table 5.3.3.

The ontology-driven approaches (CO) clearly outper-

form the classification baseline (C) on VisE-Wiki, WIDER,

and RED. As expected, the results on SocEID just slightly

improved, because less Ontology information are provided

due to the lower number of eight classes and thus Event

Nodes. Compared to the results for VisE-Bing (Table 2), the

performances are worse on VisE-Wiki, because the test set

is not manually annotated and contains noisy or ambiguous

imagery, particularly for rare event types such as city fire.

The same applies for WIDER. Superior performances are

achieved in comparison to similar solutions. It is worth not-

ing that the proposed ontology-driven approach can also be

easily integrated in frameworks that utilize ensemble mod-

els [4, 5, 36] or additional image regions [17, 39].

Approach

VisE-Wiki WIDER [39] SocEID [6] RED [6]

148 classes 61 classes 8 classes 21 classes

Top1 JSC Top1 JSC Top1 JSC Top1 JSC

AlexNet [39] — — 38.5 — — — — —

AlexNet-fc7 [6] — — 77.9 — 86.4 — 77.9 —

WEBLY-fc7 [6] — — 77.9 — 83.7 — 79.4 —

Event conc. [6] — — 78.6 — 85.4 — 77.6 —

AlexNet [5] — — 41.9 — — — — —

ResNet152 [5] — — 48.0 — — — — —

C 61.7 72.7 45.6 56.9 91.2 92.7 76.1 82.1

COcel
6ω

+RR 63.4 73.9 51.0 61.6 91.4 92.9 79.1 84.3

COcos
γ

63.5 74.1 49.7 60.3 91.5 92.9 80.9 85.4

Table 3. Results on different benchmarks. While our results are

superior on SocEID and RED, Ahsan et al. [6] achieved better re-

sults (77.9%) on WIDER using random splits (gray, not provided

on request) also compared to other baselines by training a SVM on

AlexNet embeddings, which is a similar approach for which Ah-

mad et al. [5] reported 41.9%. Their results for WIDER and RED

are nearly identical, although WIDER contains more classes and is

in general more challenging. We believe these results are not ex-

plainable and need to be verified in a reproducibility experiment.

6. Conclusions and Future Work

In this paper, we have presented a novel ontology,

dataset, and ontology-driven deep learning approach for the

classification of newsworthy event types in images. A large

number of events in conjunction with a knowledge base

were leveraged to retrieve an ontology that covers many

possible real-world event types. The corresponding large-

scale dataset with 570,540 images allowed us to train pow-

erful deep learning models and is, to the best of our knowl-

edge, the most complete and diverse public dataset for event

classification to date. We have proposed several baselines

including an ontology-driven deep learning approach that

exploits event relations to integrate structured information

from a knowledge graph. The results on several benchmarks

have shown that the integration of structured information

from an ontology can improve event classification.

In the future, we plan to further explore strategies to

leverage ontology information such as graph convolutional

networks. Other interesting research directions are the com-

bination of several knowledge bases and the investigation of

semi-supervised approaches to learn from noisy Web data.

Acknowledgement

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement no
812997 (project name: ”CLEOPATRA”), and the German
Research Foundation (DFG: Deutsche Forschungsgemein-
schaft) under ”VIVA - Visual Information Search in Video
Archives” (project number: 388420599).

2935



References

[1] Kashif Ahmad and Nicola Conci. How deep features

have improved event recognition in multimedia: A survey.

TOMM, 15(2):39:1–39:27, 2019.

[2] Kashif Ahmad, Nicola Conci, Giulia Boato, and Francesco

G. B. De Natale. USED: a large-scale social event detection

dataset. In Christian Timmerer, editor, Proceedings of the

7th International Conference on Multimedia Systems, MM-

Sys 2016, Klagenfurt, Austria, May 10-13, 2016, pages 50:1–

50:6. ACM, 2016.

[3] Kashif Ahmad, Nicola Conci, and Francesco G. B. De Na-

tale. A saliency-based approach to event recognition. Signal

Process. Image Commun., 60:42–51, 2018.

[4] Kashif Ahmad, Mohamed Lamine Mekhalfi, Nicola Conci,

Giulia Boato, Farid Melgani, and Francesco G. B. De Natale.

A pool of deep models for event recognition. In 2017 IEEE

International Conference on Image Processing, ICIP 2017,

Beijing, China, September 17-20, 2017, pages 2886–2890.

IEEE, 2017.

[5] Kashif Ahmad, Mohamed Lamine Mekhalfi, Nicola Conci,

Farid Melgani, and Francesco G. B. De Natale. Ensemble

of deep models for event recognition. TOMM, 14(2):51:1–

51:20, 2018.

[6] Unaiza Ahsan, Chen Sun, James Hays, and Irfan A. Essa.

Complex event recognition from images with few training

examples. In 2017 IEEE Winter Conference on Applications

of Computer Vision, WACV 2017, Santa Rosa, CA, USA,

March 24-31, 2017, pages 669–678. IEEE Computer Soci-

ety, 2017.

[7] Internet Archive. Internet Archive snapshot for ”Earth-

quake” from 18th February 2020, 2020. https://

web.archive.org/web/20200218100604/http:

/dbpedia.org/page/Earthquake, last accessed on

2020-04-20.

[8] Internet Archive. Internet Archive snapshot for ”Tsunami”

from 14th February 2020, 2020. https://web.

archive.org/web/20200214202750/http:

/dbpedia.org/page/Tsunami, last accessed on

2020-04-20.
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