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Abstract

While object part segmentation is useful for many ap-

plications, typical approaches require a large amount of

labeled data to train a model for good performance. To

reduce the labeling effort, weak supervision cues such as

object keypoints have been used to generate pseudo-part

annotations which can subsequently be used to train larger

models. However, previous weakly-supervised part segmen-

tation methods require the same object classes during both

training and testing. We propose a new model to use key-

point guidance for segmenting parts of novel object classes

given that they have similar structures as seen objects —

different types of four-legged animals, for example. We

show that a non-parametric template matching approach is

more effective than pixel classification for part segmenta-

tion, especially for small or less frequent parts. To evaluate

the generalizability of our approach, we introduce two new

datasets that contain 200 quadrupeds in total with both key-

point and part segmentation annotations. We show that our

approach can outperform existing models by a large mar-

gin on the novel object part segmentation task using limited

part segmentation labels during training.

1. Introduction

Object part segmentation is the problem of producing

pixel-level semantic annotations that indicate fine-grained

object parts instead of just object labels. Part segmenta-

tion has a wide range of practical applications such as fine-

grained object classification [24], pose estimation [18], ob-

ject re-identification [2], etc. While recent deep learning

based methods [5,6,15] give impressive results for part seg-

mentation, most focus on training a segmentation model

for a single object class. However, training a part seg-

mentation model for a new object in this setting requires

annotating a large quantity of training images with fine-

grained, pixel-wise part segmentation masks, which can be

extremely labor-intensive.

To avoid the need for expensive manual annotation, some

Figure 1. Quadrupeds vary widely in both shape and local appear-

ance, but nevertheless share similar body parts. Our goal is to learn

a generalized part segmentation model that can take an image and

corresponding keypoint annotations (top) of a previously unseen

class of animal, and produce a part segmentation map (bottom).

recent work has considered weakly-supervised approaches

for part annotation. Fang et al. [3] propose transfer learn-

ing to generate pixel-level part annotations for an unlabeled

target object instance by using keypoints to propagate part

segmentation knowledge from a labeled source object in-

stance of the same class. As annotating keypoint locations

is significantly less labor-intensive than generating pixel-

wise part masks, this approach can greatly reduce the man-

ual annotation cost. While promising, their work required

the source and target object instances to come from the

same class — i.e., transferring part segmentation annota-

tions from one person to another, or from one animal photo

to another instance of the same animal species. Thus their

approach still requires annotated data for each separate ob-

ject class.

In this paper, we propose the novel idea that part seg-

mentation annotations from one object class could be used

to generate part annotation for other classes. Many object

classes share similar parts, even if their overall appearances

are quite different. We introduce and evaluate an approach

to take a small labeled set of object classes and use it to

segment the parts of an instance of a new object class, with

only minimal human annotation in the form of keypoints.

Our approach should apply to a wide range of object classes

having similar parts and structure. We evaluate on one spe-

cific family of object classes — quadruped (four-legged) an-
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imals — which has widely different sizes and appearances

but share similar parts and structure (see Figure 1).

In particular, we present a novel technique using a CNN

model to combine both appearance and structural informa-

tion to estimate object parts. This allows our model to trans-

fer part information from a limited number of known object

classes to novel object classes with similar structure by con-

sidering the keypoint annotations as the transfer medium.

Our model can handle diverse and novel object poses, and

does not require the source and target objects to have simi-

lar poses. We also handle the problem of segmenting small

and relatively rare object parts (e.g. tail for quadruped an-

imals) by using a non-parametric prediction approach. We

perform extensive experiments to show that our approach

can effectively transfer part segmentations from known ob-

jects classes to novel objects, even with large pose changes,

better than the existing models. Due to the limited number

of datasets appropriate for this novel cross object class part

segmentation problem, we have created two new datasets 1

with a total 200 quadruped animals with both keypoint and

part segmentation annotations.

To summarize, we make the following contributions:

• We develop an end-to-end learning approach to trans-

fer pixel-level object part segmentations from a fully

labeled object set to another weakly-labeled object set,

using keypoint locations to guide the transfer learning

process;

• We show that our model can generate part segmenta-

tion labels for unseen object classes with similar se-

mantic parts as the training objects;

• We evaluate our technique against several baselines

and on several datasets, including two new datasets

with a total 200 animal images with both keypoint and

part segmentation annotations.

2. Related Work

Relevant related work for this paper includes pose-

guided part segmentation models and weakly-supervised

semantic segmentation approaches.

Pose Guided Part Segmentation. Several papers have

considered using object keypoint locations to improve ob-

ject part segmentation accuracy. Xia et al. [21] used a

combination of pose estimation and intermediate semantic

part score maps for refining part segmentations, and also

explored pose-guided segmentation proposal [22]. Mutual

feature sharing between pose prediction and part segmen-

tation was proposed by Nie et al. [12] for improving the

accuracy of both problems. Zhao et al. [26] learned to accu-

mulate weighted multi-scale features for improved human

1Datasets are available at http://vision.sice.indiana.

edu/animal-pose-part

parsing with the constraint of explicit part-joint consistency.

Naha et. al. [11] directly converted pose to pseudo part seg-

mentation and used it to guide the final part segmentation

predictions. But all of this work used strong supervision,

and none of it explored transferring segmentations across

object classes.

Weakly Supervised Semantic Segmentation. Weak su-

pervision for semantic segmentation can come in different

forms such as point supervision [1], scribbles [9], bounding

boxes [7], etc. An iterative refinement approach for trans-

forming pose-based part priors for human body part seg-

mentation has been recently proposed by Yang et al. [23].

While these approaches can be applied for a specific object

class, it is difficult to generalize them to new object classes

due to the difference in part shapes and appearances.

3. Our Approach

Our goal is to train a model that can segment the body

parts of an instance of a novel (previously unseen) object

class, given only the image and keypoints of that instance.

In this paper, we specifically consider transferring among

different four-legged animals, although the approach could

be applied much more generally. We use the animal case

here just for ease of discussion. The training dataset con-

tains a very small number C of object classes (which is

much smaller than the number of quadruped species in the

world). Assume all training and test objects have a max-

imum of p body parts and k keypoints. Consider a train-

ing instance as sci = {Ici ,Ki, Pi}, i = 1...N c, where

Ici ∈ Rh×w×3 is an input image of class c, Ki ∈ Rh×w×k

are the heatmaps generated from the set of k 2D keypoint

annotations, and Pi ∈ Rh×w×p is the corresponding part

segmentation of the object. Let N =
∑C

c=1 N
c be the

total number of training images. Now consider a test in-

stance xc′ = {Ic
′

t ,Kt} where c′ can be a completely differ-

ent quadruped species than any c in C. Our goal is to use

the provided keypoint annotations of xc′ to transfer the part

segmentation labels from the training animals to generate

part annotations for xc′ .

3.1. Overview

Our model consists of three main parts: (1) the Struc-

tural module, (2) the Visual module, and (3) the Transfer

block. The Structural module encodes the keypoints of a

given instance and provides useful structural information to

the Visual module, which then takes an image as input and

generates feature representations for estimating the part seg-

mentations of the given object. The Transfer block allows

both the visual module and the structural module to com-

municate with each other for propagating useful structural

and appearance information.

To estimate the final part segmentations, we use template

images which then produce part basis feature representa-
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Figure 2. Pipeline of our approach. (a) The Visual module takes the target image It and the Structural module takes the keypoint heatmaps

Kt as input, and generates a convolutional feature representation. (b) The convolutional feature and the ground truth part segmentation

map of a template object is used to generate the final prediction mask of a query object. (c) Detailed architecture of the transfer block used

for interactions between the visual and structure streams.

tions. The part features from the template images are used

to predict the part class label of each pixel of the given tar-

get image. An overview of the complete approach can be

seen in Figure 2.

3.2. Structural Module

Our goal is to generate body part segmentation maps of

images of unseen quadruped animals using the information

from few instances of very few other quadruped classes. A

straightforward approach to this problem is to train a fully-

convolutional neural network (FCN) using the training set

and then simply apply it on the new animal. However, the

new animal can have quite different body shape and appear-

ance from the training animals, even though they share the

same number of body parts. To transfer the part informa-

tion from the training classes to any novel animal, we use

keypoint locations to guide the part segmentation estima-

tion process. We assume the keypoint locations are already

given for each image, either through an accurate automatic

algorithm or through manual annotation (which can easily

be provided with just a few clicks, unlike a dense segmen-

tation map which is extremely labor intensive). Since key-

points are common between the known and the novel ob-

jects, they can be used to propagate part information from

the training objects to any novel test object by binding the

part predictions with the keypoints.

Our Structural module learns to transform the pose or

keypoint annotations of a given object to useful semantic

information for predicting part segmentations. This mod-

ule consists of a U-Net [14] , which is an encoder-decoder

CNN with skip connections. We first convert the keypoint

locations to 2D heatmaps for each of the instances. Let us

consider the keypoint heatmap label of the target object as

Kt. The encoder reduces the spatial dimension of the in-

put so that the network can understand the relative locations

of the keypoints of the target object, and the decoder then

transforms the keypoint locations to useful information for

part segmentation. Consider the output of decoder step i of

the Structural module as Si
t .

3.3. Visual Module

While the Structural module provides structural informa-

tion from keypoints only, we need another module to cap-

ture the appearance information of the given object. The

Visual module is a fully-convolutional encoder-decoder net-

work with skip connections. The network first encodes the

target input image Ic
′

t from class c′ as a convolutional fea-

ture map and then passes it through a series of learnable

deconvolution layers to predict the final part segmentation

output. The structural information of the object from the

Structural module is propagated to the Visual module at the

decoding stages for generating the final convolution feature

representation of the object. This allows both the visual and

structural features to complement each other and produce a

more refined part segmentation results than the Visual mod-

ule could do by using appearance information alone. We
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denote the output of decoder step i of the Visual module as

Ai
t.

3.4. Transfer Block

The Transfer block serves as the communication medium

between the Structural and Visual modules. The Transfer

block takes Ai
t from the Visual module and Si

t from the

Structural module, which are both convolutional features

with the same height and width. The Transfer block then

concatenates these feature representations and passes them

through two different streams, each consisting of a convolu-

tion layer with 1x1 kernel, a batch normalization layer, and

a ReLU layer. We call these outputs Ãi
t and S̃i

t . The number

of output channels of Ãi
t and S̃i

t are the same as those of Ai
t

and Si
t , respectively. We then modify Ai

t and Si
t by adding

Ãi
t and S̃i

t to them, respectively.

Then we pass the modified Ai
t and Si

t to the next de-

coding stage, so that both the Structural and Visual streams

receive complementary information for better part segmen-

tation. We apply this Transfer block after every decoding

stage of the Structural module and after the first four decod-

ing stages of the Visual module. A depiction of a Transfer

block is in Fig 2(c).

3.5. Template Generation

Since we assume that we have very few training images

annotated with part segmentations, using a typical convolu-

tion layer for the final prediction does not perform as well

for small, often occluded parts (e.g., tail) as it does for larger

and more visible parts (e.g., torso). To alleviate this prob-

lem, we use a non-parametric template matching approach

for pixel-wise class prediction that was previously explored

for few-shot segmentation [19]. We found this technique

was particularly helpful for relatively rare parts, especially

with few training images.

For generating the template of each part during train-

ing, we randomly sample an image Ics having all the parts

present for each training target instance Ic
′

t . If no such tem-

plate image is available, we can use multiple images as tem-

plates to generate feature representations of all the parts,

but for our case we always found enough template images

with all parts in the training dataset. We also ensure that

the template object is from a different class than the target

training instance (i.e., c′ is different than c), to encourage

generalization between the parts of different object classes

despite their appearance differences (e.g., horses and cows

have very different tails). After selecting a template, we

pass the template image Ics and corresponding keypoints Ks

through our model to generate the final convolution feature

output As from the visual module. We then use the ground

truth part segmentation mask Ps of the template image Ics to

generate the template features tj for each part j (including

Pascal Part COCO Part AwA Part

Sheep Horse Cow Dog Cat

train 2627 2468 2639 1775 1979 N/A N/A

test 245 404 233 1097 893 100 100

Table 1. The number of instances in three part segmentation

datasets. For Pascal, we train on 4 categories and test on the other

one. For COCO and AwA, we train only on all 2872 images from

the Pascal Part dataset to guarantee that the testing animals are not

seen during training.

background) using masked average pooling [25],

tj =

∑
l A

l
sI[P

l
s = p]∑

l I[P
l
s = p]

, (1)

where l is a pixel location and I[.] is an indicator function

that produces 1 for true and 0 for a false argument. A cosine

similarity map is then generated using each template part

feature tj and the target object feature At to generate the

part segmentation prediction. The cosine map is also multi-

plied by a fixed value following [19]. The cosine maps for

all the parts are concatenated to generate the prediction map

P̃t, with number of channels equal to p.

3.6. Training

The model is trained end-to-end using a per-pixel cross

entropy loss. P̃t is first passed through a softmax function

to produce P̃St and then finally passed to the cross entropy

loss function to calculate the segmentation loss, lossseg ,

lossseg = −
1

L

∑

l

∑

j∈p

I[P l
t = j] log˜PSl

t;j , (2)

where L is the total number of pixel locations.

4. Experiments

We conducted extensive experiments to evaluate the ef-

fectiveness of our proposed approach.

4.1. Dataset

There are very few publicly available datasets for

quadruped animals that have annotated part segmentation.

To address this limitation, we annotated two additional

datasets, covering more novel classes.

Pascal Part is a part-segmentation dataset which also con-

tains keypoint locations and bounding box annotations [20].

We use the same setup as [11] and only consider the im-

ages containing any of the 5 quadruped animals: Cat, Cow,

Horse, Dog, and Sheep. The ground truth bounding box

annotations are used to crop the objects from the images,

so each image contains a single quadruped animal. This

preprocessing yields a total of 2,872 images from the 5
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quadruped classes. Following the previous work [3,11], we

only consider 4 parts for each animal: head, body, legs, and

tail, although the dataset contains part annotations of more,

finer-grained parts as well.

AwA Part is a dataset based on the Animals with Attributes

dataset. AwA has 50 animal classes and is widely used for

zero-shot learning [8]. This dataset contains only the class

and attribute labels for each object, without any keypoint

or part annotation labels. We selected 10 quadruped animal

classes, none of which overlap with any of the 5 quadrupeds

in Pascal Part although they have structural similarities. The

animals are Antelope, Bobcat, Buffalo, Fox, Giant Panda,

Leopard, Lion, Pig, Rhinoceros, and Wolf. We randomly

selected 10 images for each of these 10 classes with vari-

ous poses, and then manually annotated each of these 100

images with both keypoints and pixel-level part segmenta-

tion labels using the publicly available LabelMe annotation

tool [16]. We also calculate the top-left and right-bottom

locations of each object using the annotated keypoints, add

a margin of 50 pixels around them to generate a pseudo

bounding box annotation, and crop the object using the

bounding box. We use this dataset only for testing and not

for training.

COCO Part is based on the COCO dataset [10] and con-

tains 9 quadruped animals, of which 5 overlap with the

quadrupeds in the Pascal Part dataset. We selected the other

4 quadrupeds, Zebra, Giraffe, Elephant and Bear, and sam-

pled 25 images for each of these 4 classes. Like AwA Part,

we then created another new test dataset by annotating these

100 images with keypoints and part segmentation labels. It

is more challenging than Pascal Part and AwA Part due to

animals like Giraffe and Elephant which have significantly

different body structure from the other quadrupeds. We ap-

ply the same cropping method as with the AwA Part dataset.

Like AwA Part, this dataset is also used only for evaluation,

not for training.

4.2. Implementation Details

For the Structural module, we first convert the keypoint

2D location annotations to heatmaps using a Gaussian func-

tion with σ = 7, where each heatmap has a height and

width of 128. The encoder of the Structural module has

5 downsampling residual blocks and the decoder has 4 up-

sampling residual blocks. The upsampling blocks use bi-

linear upsample layers. For the Visual module, we use the

encoder-decoder network with skip-connections from [17].

The encoder part of the network consists of an Imagenet-

pretrained VGG-16 network, and the decoder consists of

a series of 5 upsampling blocks with learnable deconvolu-

tion layers. The Transfer block consists of two separate sets

of blocks, each containing a 1x1 convolution layer, a batch

normalization layer, and a ReLU activation layer in series.

All the layers in the model are learned during training. We

train the full network end-to-end using cross-entropy loss.

We use 5 fold cross-validation to consider one animal

class at a time as the test class, while the remaining four

classes are training classes for the Pascal Part dataset. The

numbers of training and test images for each class are given

in Table 1. For the other two datasets, we train the network

using all the images in the Pascal Part dataset and use the

trained network for predicting part segmentations of the ob-

jects in AwA Part and COCO Part. We use batch size 24

and resize the input images and the ground truth part seg-

mentations to 256 × 256 during training. We use the RMS-

prop optimizer for training with a learning rate of 0.0001

and train the network for 150 epochs. All the experiments

were done using a single NVidia Titan X GPU. We use Py-

Torch [13] to implement our model.

4.3. Baselines

We consider several other models as baselines to com-

pare with our results.

RefineNet proposed by Fang et al. [3], transforms part an-

notations of similar pose source objects to a target object

part annotation using keypoint labels and affine transforma-

tions. For this baseline, we use five nearest neighbor labeled

source objects for each target object for transferring the part

segmentation. We use the source code provided by the au-

thors for the prior generation and refinement networks. In

our case, source and target objects can have different num-

bers of visible keypoints, so we try to approximate the in-

visible keypoints as much as possible (e.g. use the average

of the locations of left and right eyes to estimate the loca-

tion of the nose in cases when it is invisible) to make sure

that the source and target keypoints are matched, and then

follow the same pipeline as in [3]. Also, during training, we

use the same “separate source and target class” approach

used for our model.

Transform is a pose-to-part module proposed by Naha et

al. [11]. This network takes keypoint locations as input and

directly convert them to part segmentations using a U-Net.

Hourglass network is widely used for keypoint prediction

and part segmentation problems. We follow the setting of

Nie et al. [12] to train an hourglass network only for part

segmentation without using the keypoint prediction module.

The hourglass network uses multi-stage loss functions and

is trained from scratch.

TernausNet [17] is the encoder-decoder network with skip-

connections used as our Visual module. This baseline only

takes the target image as input and does not use keypoint

annotation for the part segmentation.

TernausNet+ is a modified TernausNet model to take key-

points as input in addition to the image. We produce multi-
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Figure 3. Qualitative comparison on Pascal Part dataset.

Figure 4. Qualitative comparison on tail segmentation using regu-

lar parametric pixel classification approach and the non-parametric

template matching approach on Pascal Part Dataset. The second

row shows the results from parametric classification and the third

row shows the results of the non-parametric template matching ap-

proach. The last row shows the ground truth.

scale keypoint heatmaps and concatenate them with each

decoder input features of TernausNet. This model makes

the structural information available to the TernausNet while

predicting the part segmentation in a simplistic manner.

Naha et al. [11] combined pseudo part segmentation gener-

ated by a pose-to-part module with a visual evidence mod-

ule. Their approach is conceptually similar to ours but uses

a less effective method to propagate knowledge from the

keypoint and known object part segmentation labels.

Ours (Classifier) is our network with a convolutional clas-

sification layer at the end instead of using template match-

ing for pixel classification. We use this baseline to show

the effects of using a regular classification layer and cosine

similarity-based non-parametric approach for part segmen-

tation from limited data.

4.4. Evaluation on Pascal Part Dataset

We applied five-fold cross-validation (considering four

animals for training and one animal for testing) on the Pas-

cal Part Dataset. Table 2 shows comparisons with the base-

lines, using intersection-over-union (IOU) as the evaluation

metric. The table shows that our model outperforms all

baselines for each of the animals. RefineNet has the worst

performance among all the baselines which is consistent

with the results from [11]. Transform performs better than

RefineNet but the results are significantly worse compared

to the other models, which suggests that pose information

alone is not enough for accurate part segmentation.

Hourglass, our third baseline, performs significantly bet-

ter than RefineNet and Transform but fails to generalize to

novel test classes. As Hourglass is a large network with

many parameters, it can easily overfit to the training classes,

but performs better when there is more training data (such

as for sheep and cow). In spite of having fewer parameters

than Hourglass, TernausNet performs much better in terms

of generalization. This shows that the appearance simi-
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larities between different quadruped animals can be used

to perform generalized part segmentation to some extent.

The results of TernausNet+ show that combining the struc-

tural information in the form of keypoint heatmaps with vi-

sual features helps to produce better part segmentation re-

sults. But TernausNet+ still performs significantly worse

than our model, which also indicates that simply concate-

nating structural information with visual features does not

yield major improvements. Naha et al. [11] performs much

better than these baselines which shows directly generating

part labels from the pose and incorporating it in the visual

stream can significantly improve part segmentation even for

novel classes.

All of these baseline models performs significantly better

for sheep, cow, and horse compared to cat and dog, presum-

ably because cat and dog have both significantly less train-

ing data and more diverse poses than the other classes. In-

terestingly, our model performs similarly for all the classes

irrespective of their pose difficulties and amount of train-

ing data, as can be seen in Table 2. This suggests that our

model more efficiently uses the structural information for

performing generalized part segmentation of novel objects.

Finally, the parametric classifier approach performs sig-

nificantly better than Naha et al. [11] approach, which

shows that our proposed transfer block is more effective

in utilizing pose information for improved part segmenta-

tion. But our non-parametric approach performs signifi-

cantly better overall (in terms of average IOU across parts)

and especially for the tail, while sometimes performing

slightly worse for some other larger parts. We expect this is

because the tail is often occluded by the larger and more vis-

ible body parts such as torso and legs, and thus the paramet-

ric classification model often mistakes tail regions for either

legs or torso. On the other hand, the template matching-

based approach gives more equal importance to all parts

at inference time. This finding is aligned with the results

in [4, 19] which showed that cosine similarity-based non-

parametric classifiers perform better for classes with less

training data. Qualitative comparisons of tail segmentation

between our template-based model and the convolutional

classifier-based model can be seen in Figure 4.

Fine-Grained Part Segmentation. In addition to the above

experiments using the same number of parts as previous

work, we also perform experiments on fine-grained part

segmentation with more part categories. In particular, we

consider left legs and rights legs as two separate parts. As

shown in Table 3, our model again outperforms all the base-

lines except that the regular classifier performs slightly bet-

ter than the template matching approach for cow. Interest-

ingly, the performance gaps increase for the five-part seg-

mentation task between our model and the best performing

baseline [11] compared to the four-part segmentation task

for some animals. For example, the difference between our

Method Pose BG Head Torso Legs Tail Avg

Test on Sheep:

RefineNet [3] + 43.66 8.86 35.90 7.67 0.21 19.26

Transform [11] + 63.93 59.94 56.86 28.07 12.14 44.18

Hourglass [12] 81.62 57.30 73.99 47.21 6.97 53.41

TernausNet [17] 83.59 66.60 77.97 51.40 7.62 57.43

TernausNet+ + 83.56 69.73 78.11 51.95 8.38 58.34

Naha et al. [11] + 83.61 73.95 77.42 52.96 11.28 59.84

Ours (Classifier) + 84.68 76.33 80.33 55.31 12.57 61.84

Ours (Template) + 85.01 75.62 80.23 56.01 22.02 63.77

Test on Horse:

RefineNet [3] + 45.79 10.29 27.83 8.24 0.98 18.63

Transform [11] + 66.39 58.84 53.85 28.98 7.58 43.12

Hourglass [12] 80.42 42.73 58.62 48.60 12.42 48.55

TernausNet [17] 83.04 59.04 66.19 52.11 26.32 57.34

TernausNet+ + 83.54 64.15 67.86 55.47 22.70 58.74

Naha et al. [11] + 83.85 70.29 69.15 58.72 30.90 62.58

Ours (Classifier) + 85.43 72.46 70.96 60.66 29.45 63.79

Ours (Template) + 85.76 72.44 71.99 60.67 42.82 66.73

Test on Cow:

RefineNet [3] + 44.78 11.43 31.54 8.34 0.51 19.32

Transform [11] + 64.65 57.84 61.39 30.34 6.03 44.04

Hourglass [12] 79.09 50.72 64.42 46.98 12.81 50.80

TernausNet [17] 81.53 60.28 69.73 50.53 12.94 55.00

TernausNet+ + 81.87 67.81 72.09 52.88 16.35 58.19

Naha et al. [11] + 82.65 75.65 75.15 55.43 20.82 61.93

Ours (Classifier) + 83.42 76.56 76.24 56.97 21.97 63.03

Ours (Template) + 83.13 77.62 76.99 55.93 22.75 63.28

Test on Dog:

RefineNet [3] + 42.22 18.58 19.71 8.32 0.28 17.82

Transform [11] + 62.41 63.60 47.64 29.81 8.62 42.41

Hourglass [12] 78.26 54.18 46.93 33.39 6.85 43.92

TernausNet [17] 82.52 66.82 56.26 42.22 10.80 51.72

TernausNet+ + 83.12 69.12 57.24 44.96 12.12 53.31

Naha et al. [11] + 83.82 76.10 60.65 48.72 18.36 57.52

Ours (Classifier) + 85.21 79.75 64.06 52.45 23.12 60.91

Ours (Template) + 85.34 78.50 63.72 52.94 34.19 62.93

Test on Cat:

RefineNet [3] + 37.99 19.10 20.94 7.24 0.21 17.10

Transform [11] + 58.13 65.46 43.19 18.10 5.50 38.07

Hourglass [12] 74.40 51.92 49.81 26.12 2.40 40.92

TernausNet [17] 81.50 68.46 60.10 32.30 9.74 50.41

TernausNet+ + 81.61 70.82 61.44 33.87 11.55 51.85

Naha et al. [11] + 81.42 79.52 64.07 39.32 16.17 56.09

Ours (Classifier) + 84.55 81.88 69.01 39.10 19.00 58.70

Ours (Template) + 84.58 82.56 68.38 42.71 28.93 61.43

Table 2. Evaluation on Pascal Part dataset in terms of 4-part pars-

ing. We test on one category and train on the other four. BG

denotes background and Avg is the average across parts.

Method Pose Sheep Horse Cow Dog Cat

RefineNet [3] + 16.03 15.51 16.23 14.87 14.20

Transform [11] + 38.43 39.62 40.31 38.53 35.06

Hourglass [12] 29.86 35.51 44.81 37.9 36.02

TernausNet [17] 48.84 48.1 48.32 45.58 45.58

TernausNet+ + 50.39 49.67 50.92 46.31 46.51

Naha et al. [11] + 55.21 56.85 57.97 53.45 50.85

Ours (Classifier) + 56.83 58.98 59.64 55.86 54.09

Ours (Template) + 59.08 59.49 59.07 59.99 58.29

Table 3. Study of 5-part parsing including background, head,

torso, left legs, right legs, and tail. Results tested on Pascal Part

dataset in terms of the mean IoU.
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AwA COCO

Method Pose BG Head Torso Legs Tail Avg BG Head Torso Legs Tail Avg

RefineNet [3] + 48.25 11.05 31.20 14.25 0.60 21.07 58.47 8.14 31.95 14.42 0.63 22.72

Transform [11] + 68.30 62.38 61.51 31.60 5.86 45.93 76.20 51.48 59.32 37.07 5.49 45.91

Hourglass [12] 80.52 58.34 65.50 46.22 11.34 52.39 85.86 36.38 60.23 50.11 9.75 48.47

TernausNet [17] 83.17 70.47 71.28 53.93 23.30 60.43 88.76 41.79 64.30 54.35 10.87 52.01

TernausNet+ + 83.42 72.03 70.63 55.83 20.36 60.45 89.84 46.22 65.84 58.84 12.57 54.66

Naha et al. [11] + 83.54 75.99 73.13 59.14 21.64 62.69 91.09 64.93 74.20 63.63 22.21 63.21

Ours (Classifier) + 84.48 77.34 74.39 56.96 21.66 62.96 89.79 66.15 72.49 63.44 23.08 62.98

Ours (Template) + 84.35 78.16 74.64 59.45 25.50 64.42 90.15 66.59 74.66 63.47 24.24 63.82

Table 4. Evaluation on AwA and COCO dataset with novel classes in terms of 4-part parsing. BG denotes as background.

Figure 5. Qualitative results on AwA Part dataset.

model and [11] for the four-part segmentation task on the

dog class is around 5.41 percentage points, compared to

6.45 for the five-part segmentation task. Similarly for the

object class cat, the difference between [11] and our model

is 5.34 percentage points when the number of parts is four

but becomes 7.44 when the number of parts is five. This

indicates that our model can distinguish fine-grained parts

much more effectively than the baseline models.

4.5. Evaluation on AwA Part Dataset

For the AwA Part dataset, we train the network on the full

Pascal Part dataset and then use the objects in this dataset

for testing. As shown in Table 4, our model performs best

in terms of mean IOU but the performance gains are not

as high as on Pascal Part. This indicates that when there

is enough training data and the target classes have similar

shapes as the source classes, any segmentation model can

perform relatively well. Table 4 also shows that the dif-

ference in performance between the template matching and

the regular classification approaches for tail segmentation

is not nearly as high as before. This suggests that the co-

sine similarity-based classifier performs very similarly to

the regular classifier when enough training data is available.

Qualitative results for this dataset are in Figure 5.

4.6. Evaluation on COCO Part Dataset

We again use the models trained on the full Pascal Part

dataset to estimate part segmentations for objects in COCO

Figure 6. Qualitative results on COCO Part dataset.

Part. The unusually long neck of giraffe and the trunk of the

elephant classes create significant challenges to the baseline

models for this dataset. But our model still outperforms the

baseline models in terms of mean IOU, as shown in Table 4.

Qualitative results on this dataset can be seen in Figure 6.

5. Conclusion

In this paper, we introduce the novel problem of cross-

class part segmentation using keypoint guidance. Our pro-

posed approach utilizes keypoint annotations for transfer-

ring part annotations from a small labeled known quadruped

set to any novel quadruped animal with the same number

of body parts. We show that by using an effective transfer

learning mechanism, such generalization can be achieved

even when the amount of training labels is very small. We

also show that the existing model can achieve the same level

of generalization with a larger training dataset but performs

much worse when the labeled examples are few. We hope

our work will inspire more work on the cross-class part

transfer task for other domains as well.
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