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Abstract

Knowledge Distillation is an effective method to trans-

fer the learning across deep neural networks. Typically,

the dataset originally used for training the Teacher model

is chosen as the “Transfer Set” to conduct the knowledge

transfer to the Student. However, this original training data

may not always be freely available due to privacy or sen-

sitivity concerns. In such scenarios, existing approaches

either iteratively compose a synthetic set representative of

the original training dataset, one sample at a time or learn a

generative model to compose such a transfer set. However,

both these approaches involve complex optimization (GAN

training or several backpropagation steps to synthesize one

sample) and are often computationally expensive. In this

paper, as a simple alternative, we investigate the effective-

ness of “arbitrary transfer sets” such as random noise, pub-

licly available synthetic, and natural datasets, all of which

are completely unrelated to the original training dataset in

terms of their visual or semantic contents. Through ex-

tensive experiments on multiple benchmark datasets such

as MNIST, FMNIST, CIFAR-10 and CIFAR-100, we dis-

cover and validate surprising effectiveness of using ar-

bitrary data to conduct knowledge distillation when this

dataset is “target-class balanced”. We believe that this im-

portant observation can potentially lead to designing base-

lines for the data-free knowledge distillation task.

1. Introduction

Knowledge Distillation (KD) [3, 7] is a contemporary

technique for transferring learning across neural network

models. Typically, knowledge from one or more complex

and deep models (called Teachers) is distilled into a rel-

atively lightweight model (called Student). The core idea

of Knowledge Distillation, as discussed in the seminal pa-

per by Hinton et al. [7], is to transfer the (input to output)

learned mapping function from Teacher to Student via shar-

*denotes equal contribution.

ing the “dark knowledge” extracted by the Teacher on the

training images. This typically is achieved via matching

the soft targets (or soft labels, i.e., output of softmax layer)

predicted by the Student to that of the Teacher for the same

inputs. This is the distillation mechanism that enables trans-

fer of the better generalization capability (i.e., the “knowl-

edge”) of the Teacher to the Student. Thus, Knowledge Dis-

tillation has established itself as a very useful and practical

tool because of its simplicity and potential.

The samples used for performing distillation constitute

the “Transfer set”, which is typically required to be con-

structed using the data sampled from the target distribu-

tion. Therefore, the most commonly used transfer set is the

original training dataset on which the Teacher model was

trained. However, this requirement has been identified as a

limitation (e.g. [17, 15]) since it is common now-a-days that

many popular pre-trained models are released without pro-

viding access to the training data (e.g. Facebook’s Deepface

model trained on 4M confidential face images). This is due

to one or more practical constraints such as (i) privacy (e.g.

models trained on patients’ data from hospitals), (ii) prop-

erty (proprietary data of companies that invest on collection

and annotation), and (iii) transience (observations from the

training of a reinforcement learning environment do not ex-

ist).

To handle this “data-free” (or zero-shot) distillation sce-

nario, most of the approaches broadly follow either of the

two ways: (i) compose a synthetic transfer set by directly

utilizing the trained Teacher model that acts as a proxy to

the target data (e.g. [17, 14]), or (ii) capture the target data

distribution using generative models (e.g. [15, 4, 1]). Both

these approaches suffer from heavy computational over-

head: iteratively crafting synthetic samples via several steps

of backpropagation through the Teacher or learning a com-

plex GAN like generator framework that involves compli-

cated optimization. Some of these approaches (e.g. [14])

additionally need to store meta-data about the original train-

ing dataset (e.g. feature statistics of the Teacher model)

for generating the synthetic transfer set. Further, in case

of image data, the generated samples are often observed to
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Figure 1. (a) Example of pseudo samples generated by existing data-free KD approaches for the CIFAR-10 dataset compared against actual

target data samples (rightmost column), (b) Our proposed KD Baseline: An approach depicting simple and effective way of performing

KD in absence of the original training data by utilizing arbitrary data samples to construct the transfer set.

be visually quite dissimilar (Fig. 1(a)) to the training data

samples. That means, they do not lie close to the training

samples in the data manifold. At the same time, it is unclear

how or why these samples, despite seemingly being “out-of-

distribution” and “far-from-real”, enable effective transfer

between the models, as evidenced by the reported results.

These observations motivate us to investigate the effec-

tiveness of any arbitrary transfer set towards the task of

knowledge distillation, despite it being unrelated to the orig-

inal training data. If proven effective, such datasets can

in fact be used to design important and often strong base-

lines for the KD tasks, while saving us the large overhead

of composing synthetic transfer sets, as incurred by the ex-

isting data-free distillation approaches. This is especially

true for text/image domains, where it is easy to collect large

volume of unlabeled arbitrary data from ubiquitous publicly

available sources. More importantly, this investigation can

uncover important insights into the mechanism of the distil-

lation process.

Therefore, in this work, we consider a wide range of un-

labelled stimuli from different content worlds in the context

of distillation. Specifically, we consider (i) random noise

inputs, (ii) arbitrary synthetic datasets, and (iii) arbitrary

natural datasets towards composing the transfer set. How-

ever, it is observed (refer to Sec. 3.2) that the deep neu-

ral networks often partition the arbitrary input domain into

disproportionate classification regions. In other words, ar-

bitrary data samples may not be projected uniformly into

the learned classification regions of the Teacher. This im-

balance in the classification regions results the Student to

overfit the classification boundaries during the distillation.

In other words, it can not preserve the class decision bound-

aries learnt from the original training data, thereby seriously

affecting the Student’s generalization performance. These

observations lead to the hypothesis that an ideal transfer set

should equally represent all the classification regions of the

Teacher model which can minimize the distortion in deci-

sion boundary and hence would help in achieving effective

knowledge transfer. In other words, the arbitrary transfer set

needs to be “target-class balanced” in order to successfully

impart Teacher’s learning to the Student.

In summary, the contributions of this work are, as fol-

lows:

• For the first time in the literature, we show that arbi-

trary transfer sets, unrelated to the target data set, can

be effectively utilized for the task of knowledge distil-

lation in the “data-free” scenario.

• To maximize the efficacy of distillation using such

transfer sets, we present a simple yet effective ap-

proach of making them “class-balanced”.

• We empirically demonstrate the effectiveness of the

proposed approach on multiple benchmark datasets

such as MNIST, FMNIST, CIFAR-10 and CIFAR-100,

as we achieve performance comparable to state-of-the-

art data-free distillation approaches.
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Figure 2. Percentage of the total number of arbitrary samples distributed over the set of the target classes (of CIFAR-10) by the trained

Teacher model for different arbitrary datasets.

2. Related Works

Our work is broadly related to the data-free Knowledge

Distillation. Early works (e.g. [3, 7]) use the entire training

data as the transfer set. Buciluǎ et al. [3] suggest to mean-

ingfully augment the training data for effectively transfer-

ring the knowledge of an ensemble onto a smaller model.

Recently, there have been multiple approaches to perform

knowledge transfer in the absence of training data. They can

be broadly categorized into two branches: (i) methods that

extract samples related to the training data from the Teacher

model, (ii) methods that attempt to learn the training distri-

bution (e.g., using GAN-like generative models).

General idea of the first category is to iteratively mod-

ify a randomly initialised stimulus (input) via back prop-

agation in order to maximize the Teacher’s class confi-

dence. Nayak et al. [17] compose the synthetic transfer

set, which is carefully crafted by modelling the soft-label

space. Lopes et al. [14] and Bharadwaj et al. [2] save infor-

mation in the form of Teacher’s feature statistics in order to

acquire transfer set that is closer to the training data. They

further add diversity to the set via adding small noise to the

saved statistics and generating the samples. These methods

are computationally expensive requiring thousands of back

propagation iterations per sample. Further, some of them

require to store the feature statistics of the Teacher model

which may not be available.

Another direction of research for handling the absence

of training data is to train a generative model that can seed

the proxy samples. [15, 4, 1] show that properly optimized

generative models can generate samples to be strongly clas-

sified by the Teacher models. After learning such GAN-like

models, generated samples can be used as a transfer set for

performing the Knowledge Distillation. Despite generating

far from real and out-of-distribution samples (Figure 1(a))

these methods are observed to successfully do the knowl-

edge transfer. [1] attempts to use a proxy natural dataset for

influencing the generations to be similar to proxy data distri-

bution while bringing its features close to original training

data distribution. These methods involve training genera-

tive models that require careful balancing of multiple terms

in the objective. In this work, we take a different direction

to study the effectiveness of cheaply available, unlabelled

arbitrary data as transfer set. We put forward an intuitive

strategy to compose effective transfer sets that can yield po-

tential baselines and empirically demonstrate its efficacy.

3. Class-balanced Arbitrary Transfer Sets

We first briefly review the principles of Knowledge Dis-

tillation, and subsequently introduce our framework to com-

pose an effective transfer set from unlabelled arbitrary data

sources.

3.1. Knowledge Distillation (KD)

Knowledge Distillation typically uses the original train-

ing data as the transfer set on which the Teacher model

is trained. Let us denote the Teacher as T , Student as S,

their parameters as θT and θS respectively, and the trans-

fer set as D that consists of the input-target tuples denoted

by (x, y). Note that typically Student’s capacity would be

smaller compared to that of Teacher, i.e., |θS | ≪ |θT |. The

objective of Knowledge Distillation is to train the Student

in order to match the soft labels produced by the Teacher

along with learning to predict the correct hard labels on the

training set. This objective can be realized via minimizing

L =
∑

(x,y)∈D

LKD(S(x, θS , τ), T (x, θT , τ))+λ·LCE(ŷ, y)

(1)

where, LKD is distillation (e.g. l2 or cross-entropy) loss

computed between the soft labels of T and S, LCE is cross-

entropy loss comparing the ground truth (y) with the pre-

diction (ŷ) by S, τ is the temperature used in distillation,

and λ is a hyper-parameter balancing the loss terms.
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3.2. KD with Arbitrary Transfer Set

In absence of the original training data (refer to sec. 1

for such scenarios) multiple approaches (e.g. [15, 17, 2, 1])

compose synthetic transfer set and achieve effective distilla-

tion. However, it is clear (Figure 1(a)) that these samples are

visually very different from the training samples and hence

may not actually lie on the data manifold.

Motivated from these observations, we consider investi-

gating the effectiveness of transfer sets composed of arbi-

trary samples towards conducting KD. That is, if the trans-

fer sets are composed via random picking of samples from

a limited supply of publicly available datasets, as opposed

to careful crafting or selection. For instance, in case of the

object recognition models trained on CIFAR-10 [9] target

dataset, Clevr [8] and SVHN [18] are a pair of candidate

arbitrary datasets. Note that the later two are unrelated to

the target dataset, i.e., they do not share category labels or

similar visual/semantic information with the target dataset.

When we compose a transfer set, generally we attempt

to ensure that there are samples from all the classification

regions of the Teacher. However, it is unlikely that an

arbitrarily composed transfer set will have samples from

all the classification regions representing the data distribu-

tion. That means, the distribution of labels predicted by the

Teacher can be extremely unbalanced. As a consequence,

the decision boundaries learnt by the Student model us-

ing arbitrary data as a transfer set will be distorted with

respect to that learnt using the original training samples

(i.e. boundaries learnt by the Teacher). For instance, Fig-

ure 2 shows the distribution of labels predicted by AlexNet

Teacher trained on CIFAR-10 for three different arbitrary

datasets: Random noise, Clevr and SVHN. It can be noticed

that these distributions are far from uniform. This might be

attributed to the disproportionate classification regions la-

belled by pretrained deep models on arbitrary transfer sets.

Clearly, it is unlikely that arbitrary data would be able to

preserve the same class boundaries learnt using the original

training data. Hence, the randomly composed transfer sets

are not ideal for performing the distillation (section 4).

In light of such important observations, we propose a

simple but effective strategy to ensure representation of all

the classification regions in the transfer set, which helps to

mitigate the distortion in the decision boundaries. While

composing an arbitrary transfer set, we enforce it to have

a label distribution closer to uniform over the set of target

labels by design. Note that the predicted labels would still

be completely unrelated to the visual patterns, i.e., one may

not expect any semantic/visual similarity between a data-

point in the arbitrary transfer set and the original training set

even for the same predicted label. Despite being unrelated

samples, we aim to have these spanned uniformly across

all the classification regions, thereby forming the ‘Target

class-balanced’ arbitrary transfer set. Algorithm 1 (also

Algorithm 1: KD with class balanced arbitrary

transfer set

Input: Teacher T, Student S, arbitrary datasets :

{D1, D2, . . . DM}, intended maximum size

of the transfer set N
Output: Trained Student model weights θS ,

D̄: Target-class balanced Transfer set

1 Obtain C: Number of categories from the

output-space dimension of T, and Initialize D̄ = φ
2 Initialize sample counts of each target class in D̄:

ci = 0, ∀ i ∈ {0, 1, . . . C − 1}
3 for i=1:M do

4 while ∃ j such that cj < ⌊N/C⌋ and Di 6= φ do

5 sample xk ∈ Di

6 Di ← Di \ {xk}
7 l← class-label predicted by T on xk

8 if cl < ⌊N/C⌋ then

9 D̄ ← D̄ ∪ {xk}
10 cl ← cl + 1

11 end

12 end

13 if cj = ⌊N/C⌋ ∀ j ∈ {0, 1, . . . C − 1} then

break;

14 end

15 Perform the Distillation via optimizing for θ∗S =
argmin

θS

∑
x∈D̄ LKD(T (x, θT , τ), S(x, θS , τ))

Figure 1(b)) shows the steps for composing such a transfer

set from a repository of freely available unlabelled datasets

using our hypothesis. Note that it may not be possible to

get exactly uniform predicted label distribution with the fi-

nite supply of arbitrary samples. However, the goal here

is to carefully avoid the aforementioned extreme imbalance

that creeps in with a random composition. Unlike existing

data-free KD approaches such as [17, 4, 1], we do not gen-

erate any synthetic samples and use the existing unlabelled

datasets in their original forms. While composing the ar-

bitrary transfer set, we only require a single forward pass

for each sample through the Teacher model and there are no

backpropagations involved which makes our proposed algo-

rithm much less compute-intensive, especially when com-

pared to existing methods [17, 4, 1]. After composing such

a transfer set (D̄), we perform distillation via optimizing

the Student model (θS)

θ∗S = argmin
θS

∑

x∈D̄

LKD(T (x, θT , τ), S(x, θS , τ)) (2)

where LKD is the distillation objective (cross entropy loss

is used in our experiments), τ is the temperature used in

softmax layers of T and S. Note that, unlike eq. 1, eq. 2

does not contain the classification loss (LCE) because the
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Figure 3. Comparison of the distillation performance using unbalanced and balanced arbitrary transfer sets. Balanced set outperforms its

unbalanced counterpart across all the three different varieties of arbitrary datasets: noise, synthetic and unrelated natural data.

transfer set is arbitrary, i.e., unrelated to the target classes

and hence forcing hard labels on these samples is counter-

intuitive.

4. Experiments

In this section, we empirically demonstrate the impor-

tance of target-balanced arbitrary transfer sets as a strong

baseline for performing distillation. Before we present the

experimental results, we describe the CNN classifiers and

the datasets we used in our experiments.

MNIST/FMNIST and LeNet-5: The MNIST [12]

dataset contains images of handwritten digits. FMNIST

[20] has images of several fashion items. Both the datasets

contain 60000 training images, 10000 test gray scale im-

ages. Lenet-5 is taken as Teacher and Lenet-5-Half as Stu-

dent (identical setting to [14, 17]).

CIFAR-10 and AlexNet/ResNet: CIFAR-10 [9] dataset

has colour images of size 32 × 32. AlexNet [10] is taken

as Teacher and AlexNet-Half as Student to have a fair com-

parison with [17, 1]. Similar to [4], we also perform ex-

periments with Resnet-34 as Teacher model and Resnet-

18 as Student which are bigger networks in comparison to

AlexNet and AlexNet-Half.

CIFAR-100 and Inception-v3: In order to demonstrate

the validity of our hypothesis even on large scale datasets,

we also experiment on CIFAR-100 [9] which is similar to

CIFAR-10 but contains 100 classes instead of 10. Train data

has 500 images per class while test data contains 100 im-

ages per class. Similar to [1], we take Inception-V3 [19] as

Teacher and ResNet-18 [6] as Student.

We use the following datasets as Transfer sets in the ab-

sence of original training data:

Random noise: Uniform random noise in [0, 1] for

each pixel in an image is used to construct transfer set

for MNIST, FMNIST and CIFAR-10. For CIFAR-100,

we found that creating balanced set using Gaussian noise

(µ = 0.5, σ = 0.1) (clipped to [0, 1]) is faster.

Synthetic datasets: We use publicly available synthetic

dataset ‘Clevr’ [8] as unbalanced transfer set. This dataset

contains 70000 images. In order to improve the class-

balance of Clevr, we add another synthetic dataset, called

Mid-Air [5] on top of it. This dataset contains images un-

der different climate conditions. We resize each image to

32× 32.

Natural datasets: We utilize SVHN [18] dataset as un-

balanced arbitrary natural transfer set. It has 73257 images

of street view house numbers. We use the cropped version

of the dataset where each image is resized to 32 × 32. To

achieve class balance while keeping the “naturalness” of

images in the transfer set, we add samples from TinyIma-

geNet [11] on top of it.

4.1. Arbitrary Transfer Sets for Distillation

In all our experiments, size of the transfer set is kept ap-

proximately equal to that of corresponding Teacher’s train-

ing set. This enables a fair comparison of the distillation

performance between arbitrary and training datasets. The

exact size of the transfer sets used in the experiments along

with exact number of arbitrary samples labelled in each of

the target classes is provided in the supplementary material.

We present and analyse the experimental results separately

for each of the different stimuli.

Random noise stimuli: We consider the following two

scenarios: (i) Unbalanced: randomly sampled noise sam-

ples, (ii) Balanced: noise set on which Teacher predicts all

the target labels almost uniformly. In Fig. 3, the first two bar

graphs for each dataset show the distillation performance of

the random noise transfer set. In the case of MNIST, we ob-

serve that even an arbitrary random noise gives a decent per-

formance of 81.62%. By class-balancing the random noise,

we can increase the accuracy to 92.88%. In the case of FM-

NIST and CIFAR-10 we get a significant improvement of

close to 36% and 17% respectively on target-class balanc-

ing while 3.3% gain in case of CIFAR-100.
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Transfer Set Balanced
MNIST FMNIST CIFAR-10 CIFAR-100

w/o Aug w/ Aug w/o Aug w/ Aug w/o Aug w/ Aug w/o Aug w/ Aug

Random Noise ✗ 81.62 89.01 33.49 38.37 14.38 47.50 2.09 3.30

Random Noise ✓ 92.88 95.76 70.15 74.33 31.30 67.40 5.40 18.20

Clevr ✗ 93.68 97.11 46.63 72.68 36.58 72.35 5.24 17.45

Clevr+Mid-Air ✓ 96.14 98.53 66.44 83.38 47.18 75.76 8.79 22.28

SVHN ✗ 97.78 98.81 80.93 83.85 40.46 72.33 17.56 40.59

SVHN + Tiny ✓ 98.75 98.96 81.56 84.75 64.90 79.19 45.23 67.18

Table 1. Effect of Augmentation: Distillation performance using unlabelled arbitrary transfer sets on multiple datasets with and without

augmentation (Tiny stands for ‘TinyImageNet’).

Algorithm MNIST FMNIST CIFAR-10 CIFAR-100

Teacher 99.34 90.84 83.03 79.05

Student-KD [7] 99.25 89.66 81.78 69.65

ZSKD [17] 98.77 79.62 69.56 −

DeGAN [1] − 83.79 80.55 65.25

Ours

(SVHN + TinyImageNet)
98.96 84.75 79.19 67.18

Algorithm CIFAR-10

Teacher (ResNet 34) 95.58

Student-KD (ResNet 18) [7] 94.34

DAFL [4] 92.22

Ours

(TinyImageNet + SVHN)
92.92

Table 2. Comparison with SOTA : Performance of proposed method in comparison with ZSKD [17] and DeGAN [1] (table on the left), &

DAFL [4] (table on the right)

Synthetic stimuli: For the unbalanced case we con-

sider the Clevr dataset to perform the distillation without

looking at their predicted labels by the Teacher. For the

class-balanced case, we add samples from another synthetic

dataset, Mid-Air, towards obtaining approximately equal

number of samples in each of the target classes, as described

in Algorithm 1. The third and fourth bar graphs (for each

dataset) in Figure 3 show the distillation performance of the

synthetic stimuli. We get a decent improvement of 2.46%
and 3.55% in case of MNIST and CIFAR-100 while signif-

icant gain of 19.81% and 10.60% for FMNIST and CIFAR-

10 respectively by using a class-balanced Synthetic dataset.

Natural image data stimuli: We consider SVHN as

the arbitrary transfer set. For achieving class-balance, we

use samples from TinyImageNet which are added on top of

SVHN as described in Algorithm 1. The last two bar graphs

for each dataset in Figure 3 show the results with natural

data as transfer set. We get a small gain of 0.97%, 0.63% for

MNIST and FMNIST due to the (relatively) low imbalance

while a significant gain of 24.44% and 27.67% for CIFAR-

10 and CIFAR-100 respectively due to high imbalance in

target classes, where class balancing has a profound effect.

4.2. Augmentation Helps the Underrepresented
Classes

Note that in all the three scenarios, practically it is very

difficult to achieve perfect class-balance (identical number

of samples in each target class) with limited supply of ar-

bitrary data. We noticed that more frequently the classifi-

cation regions learned by the deep models are heavily out

of proportion and that makes it difficult to have arbitrary

samples representing all the target classes equally. How-

ever, the objective of achieving better distillation perfor-

mance is to reduce the extreme class imbalance and com-

pose a transfer set that represents all the classification re-

gions. Therefore, after achieving some level of balance (as

in Algorithm 1), we further improve the representation from

the under populated classes via performing augmentations

during the distillation process. Our augmentation includes

scaling, rotation, flipping, adding random noise (Gaussian,

salt and pepper), and multiple combinations of them. Al-

though augmentations add diversity to all the target classes,

underrepresented classes get more benefited than the rela-

tively better populated ones resulting in further less distor-

tion of the class decision boundaries and hence, improved

distillation performance. Table 1 shows the results with and

without augmentation across all the transfer scenarios over

multiple datasets. It is evident that augmentation consis-

tently results in better distillation performance via boosting

the underrepresented classes in the transfer set.

4.3. Comparison With the Stateoftheart

In this subsection, we compare the proposed baseline

against the state-of-the-art data-free knowledge distillation

approaches. Table 2 (on left) presents the comparison of

distillation performance of the proposed approach against

ZSKD [17] and DeGAN [1] on multiple datasets. In or-

der to have a fair comparison, we experimented with the

same models used in [17] and [1]. The proposed baseline

clearly performs better on MNIST, FMNIST and CIFAR-
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100. In case of CIFAR-10, it is close to DeGAN’s [1]

performance. But, DeGAN achieves better performance

on CIFAR-10 when samples from the classes of CIFAR-

100 are used. These CIFAR-100 samples are substan-

tially more similar to CIFAR-10 than our arbitrary dataset

(SVHN+TinyImageNet), thereby resulting in this improved

distillation performance. If an unrelated dataset is used for

distillation from the Teacher network on CIFAR-10, pro-

posed baseline outperforms the DeGAN significantly (as

shown in Figure 4). We have also compared our proposed

baseline with DAFL [4]. Again, to have a fair comparison,

we have used the ResNet-34 Teacher and ResNet-18 Stu-

dent used in [4]. The performance comparison is shown

in Table 2 (on right). Our baseline on arbitrary/unrelated

transfer set performs slightly better. Further, unlike DAFL,

it does not require any complicated GAN training.
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Figure 4. Comparison of our proposed approach with DeGAN [1]

when unrelated transfer sets are used to distill the knowledge from

Teacher model trained with CIFAR-10.

4.4. Strict Arbitrary Transfer Sets : Explicit Re
moval of Overlapping Classes

In this subsection, we explicitly make sure that the ar-

bitrary transfer sets do not have any overlap with the target

categories and is semantically very dissimilar with the target

data samples. We investigate the true potential of such strict

arbitrary transfer sets when they are target-class balanced

and used for knowledge distillation in complete absence of

original training data.

We chose TinyImageNet as arbitrary data in section 4.1

due to its relatively larger size, which can help to make the

transfer set better balanced. Also, this dataset is a widely

used publicly available dataset. However, it may contain

a few overlapping classes with CIFAR. Therefore, we fur-

ther perform experiments to show that the distillation per-

formance is close to that using TinyImageNet even if we

consider arbitrary datasets that do not share any categories.

SVHN contains images of digits which are dissimilar

to CIFAR-10 and are not balanced across target classes of

trained Teacher model on CIFAR-10. Several different un-

related datasets are added on top of SVHN to improve the

target-class balance using our proposed Algorithm 1. In-

Transfer Set Distillation Accuracy

SVHN (Digits) +

CelebA (celebrity faces)
75.87 %

SVHN + CelebA +

Fruits360 (fruits & vegetables)
76.33 %

SVHN +

CIFAR-100 (non-overlapping)
79.13 %

SVHN + TinyImageNet 79.19 %

Table 3. Distillation performance when completely unrelated and

non-overlapping arbitrary transfer sets are used to distill knowl-

edge from Teacher model trained on CIFAR-10.

stead of using TinyImageNet which may have samples re-

lated to target categories, we add CelebA [13] dataset on

top of it. CelebA has images of celebrity faces and does

not have any overlap with CIFAR-10 classes. Please note

that in all our experiments we make sure that the number of

samples in arbitrary transfer set do not exceed the per class

sample count of original training data in order to have a fair

comparison. The results are reported in Table 3 where com-

pletely unrelated arbitrary transfer sets along with augmen-

tations are used for distillation. SVHN mixed with CelebA

when used as a transfer set, gives a decent accuracy of 75.87

%. We further observe gain in the distillation performance

when the target-class balance is improved by mixing an-

other unrelated dataset i.e. Fruits360 [16] that contains im-

ages of fruits and vegetables. Please note that it is still not

perfectly target-class balanced and one can further improve

the accuracy by adding more non-overlapping datasets and

ensuring equal amount of arbitrary samples in each of the

target classes labelled by the pretrained Teacher.

DeGAN [1] avoids the overlapping classes of CIFAR-

100 with CIFAR-10 and reports results using the non over-

lapping 90 classes of CIFAR-100. For a strictly fair compar-

ison with DeGAN, we also take the same non-overlapping

CIFAR-100 samples to balance the transfer set synthesized

using SVHN samples. From Table 3, we observe simi-

lar performance (SVHN+TinyImageNet) even by using the

non-overlapping CIFAR-100 as the arbitrary dataset. How-

ever, since CIFAR-100 samples are added on top of SVHN,

we effectively utilize only 18818 samples from CIFAR-100

as opposed to DeGAN which uses all the 45000 samples.

We, thus, empirically observe that it is possible to

achieve decent distillation performance even with strictly

arbitrary transfer sets (completely unrelated to and non-

overlapping with original training data), when these transfer

sets are target class-balanced. However, one can further im-

prove the distillation performance by carefully selecting the

arbitrary data sources by leveraging the domain knowledge

and the knowledge of the task at hand while utilizing our

proposed strategy (see Algo 1) to compose the transfer sets.
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Size of

Transfer Set (SVHN)

Binary-MNIST (Teacher Accuracy: 99.44%) Binary-FMNIST (Teacher Accuracy: 93.38%)

Unbalanced Balanced Unbalanced Balanced

16000 88.89± 2.05 89.70 ± 1.86 75.04± 1.83 77.68 ± 1.15

8000 72.60± 2.41 82.69 ± 1.73 76.28± 1.30 78.10 ± 0.66

4000 84.66± 2.27 91.38 ± 1.81 77.58± 0.67 79.94 ± 0.89

2000 83.84 ± 3.06 82.93± 3.00 68.35± 2.10 73.37 ± 0.54

1000 81.48± 1.32 82.38 ± 1.35 72.86± 0.89 75.21 ± 0.47

500 83.67 ± 0.25 83.12± 1.23 72.95± 0.70 74.67 ± 0.31

Table 4. Comparison of distillation performance (i.e., Student accuracy in %) with unbalanced and balanced arbitrary transfer set (SVHN),

when the Teacher network is trained on unbalanced binary MNIST and FMNIST training samples.

4.5. Unbalanced Target Dataset: Generality of the
Proposed Strategy

Until now we have experimented with target datasets that

are class-balanced. That is, our Teacher models are trained

on equal number of samples from each class of the target

dataset. In this subsection, we demonstrate the effective-

ness of the balanced arbitrary transfer sets towards KD even

when Teacher is trained on unbalanced target (training)

datasets. For this purpose, we have created binary classifi-

cation tasks out of MNIST and FMNIST datasets separately,

referred to as Binary-MNIST and Binary-FMNIST repec-

tively. We merged samples from three of the ten classes

(labels 0, 1, and 2) into one set, referred to as the ‘minor-

ity’ class and the rest seven into another set, referred to as

the ‘majority’ class. Therefore the resulting binary clas-

sification datasets will have a 3 : 7 class imbalance. We

train LeNet Teachers on the corresponding datasets with

balanced mini-batches. Trained Teachers report test accu-

racies of 99.44% and 93.38% respectively. Note that the test

sets comprise equal number of majority and minority class

samples from the corresponding original test data. Since

there would be more test datapoints for the majority class,

we picked samples equal to that in the minority class test

set. Also, in order to ensure maximal diversity within the

‘majority’ test set, equal number of samples from the con-

stituent MNIST (or FMNIST) labels (3 to 9) are considered.

We then conduct distillation with (i) random (unbal-

anced), and (ii) balanced arbitrary transfer sets and present

the Student’s accuracy on the test sets in Table 4. Note that

the transfer sets of varying size (from 500 to 16000) are

composed from the SVHN dataset and the accuracies are

reported across 20 runs. We can clearly observe that the

target-balanced arbitrary transfer sets outperform the ran-

domly composed counterparts in vast majority of the cases,

thereby validating the generality of the proposed baseline.

5. Conclusion

Distillation enables a low capacity model (Student) to

learn a sophisticated mapping which is not possible oth-

erwise (via normal cross entropy training). In order to

cope with the constrained operational conditions, recent ef-

forts [15, 4, 17, 1] attempt to distill in a data-free scenario

via artificially generated transfer set. Despite using out-of-

distribution samples that are visually far away from the ac-

tual training data, these methods have reported competitive

distillation performance. Motivated by these observations,

in this work, we explore (i) if a simple baseline can be ob-

tained for data-free KD by leveraging publicly available ar-

bitrary data, and (ii) whether this baseline can be an alterna-

tive to the substantially more complex approaches. Further,

we presented a simple strategy based on intuitive hypothe-

sis to maximize the transfer performance of such sets. Upon

extensively experimenting with multiple datasets and model

architectures, we bring out the following observations:

• Arbitrary (unrelated to the target data) transfer sets can

be leveraged to deliver competitive KD performance,

when compared with the computationally expensive

state-of-the-art data-free distillation methods. Thus,

such transfer sets can lead to the design of important

baselines for the data-free knowledge distillation task.

• For any arbitrary transfer set, being ‘target class-

balanced’ maximizes the transfer performance.

• Though class-balancing improves the transfer perfor-

mance, it depends on the similarity of the transfer set to

the original training data. In other words, as the trans-

fer set lies closer to the target data manifold, knowl-

edge transfer improves. (Please refer to the supple-

mentary materials).

Hinton et al. [7] attributed the effectiveness of distillation

process to the dark knowledge extracted out of the train-

ing data. However, it is very intriguing to understand how

even a completely unrelated transfer set with only the dis-

tillation objective can help a Student to achieve competitive

generalization. Also, in the data-free KD setting, it needs

to be investigated how the similarity of an arbitrary dataset

with the target data distribution can be estimated, especially

when multiple such datasets are available for facilitating

knowledge distillation. We leave these two aspects of the

data-free distillation for future research..
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