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Abstract

Measuring the quality of a sports action entails attend-

ing to the execution of the short-term components as well

as overall impression of the whole program. In this assess-

ment, both appearance clues and pose dynamics features

should be involved. Current approaches often treat a sports

routine as a simple fine-grained action, while taking little

heed of its complex temporal structure. Besides, they rely

solely on either appearance or pose features to score the

performance. In this paper, we present JCA and ADA blocks

that are responsible for reasoning about the coordination

among the joints and appearance dynamics throughout the

performance. We build our two-stream network upon the

separate stack of these blocks. The early blocks capture the

fine-grained temporal dependencies while the last ones rea-

son about the long-term coarse-grained relations. We fur-

ther introduce an annotated dataset of sports images with

unusual pose configurations to boost the performance of

pose estimation in such scenarios. Our experiments show

that the proposed method not only outperforms the previous

works in short-term action assessment but also is the first to

generalize well to minute-long figure-skating scoring.

1. Introduction

From just a glance at a video or by looking into its key

frames, you may infer what action is being carried out in

the video. But what if you are asked to assess the quality of

the action?

Judging a competitive sporting event and awarding

scores to the performers needs a keen eye for details while

still looking from the bird’s eye view on the whole routine.

This challenging problem has introduced a new branch to

the human activity analysis field which is known as Action

Quality Assessment (AQA). Due to the wide applications of

AQA in many sports like gymnastics, diving, and etc., this

new field has attracted considerable attention in recent years

[15, 16, 17, 26]. However, the negligence of some factors

has affected the performance of previous action assessors.

Multi-scale Temporal Kernels for Fine-grained 
Temporal Dependencies (Short-term Elements)

Approach First Flight Second FlightRepulsion Landing

Intro Verse Chorus Bridge

Coarse-grained Temporal Dependencies
(Overall View)

Figure Skating (5824 frames)

Gym-Vault (103 frames)

Figure 1: To assess the performance of an athlete both fine and

coarse-grained temporal dependencies should be captured. The as-

sessment is based on the coordination among the joints/body parts

as well as appearance dynamics features.

The first factor regards how to model an activity. A

sports routine can be considered as a long-term activity,

comprising some medium-term phases. For example, in a

figure-skating contest the athlete phrases his/her program

into intro, verse, chorus, and bridge in unison with the mu-

sic being played (see Fig.1). Each of these phases is com-

posed of some short-term elements like jumps, spins, and

footwork sequences. The judge should keep track of the

execution of each short-term element to award the Grade

of Execution (GOE) [24]. On the other hand, the ath-

lete’s overall skating skill and composition of the elements

through each medium-term phase are assessed to provide

the Program Component Score (PCS) [23]. The same thing

can be applied to other sports fields. A gym-vault rou-

tine is constructed of the approach, first flight (a half twist

on the ground with fully straight knees and body), repul-

sion (pushing off from the table with straight legs), second

flight (airborne performance of saltos and twists in a tuck,

pike, or free position), and landing phases (see Fig.1). The

well-execution of each short-term element like a salto or a
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twist as well as having an overall smooth performance in

medium-term phases would result in a high score. Existing

methods [16, 15, 26] mainly rely on short-term temporal re-

lations of few consecutive frames and neglect the long-term

temporal relations that create a holistic view over phases.

This problem escalates in the case of longer activities like

figure skating in which each medium-term phase may take

a few minutes to unfold. This fact has led the most of the

previous approaches to be only applicable to short-lasting

activities like gym-vault [16, 15, 13].

The second factor regards where and when to attend

more to award the score. In typical individual sports footage

the cameraman tracks the athlete to locate him at the center

of the video. Thus, there should be a higher attention on the

middle pixels of each frame to assess the performance. In

the temporal domain, the judge may deliberately place some

components over some others. For example, in a figure skat-

ing contest as the time goes on the athlete gets more tired

and performing each element becomes more difficult. In or-

der to acknowledge the skill and stamina of the skater, the

judge gives bonus marks to well-execution of short-term el-

ements in later phases [22]. Thus, the later parts of the per-

formances are most likely to make the differences between

the athletes’ scores. Another example is gym-vault in which

having a perfect landing in the last frames has a higher con-

tribution than other phases in the scoring schema. On the

other hand, there are some parts in long-term activities on

which the judge may unintentionally focus more on. The

PCS score of each figure-skater is awarded after the whole

program which takes about three minutes to complete. As

a result, the composition of the components and the holis-

tic view of the last medium-phases are remembered most.

Overall, there has been a lack of exploration of these fac-

tors in awarding the final score.

Moreover, unlike action recognition in which

appearance-based features are informative enough for

most cases to classify an action, integrating pose features

in the process of assessing a performance is of great signifi-

cance. Nevertheless, due to the difficulty of estimating pose

features in the extreme contortions of the body throughout

the performance, most of the previous methods [16, 11, 26]

resorted to the whole-scene appearance features to regress

the score. As a result, the coordination and dynamics of

the body’s joints, an important criterion of assessing an

action, is ignored. Recently Pan et al. [15] proposed a

graph-based method to capture the local motion of some

certain body parts as well as coordination among joints

in each frame. The resulted features together with the

raw whole-scene appearance-based features are encoded

to regress the final score. However, splitting the skeleton

into some predefined patches may lead to ignoring the

dependencies between some others. Besides, the blurriness

of image frames, as well as extreme contortions of the

body, led to underperformance of the pose estimator and

the whole network respectively. To facilitate the estimation

of pose in such extreme cases, Nekoui et al. introduced

the ExPose dataset that covers such scenarios in a diving

routine. However due to the domain discrepancy between

different contortive sports, the dataset has limited utility in

other fields.

In this paper, we propose EAGLE-Eye a modular two-

stream network that sits on top of extracted appearance-

based and pose-based features of a sports activity and eval-

uates the quality of the performance. The first stream is

responsible for assessing the coordination among the joints

and a variety of body parts with the help of a stack of JCA

blocks (see the upper part of Fig.2). The first blocks cap-

ture the short-term temporal dependencies of the individual

joints at different tempos with the help of multi-scale tem-

poral kernels and temporal-wise channel convolutions. By

stacking more of these JCAs both the temporal and semantic

receptive field gets more broad, contributing to capture the

holistic view of the performance as well as dependencies

of different body parts/super-joints. Likewise, the second

stream captures the both fine and coarse-grained appearance

dynamics with the help of its stacked ADA blocks (see the

lower part of Fig.2). The network is also supplied with some

spatial and temporal attention blocks to increase the contri-

bution of the frames’ middle pixels and last medium-term

phases in assessing the sports action.

We summarize the contributions of the paper as follows:

• In order to handle estimation of the pose in the extreme

contortions of the body in different sports, we have ex-

tended the ExPose dataset [13] to cover other sports

than diving like synchronized diving, snow-boarding,

and skiing. It is demonstrated that training the pose es-

timator on this dataset improves its performance in the

extreme pose configurations of such sports.

• We propose a modular network that quantifies how

well an action has been performed based on both fine

and coarse-grained temporal dependencies. Same as

the case of human judges grading schema, both visual

and pose clues have been involved in the assessment.

• The proposed network not only outperforms the pre-

vious works in short-term actions assessment but also

is the first to demonstrate a good generalization to the

case of long-term sports activities like figure-skating.

We further provide a thorough ablation study to evalu-

ate the effectiveness of each block of the network.

2. Related Work

Action Quality Assessment: Previous works in the lit-

erature of AQA can be mainly divided into two categories.
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Appearance-based methods only use the whole-scene ap-

pearance features to regress the score of each performance.

Parmar et al. [16] feed C3D [21] features of the routine into

a regression network (SVR or LSTM) to get the score. Li

et al. [11] explore the contribution of dividing each sample

into some fragments to get the most distinctive C3D fea-

tures of each routine. In [17], taking average over C3D fea-

tures of multiple clips in the temporal domain is shown to

be effective. It was further demonstrated that leveraging

commentary and detailed description of each diving routine

would help have a better action evaluator.

A few works have focused on the pose features to regress

the score. Pirsiavash et al. [19] apply DCT on the pose

sequence of a routine and feed the result to a linear SVR.

Recently, Pan et al. [15] proposed joint difference and com-

monality modules to represent the coordination among the

joints and motion of certain body parts for consecutive time-

steps. The resulted features together with the raw appear-

ance I3D features are ultimately fed to a score regressor.

Very recently, Nekoui et al. [13] introduced a dataset of ex-

treme poses to alleviate the underperformance of the pose

estimator in a diving routine. They further regressed the

score of a routine by late fusion of assessing the appearance

features and local motion of some hand-crafted body parts.

The significance of long-term temporal modeling in a

minute-long activity has made all of the aforementioned

methods only applicable to short-term routines like diving.

A simple way to score a minute-long activity like figure-

skating is to treat it as a short-term one and simply feed the

C3D features of the routine to a SVR [18]. Recently, Xu et

al. [26] proposed multi-scale skip LSTMs to cover a more

broad receptive field. The resulted features are further fused

with compacted local feature representation provided by a

self-attentive LSTM to regress the score of a figure-skating

routine. However, not only the pose features are completely

ignored but also the rigid structure of the proposed method

is not applicable to short-term activities. Besides, skipping

some frames/clips to have a broad receptive field would re-

sult in ignoring some useful visual clues.

In this paper, we propose a modular network that is appli-

cable to both short-term and long-term activities. By stack-

ing more JCA and ADA layers, our short-term action asses-

sor turns into a long-term one (see Fig.2).

Temporal Structure Modeling: Extracting the tempo-

ral structure of a video has been extensively studied for ac-

tion recognition. Niebles et al. [14] model each complex

action as a composition of some motion segments and use

Latent SVM to get the parameters of the model. To capture

the long-term temporal relations, TSN [25] evenly divides

the video into multiple segments and fuses the class score

of sampled snippets from each segment. TRN [28] learns

the pair-wise long-term temporal relation between sampled

frames at different scales and fuses the resulted features.
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Figure 2: Overview of our pipeline. The network regresses the

score of each performance based on both pose and appearance

clues with attending to short-term elements as well as holistic view

of the performance.

Recently, Hussein et al. [7] proposed a modular layer that

sits on top of appearance features of a complex action video

to learn its long-term temporal dependencies.

All above appearance-based methods have explored the

significance of temporal modeling in action recognition.

Here we investigate the temporal structure of an action to

assess it based on both appearance and pose features.

3. Method

This section outlines our proposed action quality asses-

sor. The overview of our pipeline is depicted in Fig.2. Here

we delve into each block of the network and describe the

intuition behind them.

3.1. Explicit Spatiotemporal Attention

Given the small size of existing datasets in AQA, propos-

ing a simple attention mechanism that does not make the

network deeper is of great importance. Here, we intro-

duce our simple yet effective AQA-specific attention block

to capture the most important parts of a routine. The first

objective of this block is to model the deliberate higher at-

tention of a judge to the last parts’ short-term elements of a

routine in the temporal domain. To this end, we propose an

explicit temporal attention block that gradually attenuates

the contribution of the first phases of a performance. Let’s

consider the input of this block as X with the dimension of

T×H×W×C in which T is the number of timestamps, H

and W are the spatial size of each frame, and C is the num-

ber of channels. Then the block produces X̃ by element-

wise multiplication of the input feature with explicit tempo-

ral importance mask (Me):

X̃h,w,c = Xh,w,c ⊙M
e (1)

M
e
t = a+ (1− a)

t

T
(2)
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Figure 3: The overview of a JCA block.

In which 1 ≤ c ≤ C, 1 ≤ t ≤ T , 1 ≤ h ≤ H , 1 ≤ w ≤ W

and a is a constant coefficient 0 ≤ a ≤ 1. As a result,

a ≤ Me
t ≤ 1.

The other objective of this module is to increase the spa-

tial attention on the center of each frame. We propose a

spatial attention block that applies a gaussian importance

mask to its feature map input. As a result, the middle pixels

of the appearance features which are more likely to repre-

sent the athlete’s body would have a higher contribution in

awarding the score.

X̃t,c = Xt,c ⊙M
s (3)

M
s
x,y = e

−
(x−µ)2+(y−µ)2

2σ2 (4)

3.2. Joints Coordination Assessor (JCA)

Our proposed JCA block is responsible for extracting the

temporal pattern of body joints and parts which is depicted

in Fig.3. Firstly it takes the T×H×W×C pose heatmaps

of the routine in which C represents the number of joints.

This input is fed to a set of multi-scale channel-wise separa-

ble temporal convolutions to capture temporal dependencies

of joints at different scales. Utilizing fixed-size temporal

kernels seem to be too rigid to model the complex tempo-

ral structure of short-term elements in a routine. A diver

may perform a somersault and a twist together. These two

elements may have different tempos and it is important to

capture temporal dependencies throughout each element.

The next step is to capture the coordination among the

joints. To this end, a temporal-wise separable channel con-

volution extracts the dependencies in the semantic subspace

in which each channel represents an individual joint.

In assessing an action, the motion and coordination of

different body parts is also monitored consistently. The

symmetry of different body parts during the performance

makes it aesthetically pleasant. In order to systematically

capture such features we employ a set of average pooling

with different kernel and stride sizes along channels. As a

result, a variety of body parts/super-joints at multiple scales

are formed. Consequently, the convolution filters of the next

JCA block would capture the motion and coordination of

these super-joints.

As discussed before, having a holistic view over the

performance is of great importance for assessment pur-

poses. Therefore, a temporal max pooling block at the

end of each branch increases the temporal receptive field.

Thanks to this, the next JCA block would be able to cap-

ture longer temporal dependencies. Obviously, minute-long

activities like figure-skating require stacking more of these

JCA blocks to capture the dependencies between distant

frames (see Fig.2).

In the case of group activities, the pose heatmap contains

more than one instance for each joint. In such cases the de-

pendence between the joints of each performer with another

should be extracted. For example, in a synchronized div-

ing contest capturing the symmetry between the perform-

ers’ joints is an important criterion of assessment. The spa-

tial convolution block of JCA is responsible for catching

such dependencies.

Finally, an implicit temporal attention block models the

automatic fade of the first parts of a performance in the

judge’s short-term memory. A judge awards the PCS score

of each figure-skating routine after the completion of the

whole performance. Each routine takes two minutes and

forty seconds on average. With the passage of time, the first

parts of the performance become attenuated in the judges

memory. To model this effect we propose a sigmoidal im-

plicit temporal importance mask (M i):

X̃h,w,c = Xh,w,c ⊙M
i (5)

M
i
t =

1 + be
−T
d

1 + be
−t
d

(6)

In which b and d are constant coefficients (0 ≤ b ≤ 1,

1 ≪ d ). As a result 1+be
−T
d

1+b
≤ M i

t ≤ 1.

Consequently, the next JCA blocks which are responsi-

ble for capturing a holistic view of the performance would

perceive a higher attention on the last parts. It should be

noted that the explicit temporal attention block impacts the

assessment of fine-grained dependencies in both short and
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Figure 4: The overview of an ADA block.
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long-term actions. However, the implicit temporal attention

block contributes to attending more on last phases coarse-

grained dependencies in a long-term action assessment.

3.3. Appearance Dynamics Assessor (ADA)

We further propose ADA blocks to capture the dynamics

of appearance features. The architecture of an ADA block

is depicted in Fig.4.

The input to each ADA block is either the output of

its previous ADA block or the output of appearance fea-

tures extractor backbone (like I3D[4]). At the first step, a

depth-wise separable spatial convolution captures the cross-

channel correlations of the input feature map. It also shrinks

the semantic subspace by a factor of N . As a result, stack-

ing ADAs wouldn’t lead to the explosion of the number of

channels. The proposed ADA head relies heavily on its ap-

pearance features extractor backbone to capture the spatial

dependencies. Thus, given the small changes that the spatial

attention block has made, this lightweight spatial convolu-

tion layer suffices in the new setting. Secondly, same as the

case of JCA blocks, multi-scale temporal kernels are em-

ployed to capture the different visual tempos of appearance

clues. Finally, as depicted in Fig.2, the resulted feature map

of the ADA stream is concatenated with the JCA stream

over semantic subspace and fed to a BN − ReLU − FC

layer to get the final score.

4. Dataset

In order to support experiments in estimating human

body pose with extreme contortions and involving pose

features in AQA we introduce G-ExPose (Generalized Ex-

Pose). Most of existing datasets for in-the-wild pose esti-

mation only cover normal daily activities like walking, sit-

ting, etc. captured by static cameras [12, 1]. As evident in

Fig.5 these datasets are not suitable for estimating the con-

tortive poses of a competitive sports activity which is taken

by a moving camera. To address this issue, recently Nekoui

et al. introduced ExPose, a collection of 3000 diving and

1000 gym-vault 2D annotated images sourced from moving

camera videos. Despite showing acceptable pose estimation
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Gym-Vault Sync.3 Snowboarding Skiing

Figure 5: Qualitative test-time pose predictions of HRNet[20]

model trained on MPII (first row), ExPose (second row), and G-

ExPose (third row), respectively.

results in diving, utilizing this dataset leads to failure of the

estimator in the case of other contortive sports (see Fig.5).

To alleviate this problem, we extend ExPose[13] by 7500

annotated images from four different sports.

G-ExPose contains 2500 snowboarding, 2000 skiing,

1500 synchronized diving, and 1500 gym-vault 2D anno-

tated images. The snowboarding images are obtained from

2018, 2019, and 2020 X-games competitions at Aspen. The

skiing images are taken from X-games 2020 ski big air con-

tests at Aspen and Norway. We extended ExPose to also

cover highly occluded synchronized diving images by intro-

ducing a set of 1500 annotated images from women’s 3 me-

ter springboard and men’s 10 meter platform synchronized

diving finals at 2016 European diving championships in

London. We further enlarged gym-vault samples of ExPose

by annotating 1500 images from Rio 2016 Olympics and

Stuttgart 2019 world championships women’s vault finals.

In order to collect the dataset, we first queried YouTube to

get the original video of each event. Secondly, we filtered

out the irrelevant parts of the video (like the opening cere-

mony and medal presentation) and extracted the frames of
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Method Diving Vault Skiing Snowboard Sync. 3m Sync. 10m Avg. Corr. Skating

Pose-DCT-SVR [19] 53.00 — — — — — — 35.00
ConvISA [10] — — — — — — — 45.00
ST-GCN [27] 32.86 57.70 16.81 12.34 66.00 64.83 44.33 —

C3D-LSTM [16] 60.47 56.36 45.93 50.29 79.12 69.27 61.65 51.07∗

C3D-SVR [16] 79.02 68.24 52.09 40.06 59.37 91.20 69.37 53.00
JR-GCN [15] 76.30 73.58 60.06 54.05 90.13 92.54 78.49 —

AIM [6] 74.19 72.96 58.90 49.60 92.98 90.43 77.89 —

C3D-(S+M)LSTM [26] — — — — — — — 57.69∗

Ours 83.31 74.11 66.35 64.47 91.43 91.58 81.40 60.10

Table 1: Detailed results on both AQA-7[16] dataset that contains short-term activities and long-term figure skating videos of extended

MIT-Skate dataset (171 samples)[18]. First and second best are shown in color. Following [16, 15], we use Fisher’s z-value to compute

the average correlation between the short-term sports of AQA-7 dataset. The results marked with ∗ are obtained by reimplementing the

correspondent method. [26] reported 59.00 Sp. Corr. for the old MIT-Skate dataset (150 samples) in the original paper.

Sports Field MPII[1] ExPose[13] G-ExPose

Sync. 3m 27.2 45.2 56.7

Sync. 10m 29.3 53.6 63.9

Skiing 18.8 5.5 30.5

Snowboarding 20.1 9.1 31.0

Gym Vault 24.0 38.8 53.2

Table 2: The quantitative results of HRNet pose estimator[20] on

the 100 annotated images of each extreme sports field when trained

on MPII, ExPose and our G-ExPose dataset. The evaluation met-

ric is the standard PCKh@0.5[1, 20]. The position of a joint is

correctly estimated if its distance with the ground truth is within

50% of the head segment length.

each video with the frame rate of 10 fps. Finally, we mostly

held out the normal poses of each routine (like approaching

to the springboard or after-landing in a gym-vault routine)

to focus more on the main part of the execution in which

the performer contorts his body in some unusual configura-

tions. We follow the same pose annotation format as MPII

dataset that considers 16 joints for the body.

Besides the qualitative evaluation of our dataset, we fur-

ther quantitatively assessed the effectiveness of G-ExPose in

extreme pose configurations in comparison with ExPose and

an in-the-wild normal activities pose dataset like MPII. To

this end, we first picked 10 videos from each field of AQA-

7[16] dataset and annotated 10 images from each video with

a focus on the main parts of the execution. This dataset

contains 1106 sports routine videos as well as their corre-

spondent score from diving, synchronized diving (3 and 10

meters), gym-vault, snowboarding, and skiing. As a result,

a set of 600 annotated images from 6 different fields got

collected. We then evaluated the performance of the SOTA

HRNet [20] pose estimator on the 100 images of each field

when it is trained on G-ExPose, ExPose, and MPII. As it

can be seen from Tab.2, the HRNet which is trained on G-

ExPose, outperforms others in the extreme pose estimation

task. It should be noted that there is no conflict between

G-ExPose and AQA-7 source events.

5. Experiments

5.1. Datasets and Implementation Details

For short-term AQA we follow recent works [16, 15] and

evaluate our approach using the AQA-7 dataset. Each video

of the dataset is originally normalized to 103 frames. We

follow the same train-test data split as [16, 15]. In order

to get the appearance features of each video, we use the

output of mixed-5c layer of an I3D network pretrained

on the Kinetics dataset[4]. For our pose features extractor

backbone we entangled the DiMP [2] visual object tracker

with the HRNet pose estimator (trained on G-ExPose). The

channel shrinkage factor of the ADA blocks (N ) is set to 2.

The short-term attenuation temporal coefficient (a in Eq.2)

is set to 0.9. The mean and the standard deviation of the

spatial importance mask (see Eq.4) are set to 4 and 5 respec-

tively. As discussed before, the implicit temporal attention

block should only impact the long-term activities assessing.

Thus, we set the long-term temporal attenuation coefficient

(b in Eq.6) to 0 in short-term action assessment.

We further assess the effectiveness of the proposed

model on long-term activities by evaluating it on the ex-

tended version of the MIT-Skate [19] by [18]. This dataset

contains the awarded scores of 171 single figure-skating

videos that take 2.5 minutes on average. In order to nor-

malize all videos to a fixed number of frames we first ex-

tract the frames of all videos at 25 fps . We then zero-pad

the first frames of each video to fit to 5824 frames which

is the longest video’s number of frames. We follow [18]

and randomly split the dataset into 100 samples for train-

ing and 71 for testing. Since a figure skating routine does

not involve extreme pose configurations, we train the pose
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Ablated Model Diving Vault Skiing Snowboard Sync. 3m Sync. 10m Skating

W/o Explicit Temporal Att. Block 82.66 72.91 62.11 63.23 90.59 89.72 59.66
W/o Spatial Att. Block 82.83 72.11 72.11 61.16 91.50 90.76 —

Fixed-size Temporal Kernels 76.71 67.17 55.09 51.99 87.17 86.81 54.53
W/o Channel Avg 81.87 71.24 63.73 62.15 89.28 90.43 57.22
W/o JCA Stream 80.95 70.96 60.46 60.63 88.70 90.18 55.49
W/o ADA Stream 74.30 70.58 57.90 57.90 85.28 85.64 51.11

# JCA and ADA Blocks = K − 1 79.86 72.24 62.55 59.83 88.16 89.20 57.72
# JCA and ADA Blocks = K + 1 81.53 71.18 64.94 62.11 90.24 88.32 58.41
Only Whole-Scene Appearance 63.39 68.72 51.79 50.53 87.83 88.32 44.23

W/o Implicit Temporal Att. Block — — — — — — 58.73
Ours 83.31 74.11 66.35 64.47 91.43 91.58 60.10

Table 3: Ablation study results on AQA-7 dataset[16] for short-term actions and MIT-Skate dataset[18] for long-term figure-skating sport:

We systematically removed the components of our network to evaluate their contribution to the full model. K is equal to 2 for short-term

and 4 for long-term assessment.

estimator backbone on the COCO+Foot dataset [3]. In the

long-term action assessing we set b and d coefficients to 0.5

and 1000 respectively.

We train the model for 500 epochs with the learning rate

of 0.005 and the batch size of 20 using Adam optimizer[9].

We use the MSE loss function to train the model and award

the scores, following what other regression-based AQA

methods[16, 15, 18] have done. To be consistent with the

previous works, we use the Spearman’s Rank correlation to

evaluate the performance of the model and compare the pre-

dicted scores with the ground-truth. For further details refer

to the supplementary document.

5.2. Results

We first evaluate the performance of our network on

short-term activities of AQA-7 dataset. It should be noted

that we have used two ADAs and two JCAs for assessing a

short-term action. As it can be seen in Tab.1, the proposed

method outperforms the existing SOTA AQA methods. Its

worth mentioning that the JR-GCN [15] and AIM[6] meth-

ods have used the excessive optical flow information while

our method resorts to the RGB frames input. The largest

gaps belong to skiing and snowboarding sports. In these

sports’ video footage, the size of the athlete is much smaller

than the size of the whole frame. Therefore, it is not surpris-

ing that methods like [16] which only rely on whole-scene

appearance features to regress the score of the perform-

ers, are underperforming significantly. Besides, in such

fields the position of each individual joint is as important

as the symmetry of different body parts during the execu-

tion. Failure to grab the board or any insecurity that re-

quires hand movements to remain stable affects the score

negatively. Thus, extracting the features of some predefined

local patches around the joints (which has been done in[15])

results in neglecting the individual joints position and mo-

tion of some body parts to award the score. On the other

hand, our pose-based assessment stream not only works in-

tuitively as an action localizer, it also judges the position of

the joints as well as the motion of a variety of body parts.

We further evaluate the performance of our model on the

long-term figure-skating sports activity. In order to have a

fair comparison with the existing works, we changed the

appearance features extractor backbone to C3D to have the

same backbone as theirs. Following [26], we feed the out-

put of fc6 layer of C3D network which is pre-trained on

Sports-1M dataset[8] to our ADA stream. As discussed be-

fore, long-term temporal reasoning is crucial to model the

judge’s impression of the overall performance of the figure-

skater. To this end, more JCAs and ADAs (here we use

4) are stacked in the long-term activities assessment. As

demonstrated in Tab1, our model generalizes well to long-

term action assessment task.

We conduct a comprehensive ablation study to evaluate

the effectiveness of our models components (see Tab.3). We

first removed the explicit temporal attention block to uni-

formly attend to all frames in a short-term activity. As a

result, we are neglecting the fact that having a clean landing

in a snowboarding routine or performing a vertical entry to

the water with the least amount of splash in a diving perfor-

mance are the most distinctive features of the execution[5].

In the second set of experiments we removed the spatial at-

tention block of the ADA stream. Therefore, we equally

attend to each pixel of the extracted appearance features, no

matter whether it belongs to the background or the athlete’s

body. The third row of Tab.3 refers to the results of us-

ing fixed-size temporal kernels instead of multi-scale ones.

Consequently, the same temporal kernel size for capturing

complex temporal dependencies of the two short-term ele-

ments that are performed together would be used. Fourthly,

we removed the temporal-wise average pooling of the JCA
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Figure 6: Learned weights of the k=5 temporal convolution in ADA (left) and JCA(right) blocks for figure-skating. The upper plot refers to

the second ADA(JCA) and the lower one refers to the fourth ADA(JCA). Due to limited space the first 25 channels have been visualized.

blocks. As a result, the coordination among the virtual

super-joints/body parts would not be captured. In the next

set of experiments we removed the whole JCA stream and

ADA streams to validate their contribution in the action as-

sessment. The drastic drop of the performance is because of

solely relying on either appearance dynamics or joints coor-

dination and motion features. We further changed the num-

ber of JCA and ADA blocks to confirm the optimality using

two blocks. If we only use one JCA block the dependencies

among the formed body parts/virtual super-joints would not

be captured. Furthermore, given the small number of frames

in short-term activities using three JCA and ADA does not

seem beneficial since it leads to the increase of the number

of parameters and overfitting problem. Next we evaluated

the performance of the network when it only uses the ap-

pearance features of the backbone, by removing the JCA

and ADA blocks and completely neglecting the pose fea-

tures. We further evaluated the performance of the network

in different numbers of JCAs and ADAs blocks and it turned

out that using 4 blocks leads to the best performance. We

finally removed the implicit temporal attention blocks, as-

suming that the all medium-term phases of the long-term

action have the same contribution in the overall impression.

It should be noted that this block is already deactivated in

short-term action assessment. As listed in Tab.3, the net-

work achieves its full potential when all of its components

are utilized.

Finally, we visualize the learned weights of our model in

Tab.6 following [7]. For brevity, we resorted to the tem-

poral kernel with size of 5 and compared the transitions

among the learned weights in each channel between two

ADA(JCA) blocks. The upper plot in Fig.6 represents the

learned weights of the second ADA(JCA) block. The rapid

transitions among the weights in each channel demonstrate

that this block is capturing the fine-grained temporal depen-

dencies. On the other hand, as depicted in lower plot of

Fig.6, the transitions among the 4th block learned weights

are smoother, confirming the fact that this block is respon-

sible for capturing coarse-grained temporal dependencies.

6. Conclusion

In this paper, we argue that evaluating the quality of an

action requires incorporating appearance and pose features

of the performance in both fine and coarse-grained temporal

scales. To this end, we present a modular two-stream net-

work that sits on top of extracted appearance and pose fea-

tures of an action to assess it. The first stream is composed

of a stack of JCA blocks that are responsible for evaluat-

ing the configuration of the joints and body parts through-

out the performance. The other stream assesses the appear-

ance dynamics of the action owing to its constituting ADA

blocks. Empowering the network with more JCA and ADA

blocks leads to capturing long-term coarse-grained tempo-

ral dependencies that represent overall impression of the

program. Furthermore, we present a dataset of 7500 con-

tortive sports images annotated with 2D human body pose.

It is shown that training the pose estimator backbone on this

dataset helps to have a more accurate pose estimation of

sports actions that usually involve lots of unusual pose con-

figurations. Our experimental evaluation demonstrates that

our method achieves the state-of-the-art results on short-

term action assessment in comparison to prior works. More-

over, the proposed modular network adapts simply to assess

long-term actions by stacking more JCA and ADA blocks

and outperforms the previous works on this task as well.
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