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Abstract

In recent years, Additive Manufacturing (AM) has evolved

from a niche technology for prototyping to a well-known

industrial production process. In this work, we focus on

Selective Laser Sintering (SLS)—one of the leading AM tech-

niques. While SLS has many advantages, the simultaneous

manufacturing of multiple components requires the subse-

quent recognition of components which must be done man-

ually in today’s production processes. While approaches

for automatic, sensor-based object recognition have been

proposed, e.g., based on Convolutional Neural Networks

(CNNs), they assume the availability of real-world photos

which is not given in the setting of Additive Manufacturing.

Hence, we develop an approach to render realistic virtual

images and demonstrate their suitability to recognize real-

world objects. Although often done in the machine learning

community, orienting the objects randomly generates many

orientations that are physically impossible and cause dis-

tracting noise in the training process. Hence, we pay partic-

ular attention to generate physically sound training data and

we demonstrate that our approach significantly improves the

recognition rate compared to traditional approaches.

1. Introduction

Additive Manufacturing (AM) is a growing manufactur-

ing process with great developments in recent years. For

example, powerful AM machines and new interfaces for au-

tomation and series production have made it significantly

easier to integrate AM into complex process chains leading

to growing production volumes for AM service providers.

However, there are still some challenges with integrating

AM steps into fully automatic process chains—particularly

with powder-bed-based Selective Laser Sintering (SLS)

steps [16]. A special characteristic of SLS is that compo-

nents are manufactured in batch mode, i.e., many compo-

nents are manufactured simultaneously three-dimensionally

nested in the build chamber, requiring to identify and sepa-

Figure 1. Selective Laser Sintering (SLS) build job consisting of

several different CAD models.

rate the different components subsequently, e.g., to forward

them to different milling, polishing or painting processes.

Identifying and separating individual components is most

commonly done manually as of today. In this paper, we

propose an approach to automate this step with Computer

Vision (CV) systems. While CV systems are already used

to automate processes, CV systems are often manually op-

timized for, e.g., the recognition of a specific component

and cannot identify arbitrary components produced in an

AM step. To circumvent this limitation, we resort to ma-

chine learning-based 3D object recognition and improve its

recognition performance in the setting of AM by improv-

ing its training data. Existing approaches for image-based

object recognition are commonly trained with random ori-

entations of components neglecting that many orientations

would never occur in practice. For example, a pen would

never stand on its tip. In this paper, we generate physi-

cally sound training data which only includes physically

possible orientations and demonstrate that our approach sig-

nificantly outperforms approaches based on random training
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Figure 2. Powder cake with components (left). Clean components after sandblasting (right).

data—with and without common augmentation techniques.

Moreover, we demonstrate that our approach is able to rec-

ognize objects in real-world images although it was trained

on virtually generated images.

In Section 2, we describe the task of component recogni-

tion in the setting of AM. Section 3 describes related work.

In Section 4, the neural network architecture RotationNet

which we use for our experiments is explained. Section 5

describes different approaches of generating training data

before Section 6 evaluates and compares the different ap-

proaches. In Section 7, we discuss our results.

2. Task: SLS Component Recognition

The necessity to recognize produced components in SLS

arises from the production in batch mode, i.e., different ob-

jects being produced at the same time in the build chamber

of an SLS machine. For the build job preparation, a batch

of CAD models is nested in the virtual build chamber for

optimal use of the available space (see Fig. 1). SLS is a

powder-bed-based AM technique, in which the components

are formed layer-wise. The powder is applied in layers of

about 0.1 mm and a laser melts the material where compo-

nents are to be produced. The final components lie together

in the so-called powder cake from which they are extracted

during powder removal (see Fig. 2 left). After sandblast-

ing, the clean components (see Fig. 2 right) must be further

processed individually according to their requirements.

For this purpose, the components must be recognized, i.e.,

the physical components must be assigned to the correspond-

ing digital 3D models. While this can be done manually

for a small number of pieces, for hundreds or thousands

of produced parts this becomes impractical and the manual

work steps have to be automated, e.g, with a CV recognition

system. CV systems are widely used in assembly lines, e.g.,

for automatic grasping of objects by robots. However, to-

day’s systems are often manually optimized for recognition

and grasping of a fixed amount of different parts. Due to the

daily varying production in AM, this manual optimization is

impossible and a data-driven system has to be adopted.

We envision the following structure of a recognition sys-

tem. The system consists of a separation station and a con-

veyor belt with an integrated scanning area. After separa-

tion, the manufactured objects are transported by the con-

veyor belt through the scanning area where multiple cameras

sense the object from elevated viewpoints (see Fig. 3) and

a recognition system assigns the physical objects to the vir-

tual 3D models. The main challenge is to recognize the

objects regardless of their orientation. Subsequently, the

post-processing steps can be executed.

While a first commercial approach recently emerged for

this task (AM Flow [1]), little is known about its internal

realization. To the best of our knowledge, it has never been

evaluated on a standardized, publicly available data set.

3. Related Work

Related work to our approach can be divided into work on

computer vision in industrial applications, machine learning-

based object recognition, and data augmentation techniques.

3.1. Industrial Object Recognition

Computer vision systems are nowadays widely used for

several different tasks in industrial applications. For example,

the systems are used for quality control in the automotive

industry [10] and for automatic grasping of objects [3].

Mazetto et al. [10] describe an approach for verifying as-

semblies in automotive assembly lines with an image-based

Deep Learning (DL) architecture to detect different objects

like brake disks and calipers. The system is trained on manu-

ally labeled images of correct and incorrect assemblies which

are taken from the perspective of the assembly control.
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Farag et al. [3] present a DL-based method for automatic

grasping and localization of 3D objects. The system detects

objects placed on a surface using a camera installed above the

objects. Similar to Mazetto et al. [10], the system is trained

on labeled images. The objects which must be gripped are

placed in different positions and photos are taken from the

scene. The system learns to detect and localize the objects.

Both approaches are trained on real images. However,

real images cannot be used in the setting of AM since the

physical objects do not exist at training time yet and we have

to rely on virtually generated images which might differ in

terms of component orientations, perspectives and lighting.

3.2. Machine Learning­Based Object Recognition

As outlined in Section 2, our goal is to employ approaches

from the field of 3D object recognition for our purpose of

recognizing additively manufactured parts. The ModelNet

leaderboard [12] provides an overview of current state-of-

the-art approaches which can be divided into image- and 3D

data-based approaches. The approaches are compared using

the object recognition task of the ModelNet40 benchmark

data set, which consists of 40 different model classes. In

this paper, we focus on the image-based approach Rotation-

Net [5], which achieves state-of-the-art performance on the

ModelNet40 recognition task. Using RotationNet as a refer-

ence approach, we show that the generation of training data

has a large effect on the recognition rate and we can signifi-

cantly improve the recognition rate by generating physically

sound training data compared to randomly generated data.

Besides the image-based approach RotationNet, 3D data-

based approaches, e.g., based on point clouds [13, 7, 26]

or voxel representations [9, 14, 18] might be used for the

recognition of 3D models. While these approaches have

the potential to yield a higher recognition rate when using

a sufficiently high resolution, their exorbitant hardware re-

quirements for sensors and computing power hinder a wide-

spread adoption in practice as of today. Moreover, they

suffer from the same fundamental problem that they must

be trained on generated representations of components in

certain orientations. Hence, even though we focus on image-

based approaches, we are optimistic that our generation of

physically sound training data would benefit 3D data-based

approaches, too.

3.3. Data Augmentation for Object Recognition

Since our training images must be rendered from CAD

models, their appearance (slightly) differs from the real pho-

tos taken after the components’ manufacturing and we are

faced with a problem of transfer learning [11, 17, 24]. We

tackle this problem with data augmentation techniques [2,

19]. Common techniques proposed in the literature include

geometric and photometric transformations like flipping, ro-

tation, cropping, translation, noise injection, color space
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Figure 3. Data representation of RotationNet[5]

transformation, histogram equalization, blurring, brightness

changing and sharpening. We employ them as baselines and

show that our novel technique of generating physically sound

training data significantly outperforms them. Approaches

employing domain randomization [22, 23], e.g., placing the

objects within different virtual environments with distracting

objects and textures, appear less relevant for our purposes

since we have a fixed environment with black background

and fixed light sources and cameras.

4. RotationNet

In this section, we briefly explain the state-of-the-art ap-

proach RotationNet[5] which forms the basis of our eval-

uation. It is a multi-view-based approach, i.e., multiple

images from different perspectives are taken and used as

joint training data, thus increasing the amount of available

information compared to single-image approaches where

parts of an object might be occluded. One of the first ap-

proaches in this direction was Multi-View Convolutional

Neural Network (MVCNN) for 3D shape recognition [21].

The approach achieved an accuracy of 90.1% on the Mod-

elNet40 data set[25]. Since then, new architectures based

on MVCNN have been published. Currently, RotationNet

achieves state-of-the-art performance on the ModelNet40

dataset with an accuracy of 97.37%.

The system is trained with a fixed number of view-

points vi with i ∈ {1, . . . ,K} (see Fig. 3) and for each

viewpoint vi, an image xi is recorded along with its correct

class label y. To increase robustness, the viewpoints are

treated as latent variables and the system jointly learns the

viewpoints and object labels. For our experiments, we use

K = 12 viewpoints. Per experiment, we use the same model

parameters and the same amount of training instances per

object. We fine-tuned the weights of RotationNet based on a

model pre-trained on the Imagenet Large Scale Visual Recog-

nition Challenge (ILSVRC) 2012 dataset [15] and used early

stopping to avoid overfitting.
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Figure 4. Example of 3D models with high geometric similarity.

5. Dataset Construction

For the recognition of additively manufactured compo-

nents, at the time of training, no physical objects and there-

fore no real photos of the objects are available. Therefore,

artificial photos have to be generated. Then RotationNet is

trained on the artificial photos and applied to real photos

at testing time (transfer learning). Without additional as-

sumptions, the artificial photos can only be generated from

randomly chosen perspectives, which means that many pho-

tos are generated from perspectives that cannot occur in a

real recognition station due to the geometric properties of

the 3D objects. Therefore, we have developed an approach

that calculates the physically sound orientations of 3D mod-

els and uses only these orientations to generate the virtual

images. To the best of our knowledge, there are no other

training data generation approaches for object recognition

in the AM domain. For evaluation and comparison, we cre-

ate training data sets from randomly chosen perspectives

and use traditional data augmentation techniques. We show

that our approach of using physically sound training data

significantly outperforms these baselines.

We construct our data sets in four steps: First, we con-

struct six data sets of 3D models of varying difficulty. Sec-

ond, we generate different instances for each 3D model—

based on physically sound orientations and based on random

orientations. Third, we render each instance from multi-

ple viewpoints. Finally, we apply traditional image data

augmentation techniques.

Section 5.1 describes our selection of 3D models. Sec-

tions 5.2 and 5.3 present approaches for generating ob-

ject orientations—random and physically sound ones. Sec-

tion 5.4 explains how we render the virtual images and Sec-

tion 5.5 outlines techniques of image data augmentation.

Section 5.6 details how we take photos of the physical ob-

jects for evaluation purposes.

5.1. Build Jobs of 3D Models

We construct six virtual SLS build jobs which contain

between 10 and 100 different objects from Thingi10K[27],

a database containing 10,000 real 3D models from the AM

domain. To cover the whole spectrum, we create build jobs

of easily discriminable and of hardly discriminable objects:

regarding the former, we randomly sample 30, 50, and 100

objects from Thingi10K and regarding the latter, we manu-

ally selected 10, 30, and 50 objects from groups of similar

z
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Figure 5. Frontal view of an example object in six random orienta-

tions.

objects. Fig. 4 shows an example of hardly discriminable

objects. We call our build jobs Random30, Random50, Ran-

dom100, Similar10, Similar30, Similar50 and we make them

publicly available to enable the reproducibility of our results.

The two most difficult data sets Similar30 and Similar50 are

unlikely to occur in real production but can be used to evalu-

ate the impact of our approach under difficult conditions.1

5.2. Random Object Orientations

We generate random orientations of objects by calculating

uniformly distributed points on a unit sphere. For each point

on the sphere, the 3D objects can then be rotated in a way

that the vector previously pointing in negative z-direction is

aligned to that point [20]. Fig. 5 shows six example orienta-

tions of a 3D model from the Thingi10K data set [27] from

a frontal viewpoint.

5.3. Physically Sound Object Orientations

The training data can be optimized by aligning the data

as closely as possible with the physical data generated in

the separation station. As explained in Section 2, the manu-

factured objects are first separated and then transported to

a scanning area by a conveyor belt. When the objects fall

onto the conveyor belt, the lying position is influenced by

the geometry of the objects. We make use of this fact and

determine possible orientations of each object. Along with

the camera positions, we can determine possible viewing

perspectives for the generation of the virtual training data.

To calculate the possible orientations in which an object is

lying on a flat surface, the following steps are performed: (1)

calculation of convex hull, (2) checking of object stability,

(3) rating based on height of the Center of Mass (CoM).

Convex Hull The convex hull of a 3D object is described

by the smallest convex set of points that contains the initial

object. The convex hull of the 3D object already shown in

the previous section can be seen in Fig. 6. The surfaces of

the convex hull form all surfaces which could theoretically

tangent a horizontal surface.

1https://github.com/tobinick-upb/physically sound training data
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Figure 6. Example object (left) and the corresponding convex hull

with its facets (right).
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Figure 7. Example object in six different orientations calculated

using the convex hull of the object shown from a frontal viewpoint.

Figure 8. 2D example of a stable (left) and unstable object (right).

This reduces the number of orientations of the 3D objects

to be considered. Of basically arbitrary orientations, only

those in which the normal vector of one of the surfaces of

the convex hull is pointing in negative z-direction, need to

be examined. Six example orientations of the 3D model are

shown in Fig. 7 from a frontal view. The number of possible

orientations can be further reduced in the next steps.

Object Stability The previously calculated set of possi-

ble orientations contains all orientations where one of the

faces of the convex hull is tangent to a horizontal surface.

However, these orientations are not necessarily physically

stable. Unstable orientations must be excluded from further

consideration. For determining the stability, we employ the

objects’ Center of Mass (CoM). The CoM is the point of an

object at which the distribution of weight is equal in each

direction. A 3D object is in a stable position if the projection

of the xy-position of its CoM is inside the convex hull of all

points which contact the surface. A 2D example of a stable

and an unstable object can be seen in Fig. 8.

With that restriction, the number of possible orientations

can further be reduced. The effect of the stability check is

shown in Fig. 9.
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Figure 9. Possible orientations after stability check. The objects are

shown from a frontal viewpoint.
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Figure 10. Possible orientations after stability check and exclusion

via height criteria. The objects are shown from a frontal viewpoint.

Height of the CoM All orientations of an object calcu-

lated in the previous steps are physically possible. Never-

theless, the calculated orientations may contain orientations

that will not occur in reality on a conveyor belt. Orienta-

tions where a 3D object has a very high center of gravity,

compared to other possible orientations, are very unlikely

because these orientations have a low stability. Therefore,

the objects would tip over on a conveyor belt.

To exclude these unstable orientations, we calculate the

height of the CoM of all possible orientations. Orientations

whose CoM is four times higher than the lowest one are

excluded in our experiments. An example subset can be seen

in Fig. 10.

With the help of this procedure, we are able to automati-

cally calculate all possible orientations of a physical object

based on the corresponding virtual 3D model. Thereby, we

only generate training data from perspectives that can occur

in a physical recognition station and thus contribute to the

recognition of the respective 3D object.

When training machine learning models, unbalanced

training data can lead to a deterioration of the recognition

rate and is to be avoided [8]. Hence, regardless of the number

of calculated physically sound orientations M , we always

generate the same number of training instances N per 3D

model, i.e., we create N/M different instances per orienta-

tion. Since the physically sound orientations are defined by

aligning the normal vector of a plane of the convex hull with

the negative z-axis, it is possible to rotate the object around

the z-axis without contradicting the calculations for the gen-
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eration of physically sound orientations. Since the 12 virtual

cameras of RotationNet are positioned in 30-degree steps

around the z-axis, we rotate the object in 30/(N/M) degree

steps. If N/M is not an integer, we round up. In that case,

more than N instances are generated. For training, N of

these instances are randomly chosen to guarantee that the

training data are completely balanced.

5.4. Rendering Images

Based on the calculated orientations, we generate training

images which are used as input for the RotationNet model.

The rendering of the virtual training images has a big influ-

ence on the model’s recognition rate. Therefore, the virtual

camera settings, virtual light sources and background have

to be aligned to the physical situation as precisely as possi-

ble [4]. We render each instance from 12 viewpoints with a

rotation around the z-Axis of 30 degrees between two adja-

cent viewpoints. For the angle to the xy-plane, two different

situations have been chosen: (1) an elevation of 45 degrees

from the xy-plane and (2) an alternating elevation of 35 and

55 degrees. The second type simulates possibly varying an-

gles in the physical image generation due to inaccuracies in

the image generation setting. Su et al. [21] survey several

approaches for rendering images from 3D models: Phong

Shading, Depth Rendering or Silhouette Rendering. We

employ Phong Shading to generate photo-realistic images

with details like reflections. Images are rendered at a resolu-

tion of 250 times 250 pixels and a perspective camera. We

have chosen a black background to maximize the contrast to

the white components produced by SLS. As light sources,

we employ three virtual lamps placed in elevated positions

around the 3D objects to provide bright illumination with-

out undesired reflections. All 3D models are normalized to

guarantee consistent views. An example image is shown in

Fig. 11a. As rendering software, we employ Blender [6].

5.5. Image Augmentation

In order to make our training procedure more robust and

improve the recognition rate on real-world photos, we ex-

perimented with data augmentation techniques [2, 19]. We

employ the photometric transformations blurring (Fig. 11b),

brightness/contrast changes (Fig. 11c), histogram equaliza-

tion (Fig. 11d), noise injection (Fig. 11e) and combinations

thereof (Fig. 11f). These transformations are well suited

to simulate photometric effects occuring when taking the

photos of the physical images. Geometric transformations

appeared less meaningful: RotationNet already considers

different geometric perspectives and our sorting station guar-

antees that the objects are centered in front of the camera.

Thus, based on the basic randomly and physically sound

generated data sets, we create six additional data sets for

comparison (horizontal flipping, blurring, random brightness

contrast (RBC), contrast limited adaptive histogram equal-

a) b) c)

d) e)

g) h)

f)

i)

Figure 11. Example of training image raw (a) and with different

augmentations (b) to (f) and physical photo raw (g), sharpened (h)

and sharpened and histrogram-equalized (i).

ization (CLAHE), Gaussian noise, composition of trans-

formations) using the image augmentation implementation

provided by Buslaev et al. [2].

5.6. Physical Image Generation

Although we need to render the images virtually before

the objects are manufactured, in the end, the recognition

rate on real photos counts for our AM application. Hence,

we physically produced all objects from two build jobs (our

simplest build job Random30 and our most difficult build

job Similar50) and took photos of the objects: each object

has been placed in its most likely orientations (between 2

and 5 depending on the object’s geometry) and 12 images

have been taken per orientation in 30 degree steps around

the z-Axis in an elevation of about 45 degrees from the xy-

plane. The images have been generated using a hand-held

smartphone camera with slight variations of the angles. An

example image is shown without post-processing in Fig. 11g,

with a sharpening filter in Fig. 11h and with both sharpening

filter and histogram equalization filter in Fig. 11i.

6. Evaluation

For evaluating our physically sound training data, we em-

ploy the build jobs, object orientations, viewpoints, image

augmentation techniques, photos and the model RotationNet

as described above. Moreover, to explore how the number of

training instances affects the recognition rate, we generate

two datasets per build job and augmentation technique: one

with 60 training instances per object (i.e., orientations) and
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Table 1. Random vs. physically sound training data with different

augmentations. The trained models were evaluated on photos of

physical objects of the Random30 and Similar50 data sets.

Angle Inst. Random30 Similar50

Rand. Phys. S. Rand. Phys. S.

Raw fixed 60 77.61% 98.51% 37.59% 75.94%

RBC fixed 60 91.04% 97.01% 61.65% 80.45%

Comp. fixed 60 94.03% 95.52% 62.41% 81.95%

Raw altern. 60 89.55% 98.51% 53.38% 71.43%

RBC altern. 60 91.04% 97.01% 66.17% 74.44%

Comp. altern. 60 95.52% 98.51% 69.92% 79.70%

Raw fixed 240 88.06% 95.52% 47.39% 66.17%

RBC fixed 240 97.01% 98.51% 63.91% 81.95%

Comp. fixed 240 97.01% 98.51% 69.17% 80.45%

Raw altern. 240 82.09% 98.51% 50.38% 67.67%

RBC altern. 240 97.01% 98.51% 69.92% 76.70%

Comp. altern. 240 97.01% 98.51% 69.17% 82.71%

Mix 240 97.01% 98.51% 71.43% 84.21%

one with 240 training instances per object. For the former,

we create datasets of 60 training and 20 disjunct validation

instances per object and render each of them from 12 view-

points, yielding 720 training and 240 validation images per

object. That means, for our build job Random30, we employ

21,600 training and 7,200 validation images in total. For the

latter, we create datasets with 240 training and 30 disjunct

validation instances. The validation sets are used for early

stopping. The accuracy is determined per instance since

RotationNet calculates the most likely label based on the

combination of the 12 views. To account for different num-

bers of instances per object in our physical test set, in which

different objects can have different numbers of orientations

(unlike in the validation set), the instances are weighted ac-

cordingly, i.e., an instance of an object with n orientations

is weighted as 1/n. To enable the reproducibility of our

results, the source code of our experiments and the corre-

sponding data is made publicly available.2 We provide the

six data sets with the original 3D models, scripts for calcu-

lating orientations, scripts for rendering of virtual training

images and augmentation, scripts for splitting the datasets

into train, validation and test sets as well as the RotationNet

settings for the optimization solver, network architecture and

training/testing commands.

6.1. Evaluation on Real Images

The recognition rate on physical objects from the build

jobs Random30 and Similar50 are shown in Table 1. In both

cases, we trained the RotationNet model on the raw images

without augmentation (raw) and with the augmentations ran-

dom brightness control (RBC) and composition (Comp.)

2https://github.com/tobinick-upb/physically sound training data

where composition randomly combines two augmentation

techniques: one of Gaussian noise or RBC (probability of

50% each) and one of blurring or contrast limited adaptive

histogram equalization (CLAHE, probability of 50% each).

Besides distinguishing variants with 60 and 240 training in-

stances, we distinguish instances with fixed and alternating

vertical camera angles: the former uses a fixed vertical angle

of 45 degree from the xy-plane and the latter an alternating

angle of 35 or 55 degrees (altern. in Table 1). Additionally,

a mixed set of best-performing augmentation techniques has

been evaluated using 1/4 raw images with fixed angles, 1/4
augmented with RBC and fixed angles, 1/4 augmented with

composition and fixed angles as well as 1/4 with composi-

tion and alternating angles. For brevity, we do not report the

results for CLAHE, Gaussian noise and blurring since they

reached lower accuracy than other augmentations techniques.

For RBC, CLAHE and Gaussian noise, we employed the

standard parameters from the image augmentation library [2].

For blurring, we used a kernel size of 5× 5.

As can be seen in the table, physically sound training data

outperforms random training data regardless of the augmen-

tation technique and the number of training samples. On

the simple dataset Random30, a high recognition rate can be

achieved using image augmentation even without physically

sound training data. Nevertheless, physically sound training

data still achieve a slightly higher accuracy. For the difficult

dataset, the accuracy of the models trained on physically

sound training data is significantly higher than the accuracy

using random training data. Combining physically sound

training data with image augmentation leads to an increase of

accuracy from 75.94% to 84.21%. For the randomly gener-

ated training data, the effect of augmentation is even higher:

the accuracy increases from 37.59% to 71.43%. Overall, the

mixed variant leads to the best recognition rate by simulating

variations of the physical conditions and avoiding overfitting

to the virtual data.

6.2. Evaluation on Rendered Images

In addition to the realistic experiment from above, we

perform another artificial experiment with further datasets

(which we could not manufacture due to cost constraints): we

train the models on objects from six build jobs as above and

evaluate them on virtual images: Per object, the validation

set consists of 20 additional instances from 12 viewpoints.

Table 2 shows the test results of the models based on

randomly (with and without image augmentation) and physi-

cally sound training data on the physically sound generated

test set for all six datasets. For brevity, we show only the

best result in the column data augmentation. Again, the

results show that the usage of physically sound generated

training data significantly improves the recognition rate of

the models compared to randomly generated training data.

The models trained on physically sound training data achieve

2000



Table 2. Random vs. physically sound training data. The approach

RotationNet was trained on random vs. physically sound training

data and evaluated on virtually generated physically sound test data.

Random Random w. Augm. Phys. Sound

Random30 99.79% 100.00% 100.00%

Random50 99.26% 99.00% 100.00%

Random100 92.29% 96.80% 99.82%

Similar10 57.37% 64.38% 100.00%

Similar30 74.64% 83.33% 100.00%

Similar50 63.00% 71.00% 99.25%

over 99% accuracy on all data sets. For the models trained

on randomly generated training data, a clear decrease of

accuracy can be seen for the data sets with geometrically

similar objects. An interesting point is also that the data set

Similar10 seems to be more difficult than Similar30 although

it includes less objects. Although the image augmentation

techniques can again improve the recognition rate, the mod-

els trained on physically sound training data outperform the

models trained on randomly generated data.

These additional results support the results of the exper-

iments with physical photos and show that especially with

increasing complexity of the data, the positive effect of using

physically sound training data increases strongly.

These results show that our approach can significantly

increase the recognition rate and that our approach can be

an important part for the creation of a recognition station of

additively manufactured parts. Nevertheless, we found many

factors to influence the recognition rate, from the generation

of virtual data over training procedures to the recognition

using physically generated images. For datasets with many

different 3D models and high geometric similarities, all parts

of this process have to be optimized.

7. Discussion

In our prototype, we generated the images with a hand-

held camera without a fixed recognition station. Hence, the

physical training data varies slightly and is not perfectly

aligned to the training data. We believe the results could be

further improved with a fixed recognition station. Generally,

the virtual rendering scene should resemble the physical

setting as closely as possible, e.g., in terms of focal length,

focal ratio, illumination and positioning of components.

8. Conclusion

Our research shows that the optimization of the training

data has a major influence on the classification rate of a com-

ponent recognition system for additively manufactured parts.

Aligning the training data with the physical sensor data en-

ables us to reach recognition rates closer to 100% compared

to traditional, random training data generation without fur-

ther assumptions. The positive influence of the physically

sound data generation is growing with the complexity of the

build jobs and especially with the geometric similarity of the

corresponding 3D models. Our work contributes to the full

automation of the process step of component recognition to

enable fully automatic processes without manual steps.

Generating physically sound training data might not only

be important for the recognition of additively manufactured

parts. Due to the increasing digitization in industrial pro-

cesses, it becomes increasingly important to link virtual and

physical data in learning-based approaches. Besides the de-

tection of AM components, our approach might be used in

industrial assembly lines for applications such as automatic

gripping, visual quality control or automated sorting.

In future work, we will compare our 2D multi-view ap-

proach to 3D-based approaches, e.g., based on point clouds

and voxels, with respect to practical feasibility and the recog-

nition rate of additively manufactured parts.
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