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Abstract

We propose a novel framework to register sports-fields as

they appear in broadcast sports videos. Unlike previous

approaches, we particularly address the challenge of field-

registration when: (a) there are not enough distinguishable

features on the field, and (b) no prior knowledge is avail-

able about the camera. To this end, we detect a grid of key-

points distributed uniformly on the entire field instead of us-

ing only sparse local corners and line intersections, thereby

extending the keypoint coverage to the texture-less parts of

the field as well. To further improve keypoint based homog-

raphy estimate, we differentialbly warp and align it with a

set of dense field-features defined as normalized distance-

map of pixels to their nearest lines and key-regions. We pre-

dict the keypoints and dense field-features simultaneously

using a multi-task deep network to achieve computational

efficiency. To have a comprehensive evaluation, we have

compiled a new dataset called SportsFields which is col-

lected from 192 video-clips from 5 different sports covering

large environmental and camera variations. We empirically

demonstrate that our algorithm not only achieves state of

the art field-registration accuracy but also runs in real-time

for HD resolution videos using commodity hardware.

1. Introduction

Sports-field registration requires mapping image-pixels of

a sports-field to their corresponding real-world locations.

It is an important step towards building perceptual under-

standing of sports and enables multiple sports-related ap-

plications including novel view-point synthesis, virtual ads-

placement in and around the field, and generation of multi-

ple sports-visualizations informative to sports audience.

The standard approach for field registration consists of:

(i) extracting salient keypoints on the field-image [32, 14,

25], (ii) finding the pair-wise correspondences between

field-image and a field-template by matching the local de-

scriptors [27, 2] of the extracted keypoints, and (iii) estimat-

ing the image-to-template transformation which is usually

parameterized as a homography matrix [12, 23, 15]. Recent

Figure 1. Example frames illustrating three main factors that result

in lack of sufficient distinct field-features: (a – row 1) uniform and

texture-less field appearance, (b – row 2) narrow field of view, and

(c – row 3) field-occlusions due to presence of multiple players.

approaches have often used deep learning to estimate this

homography matrix either by applying a deep network to

predict the field markings which are then used to estimate

the homography [17, 5, 9, 34], or regressing the homogra-

phy parameters directly [19, 28, 10, 22]. While these meth-

ods offer promising results, having an approach that accu-

rately generalizes to a large set of sports remains unsolved.

Table 1 summarizes the main factors that result in mak-

ing field-registration a challenging problem for a set of five

different sports. The interplay among these factors poses

various technical challenges for sports-field registration, the

most important of which is the lack of sufficient distinct

field-features (see Figure 1 for some illustrative examples).

In particular, this challenge emerges from:

a. Uniform field-appearance: in American football, the

field looks like a chessboard with lots of identical line inter-

sections resulting in indistinguishable field-features. Simi-

larly in soccer, basketball and ice-hockey, parts of the field

only contain a few circles or lines resulting in sparse field-

features not sufficient for accurate homography estimation.
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Sports
Field

Size

Uniform Field

Appearance

Camera

Movement

Player

Occlusion

Soccer large medium medium medium

American football large high large large

Ice hockey medium medium large medium

Basketball medium medium medium large

Tennis small small small small

Table 1. Factors that directly or indirectly affect how challenging

the problem of field-registration for different sports is. Also listed

is the degree to which these factors make the problem challenging.

b. Narrow field of view: this problem-source is com-

mon for sports such as American football where the camera

needs to zoom in substantially to capture the action, which

results in fields of view without sufficient distinct features.

c. Field occlusion: this problem-source arises when mul-

tiple players can group together in a way that occludes ma-

jority of the distinct key-features present on the field.

Key contributions: To address the challenge of insufficient

distinct field-features for sports-field registration, we make

the following two key contributions:

• First, unlike previous approaches that only use sparse

locally-salient keypoints (e.g. corners and line intersec-

tions), we detect a grid of uniformly distributed keypoints

over the entire field, thereby significantly increasing the

likelihood that any camera pose over the duration of a game-

play would have sufficient number of field-keypoints vis-

ible in it. Additionally, we improve the detection of this

uniform grid of keypoints by incorporating: (a) dilated con-

volution [7] and (b) non-local blocks [35] in our detection

network. Our use of additional keypoints arranged as a uni-

form grid along with the use of RANSAC [12] substantially

improves the robustness of our homography estimation.

• Second, for frames where our keypoints-based homogra-

phy estimate is not well-conditioned, we propose the use

of novel dense features to further optimize it. These dense

features are defined as the normalized distance-map of each

pixel in the field template to its nearest line and key region

(e.g. yard-line numbers in American football). Although

these dense features do not have correspondence informa-

tion, they provide strong cues to optimize the keypoints-

based homography by performing its local alignment. Ad-

ditionally, we apply pixel-wise weight in our alignment-loss

to ensure that the lines and regions that are visible in a

frame are weighted more than the ones occluded by play-

ers. This adaptive weighting mechanism naturally provides

robustness against field occlusions caused by the gathering

of multiple players within a narrow field-of-view.

Since our keypoints and dense features are predicted us-

ing the same multi-task network, our method is able to run

in real-time under HD resolution using commodity hard-

ware. We present a comparative empirical analysis of mul-

tiple state-of-the-art field-registration approaches using a

newly collected dataset with 192 video-clips from 5 differ-

ent sports spanning a wide range of field appearance and

camera poses, and demonstrate that our approach offers bet-

ter accuracy compared to all of the considered approaches.

2. Related Work

Homography Estimation: The traditional framework for

homography estimation is to first extract distinct keypoints

using local feature detectors such as SIFT [24] and ORB

[32], and then find correspondences by comparing feature

descriptors, followed by estimating homography matrix us-

ing RANSAC [12] with DLT [15] or non-linear optimiza-

tion [26]. This approach is limited by the accuracy of the

local feature detector which is not robust to large appear-

ance variations and non-static objects. In recent years, deep

networks have been successfully used for detecting key-

points for human pose estimation [8, 4, 13, 1, 29, 11]. These

networks have an encoder-decoder structure [30] and skip

connections [31] which help the network to capture context

from a larger image area than the local descriptors.

Another approach for homography estimation is to di-

rectly regress the homography parameters through a deep

network. For instance, work in [10] utilizes deep network

to regress the homography matrix which is re-parameterized

as 4 control points. Work in [28] uses an unsupervised ap-

proach to train deep network for homography regression

where the network predicts the homography to warp the im-

age, and the photometric loss between two images is used

to compute the gradient for back-propagation. Lastly, work

in [22] uses a multi-scale network to estimate homography

while pixels of moving objects are handled explicitly.

Sports-Field Registration: Sports-field registration is a

special case of homography estimation as it focuses on

sports-fields which have known fixed structure. Work

in [17] formalizes the field registration problem using a

Markov Random Field where the energy function is defined

in terms of binary semantic cues such as surfaces, lines, and

circles which are obtained from a deep network. Both [5]

and [34] use synthetic data to generate the database which

contains field template under different camera poses. They

first segment the field surface and then use siamese network

to retrieve the field template from the database. Work in [5]

uses Lucas-Kanade algorithm to refine the homography and

[34] uses differentiable warping for refinement. Work in

[19] first uses a single network to directly regress the 4-point

homography parameters as an initial estimate, and then an-

other network to estimate the registration error. The initial

estimation is optimized using the gradients provided by the

registration-error network. Work in [9] uses keypoints from

both field and players to estimate the homography. The key-

points are manually defined on the field and detected using

a deep network. This method is difficult to generalize to
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Figure 2. Overview of the proposed framework – given the current image It, we detect its keypoints Pt and regress the two-channel dense

features Dt using our multi-task network. Pt is used for the initial homography estimation which then goes through the self-verification

step to compute its goodness score. If this goodness score is below a certain threshold, we further optimize the homography by aligning

Dt with previous dense feature Dt−1 and template feature map F.

broadcast videos because the players’ 3-D locations are as-

sumed to be known. Work in [6] explicitly address the sit-

uation when the four-point pairwise correspondence is not

satisfied due to the lack of feature points. It uses pan, tilt

and zoom instead of homography to represent the transfor-

mations such that only two points are needed for estimation.

The limitation for this approach is that it assumes that the

camera’s base-location and orientation are known a priori.

Key Differences of Our Approach: While [17, 5, 34]

also use dense features for online homography optimiza-

tion, our approach of incorporating dense features for warp-

ing based on pixel-wise weighted alignment loss is more

efficient and robust to large camera movements. Also, un-

like [9, 6] which require prior knowledge of players or cam-

era location to address lack of distinctive features, we show

that combining uniformly distributed grid of keypoints with

dense features lets us overcome this challenge substantially

without requiring any additional information about players

or camera location. Lastly, in addition to using encoder-

decoder network structure [4, 13, 1, 31], we also integrate

the recently proposed non-local block layers [35] in our net-

work to incorporate longer-range scene-context.

3. Method

As illustrated in Figure 2, our framework consists of two

main components: (a) network prediction and (b) homogra-

phy estimation. During network prediction, our multi-task

deep network (see § 4.2 for details) takes in an image It as

input and predicts its keypoints Pt and frame dense-features

Dt (see § 3.2 for details). The homography estimation step

then uses the feature map F, as well as keypoints and ho-

mography related information from the current and previous

frames to estimate the current homography Ht. We now de-

scribe various parts of our framework in more detail.

Figure 3. Comparison of keypoints. (a) The keypoints are defined

on field corners or line intersections. (b) The keypoints are defined

on a uniform grid across the entire field template.

3.1. Keypoints Detection

Instead of detecting sparse keypoints e.g. field corners and

line intersections (see Figure 3-a), we detect a grid of key-

points distributed uniformly on the field template (see Fig-

ure 3-b). Sparse keypoints do not sufficiently cover various

parts of the field, and therefore can lead to inaccurate ho-

mography estimation. In contrast, our use of uniform grid-

based key-points significantly increases the likelihood that

each part of the field is covered by well-conditioned subset

of grid-keypoints, thereby increasing our ability to estimate

homography accurately.

Accurate detection of uniformly distributed grid-based

keypoints requires us to increase the receptive field of

our network in order to capture longer range context-area

around each pixel. We employ two important means to in-

corporate larger receptive field in our networks:

a. Dilated Convolutions: we use dilated convolutions [7]

to increase the size of the convolution kernel at the last two

blocks of the encoder network with a dilation size of 2.

b. Non-Local Blocks: in addition to the increase in the ker-

nel size achieved via the use of dilated convolutions, we use

non-local blocks [35] to capture global pixel-dependencies
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Figure 4. Visualization of dense template-features – (a) Tem-

plate of American football-field. (b)–1 Annotated binary line-

map. (b)–2 Line features defined as normalized distance between

black pixels and their nearest white-pixels in the binary line-map.

(c)–1 Annotated binary region-map. (c)–2 Region features de-

fined as normalized distance between black pixels and their nearest

white-pixels in the binary region-map.

over the entire frame. This non-local block is added after

each of the last two residual blocks of our encoder network.

During training, keypoints from the field template are pro-

jected to each frame using ground truth homography to gen-

erate the ground truth positions and labels of keypoints.

The output from keypoint detection head is N+1 heatmaps

where N channels for keypoints and 1 channel for back-

ground. To deal with the unbalanced negative and positive

data, we dilate each keypoint by 10 pixels and use weighted

cross-entropy loss. The weight for each keypoint is set to

100 while for non-keypoint pixels it is set to 1. During infer-

ence, the heatmaps are decoded into the keypoint set Pt =

[(x1, y1, c1), (x2, y2, c2), ..., (xN, yN, cN)] where (x, y) are

the coordinates and c is the label. These keypoints and their

corresponding field points are then used to estimate the ho-

mography parameters using the DLT [15] algorithm.

3.2. Dense Feature Regression

Although the coverage of our grid based keypoints is sig-

nificantly better than local salient keypoints, there can still

be frames that do not have enough grid-keypoints to use

DLT [15] algorithm due to small field-of-view or heavy field

occlusion. For frames where this issue happens, we use

our network to regress the dense frame-features directly and

align them with dense template-features in order to further

refine the initial key-point based homography estimate.

To this end, we introduce two types of dense template-

features: (a) line feature and (b) region feature (see Fig-

ure 4 for an example using American football field). These

dense features are defined as the normalized distance maps

of pixels to their nearest lines and regions respectively. We

annotate the lines and regions from the field template once

(Figure 4 (b)-1 and (c)-1), and convert them to continuous

distance maps by a distance transform and normalize them

from 0 to 1 to form a probability map (Figure 4 (b)-2 and

(c)-2). During training, the dense feature maps are back-

projected to each frame using ground truth homography.

Line features and region features are predicted from two

separate heads of the network and concatenated as a two

channel dense frame-feature Dt. We use L1 loss between

Dt and the warped feature during network training.

3.3. Homography Estimation

We now discuss how to use the keypoints Pt and dense fea-

tures Dt to estimate the homography Ht. The keypoints

Pt are used to estimate the initial homography and also

the inlier point-set. This is followed by a self-verification

step that decides if the online optimization step is needed.

In case the online optimization is not required, the initial

homography estimate is used as the final homography Ht,

otherwise we compute Ht using F, Dt, Dt−1 and Ht−1 by

optimizing the alignment loss.

3.3.1 Initial Homography Estimation

Given detected keypoints Pt from frame It, we directly es-

timate the initial homography H
initial
t using DLT [15] and

RANSAC [12]. The inlier point-set Pinliers
t is also identified

by H
initial
t . We set Pinliers

t to an empty-set if the estimated

H
initial
t is degenerate due to poor configuration of Pt.

3.3.2 Self-Verification

The self-verification step checks the goodness of the initial

homography estimate Hinitial
t and decides if online optimiza-

tion is needed to further improve it. To verify the goodness

of Hinitial
t , we check two conditions:

(a) Goodness of Pinliers
t : the goodness of Pinliers

t is decided

by their position configuration. More inlier points with

more uniform position distribution result in a higher good-

ness score. Similar to [33], we divide the image into grids

at three resolutions: 2 × 2, 4 × 4, 8 × 8 and compute the

goodness scores at each resolution as the number of cells

occupied by the points.

(b) Consistency between H
initial
t and Ht−1: to verify the

temporal consistency of homography estimation, we com-

pute the intersection-over-union (IOU) measure between

the binary maps projected using H
initial
t and Ht−1.

We use H
initial
t as final Ht if the goodness of Pinliers

t and the

consistency of H
initial
t are above certain thresholds. Oth-

erwise, we perform online homography refinement. The

thresholds for the two conditions are chosen by cross-

validation on training data.
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3.3.3 Online Homography Refinement

Our objective function of online homography refinement

optimization is listed in Equation 1.

Ht = argmin
H

λfLf + λsLs

Lf =
||(Dt − warp(H,F)) ·Dt||1

||Dt||1

Ls = ||Dt − warp(HH
−1

t−1
,Dt−1)||1

(1)

The function warp(H,F)) warps feature map F using

homography H and differentiable bilinear sampling [18].

Here, operation · is element-wise multiplication and || ||1
is vectorized L1 loss.

Intuitively, we want to encourage homography to have

good alignment between predicted dense frame-feature Dt

and dense template-features F. Additionally, to incorpo-

rate temporal smoothness, we want the current dense frame-

feature Dt to have good alignment with the previous dense

frame-feature Dt−1. To achieve this, we define two losses:

(a) Matching Loss (Lf ) – measures pixel-wise weighted

difference between the current dense frame-feature Dt and

the warped field feature using the current homography es-

timate H and the dense template-features F. We directly

use Dt as pixel-wise weights so that the mismatched pixels

closer to lines and key regions contribute more to the loss.

(b) Tracking Loss (Ls) – computes difference between Dt

and warped Dt−1 using relative homography HH
−1

t−1
. It

encourages temporal consistency between neighboring esti-

mations.

This optimization process is only used during inference, and

done by back-propagation with Adam optimizer [21]. The

loss weights λf and λs are set to 0.9 and 0.1 respectively.

4. Experiments

4.1. Datasets

To the best of our knowledge, the only publicly available

dataset with homography annotation is the Soccer World

Cup dataset [17] which has 209 images for training and 186

images for testing. In order to do a more comprehensive

evaluation and facilitate further research in sports-field reg-

istration, we collected a new dataset called SportsFields

from five different sports including soccer, American foot-

ball, ice hockey, basketball and tennis. For each sport, we

manually selected game-play video segments which cover a

large variation of field appearance and environmental condi-

tions (e.g. rain, snow, harsh sunlight, etc.). The training and

testing images are sampled for manual annotation at 1 FPS

while ensuring that images from the same videos do not get

included in both train and test splits. For testing, we run our

method on each frame of the test videos and compute the

Sport
Number of

videos

Number of

training images

Number of

testing images

Soccer 60 396 321

American football 30 502 333

Ice hockey 23 321 199

Basketball 21 359 130

Tennis 27 255 151

Table 2. SportsFields data statistics: number of videos, and train

and test images for each sport in SportsFields dataset.

evaluation metrics only for frames for which we have anno-

tations available. Various statistics for SportsFields dataset

is shown at Table. 2.

4.2. Implementation Details

a– Network: Our multi-task network has an encoder-

decoder structure [30] based on ResNet-18 [16]. The de-

coder is composed of four deconvolution layers to output

the final feature map which has 1/4 resolution of the in-

put image. Similar to U-Net [31], we add skip connections

between encoder and decoder to fuse the features at differ-

ent scales. Additionally, dilated convolution and Non-Local

block [35] are added in the last two residual blocks of en-

coder. Three heads are attached on top of the last feature

map for keypoint detection, line feature and region feature

regression respectively. We use L1 loss for line feature and

region feature regression, and cross-entropy loss for key-

point detection with weights of each loss set to 1.

b– Hyperparameters: We train separate networks for dif-

ferent sports with the same hyperparameters. All networks

are trained for 200 epochs using learning rate of 1e− 4 and

then another 100 epochs using learning rate of 1e − 5. We

use Adam optimizer [21] with parameters β1 = 0.9 and

β2 = 0.999 for all epochs. For online optimization, we run

Adam optimizer with learning rate 0.001 for 50 iterations.

The weights λs and λf are set to 0.1 and 0.9 respectively.

The re-projection threshold for RANSAC [12] is 10. For

self-verification, the goodness threshold for keypoints con-

figuration is set to 100 while the IOU threshold for homog-

raphy consistency is set to 0.6.

4.3. Evaluation Metrics

We report four metrics for evaluation purposes including

two types of Intersection Over Union (IOU), as well as the

projection error and the re-projection error. For each metric,

we report both mean and median values.

a– IOU: There are two types of IOU metrics commonly

used by previous approaches. The first type, i.e. IOUpart, is

computed between binary masks produced by projecting the

field-mask in a video-frame while using predicted homog-

raphy and ground-truth homography. The second type, i.e.

IOUwhole, is computed between field-template binary mask
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and its projection using product of predicted homography-

inverse and ground truth homography (see [9] Appendix C).

Work in [9] pointed out that IOUwhole is better because

it also compares the invisible field area. However, the reg-

istration error of the invisible field cannot be measured be-

cause the ground truth homography is obtained using the

visible field area and guarantees the projection correctness

of the visible area only. Therefore, we prefer using IOUpart

in conjunction with IOUwhole. Both types of IOU metrics

have the obvious flaw that they ignore the dense correspon-

dences of points, and can have large value even when the

predicted homography is completely wrong, e.g. the flipped

field has the same IOU as the non-flipped one. To overcome

these limitations of IOU metric, we also compute two addi-

tional evaluation metrics that are described below.

b– Projection Error: The projection error is measured by

the average distance in actual scale (meters) between pro-

jected points using predicted homography and the points

using ground truth homography. This metric is invari-

ant to different image resolutions. We uniformly sample

2500 pixels from visible field area of the camera image and

project them to the field to compute the distance. The ac-

tual field dimensions we use for soccer, American football,

basketball, ice hockey and tennis are (in meters) 100 × 60,

110× 49, 29× 15, 61× 26 and 24× 11 respectively.

c– Re-projection Error: We follow [9] in using the re-

projection error as one of our evaluation metrics. Recall

that re-projection error is defined as the average distance

between points re-projected in the video-frame using pre-

dicted homography and those re-projected using ground-

truth homography. We compute the pairwise distances be-

tween the re-projected points and normalize them by image

height to compute the final average re-projection error.

4.4. Baselines

We compare our method against other state of the art ap-

proaches [20, 3, 5, 19, 34, 9] on the public Soccer World

Cup dataset [17]. We use the inference code and pre-trained

model released by [19] to compute all metrics. We use the

results of approach [5] reported in [19] and the results of

[20] reported in [9]. To have a fair comparison with [9]

we take the results of approach ours-w/o-players reported

in their paper for IOU and re-projection error. We imple-

ment [3] following the details given in the paper.

For the sake of completeness, we also derive three vari-

ants of our approach (listed below) and present their results.

The first two variants are single frame based methods and

therefore do not need consecutive frames for testing.

• ours – keypoints only: we use only detected keypoints to

compute the homography. Online optimization is not used.

• ours – alignment: we use detected keypoints to compute

the initial homography and do online optimization with only

matching loss so the dense features and homography from

Method
fps IOUpart(%) IOUwhole(%) Proj. (meter) Re-Proj.

mean mean median mean median mean median mean median

Posenet [20] 19 78.5 82.9 63.4 66.3 5.22 4.62 0.243 0.163

Eric et al. [3] 5 93.4 94.5 86.4 88.8 1.26 1.01 0.037 0.031

Chen et al. [5] - 94.7 96.2 89.2 91.0 - - - -

Wei et al. [19] 0.6 95.1 96.7 89.8 92.9 1.21 0.74 0.017 0.012

Long et al. [34] 250 93.2 96.1 88.3 92.1 - - - -

Leonardo et al. [9] 9 - - 90.5 91.8 - - 0.018 0.012

ours – keypoints Only 50 95.8 97.2 91.5 93.3 0.82 0.61 0.019 0.015

ours – alignment 2 95.9 97.1 91.6 93.4 0.84 0.65 0.019 0.014

Table 3. Quantitative results of homography estimation on Soccer

World Cup dataset.

Method
IOUpart(%) IOUwhole(%) Proj. (meter) Re-proj.

mean median mean median mean median mean median

Posenet [20] 13.2 12.2 0.6 0.3 39.23 33.65 1.210 0.954

Eric et al. [3] 38.3 41.1 38.8 39.5 9.64 5.74 5.096 0.702

Wei et al. [19] 18.1 17.4 5.8 5.1 28.55 25.81 1.032 0.876

ours – keypoints only 66.7 97.1 64.3 95.1 50.60 0.21 1.832 0.011

ours – alignment 67.1 97.1 66.5 95.2 40.21 0.20 1.873 0.011

ours – tracking 81.7 97.3 82.1 95.7 1.83 0.21 0.192 0.012

ours – all 96.2 97.4 94.2 96.1 0.22 0.18 0.015 0.011

Table 4. Quantitative results of homography estimation on Ameri-

can football dataset.

previous frame are not used.

• ours – tracking: we use detected keypoints to compute

initial homography and do online optimization with only

tracking loss so the good homography estimates are tracked.

• ours – all: our complete approach with all components.

4.5. Results

a– Soccer World Cup: Table 3 presents the evaluation of

our approach on the publicly available Soccer World Cup

dataset [17]. Like previous approaches, our model is trained

using 209 images and tested on 186 images. We only eval-

uate our single frame based method variants ours – key-

points only and ours – alignment because the testing data

are not consecutive frames. The FPS of inference is tested

using GTX 1080ti with CUDA 9.0. From Table 3 we can

see that our method variant with improved keypoints defini-

tion and detection not only achieves better IOU and pro-

jection error, but also runs faster than most of other ap-

proaches. The benefit of using online optimization with

dense features is minor in this data as the results using key-

points alone are already quite accurate.

b– American Football: We compare the various variants

of our approach with [20, 3, 19] on American football part

of our SportsFields data as it highlights more challenges of

the problem at hand than the other four sports do. The quan-

titative results are reported in Table 4. We can see that the

direct regression approaches [20, 19] do not work well on

this data, and the approach in [3] is better than [20] and [19]

but far from the accuracy it achieves on Soccer World Cup

dataset. The likely reasons for this difference include: (i)

the variation of homography on American football is much

larger than other sports because of the large field size and
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Figure 5. Qualitative comparison of the results for different variants of our approach. (a) The homography is estimated only by the detected

keypoints from current frame. (b) The homography is optimized by using tracking loss which aligns the current dense features with

previous dense features. However, it can be seen that the homography starts to drift because of the heavy field occlusions caused by the

presence of multiple players in a small field-of-view. (c) The homography is optimized by using both tracking loss and matching loss.

Figure 6. Qualitative results of our approach (ours – all) for challenging examples from five different sports in our SportsFields data. Four

examples of each sport are visualized with sport field lines (red) and keypoints (blue) overlayed on the image. The last column shows one

failure example for each sport. More qualitative results are presented in supplementary materials.

small camera field-of-view. The network therefore can have

difficulty to learn large homography variations, and (ii) the

field appearance is quite uniform and the distinguishable

features are sparse. The network has heavy down-sampling

at later stages and therefore cannot capture the distinguish-

able features well.

Our method variant (ours – keypoints only) that uses

only keypoints is able to achieve significantly better accu-

racy than existing approaches. The large difference between

the median and mean for each metric indicates that many

frames get accurate estimates while the estimates for some

frames are completely wrong as shown in Figure 5 (a). Our

1942



Method
fps IOUpart(%) IOUwhole(%) Proj. (meter) Re-Proj.

mean mean median mean median mean median mean median

Soccer 35 97.5 97.9 92.9 93.5 0.33 0.12 0.014 0.011

American Football 25 96.2 97.4 94.2 96.1 0.22 0.18 0.015 0.011

Ice Hockey 35 95.2 96.1 91.9 93.0 0.35 0.30 0.023 0.021

Basketball 35 97.4 97.7 92.3 93.9 0.19 0.17 0.013 0.010

Tennis 45 99.9 99.9 97.5 97.7 0.09 0.08 0.009 0.009

Table 5. Quantitative results of homography estimation of our ap-

proach ours – all on SportsFields dataset.

method variant (ours – tracking) that uses tracking loss for

alignment improves the keypoints only variant by tracking

the good estimates from previous frames, but it starts to drift

due to the heavy field occlusion as shown in Figure 5 (b).

With both tracking loss and matching loss, our final ap-

proach (ours – all) further improves the results (shown in

Figure 5 (c)) by aligning the dense features with both previ-

ous frame and field template.

c– SportsFields: Finally, we evaluate our full approach

(ours – all) on all five sports using our SportsFields dataset.

The quantitative results are reported in Table 5. For all

sports the IOUpart is above 95% and the projection error is

within half meter which demonstrates the good generaliza-

tion ability of our approach. Among the five sports, tennis

gets the best registration accuracy because of the limited

camera movement and the fully visible field observed in

Tennis for most of the times. The inference FPS of our ap-

proach is mainly affected by the percentage of frames which

need online optimization which accounts for 90% of the to-

tal computation time. Processing American football data

takes longest time because the small field-of-view and uni-

form field appearance observed in American football leads

to more frequent online optimization than other sports. Five

qualitative examples for each sport are provided in Figure 6.

The results demonstrate that our approach handles various

challenging situations well, e.g., the middle field of soccer

and basketball court, and small field-of-view of American

football. The last column of Figure 6 shows failure-cases

mainly caused by: (a) online optimization failing to align

small field areas, (b) heavy motion blur, and (c) unexpected

camera occlusions (e.g. audience raising hands).

4.6. Ablation Study

a– Keypoints Definition: To verify the benefit of our uni-

formly defined grid-keypoints, we compare the homogra-

phy estimation between the two types of keypoints (Fig-

ure 3) in Table 6 on World Cup dataset. The uniform key-

points clearly perform significantly better than the locally

defined keypoints since the corners and intersections can-

not cover the full field, and therefore the limited number of

keypoints and their poor positional configuration can often

lead to inaccurate homography estimation.

b– Grid-Keypoints Detection: We evaluate the accu-

racy of grid-keypoints detection task using our SportsFields

Method
IOUpart(%) IOUwhole(%) Proj. (meter) Re-Proj.

mean median mean median mean median mean median

grid keypoints 95.8 97.2 91.6 93.3 0.82 0.61 0.019 0.015

local keypoints 90.6 95.3 81.9 88.9 3.51 0.92 0.164 0.024

Table 6. Comparison of different types of keypoints on homogra-

phy estimation on Soccer World Cup dataset.

Sport type #Keypoints
Without dilation+NL With dilation+NL

Precision Recall Precision Recall

soccer 91 0.66 0.66 0.75 0.76

American football 168 0.39 0.36 0.55 0.49

ice hockey 75 0.45 0.43 0.53 0.55

basketball 50 0.71 0.68 0.75 0.72

tennis 15 0.97 0.99 0.99 0.99

Table 7. Comparison of keypoints detection on different network

structures. Here NL implies non-local block [35].

dataset. We also evaluate the benefit of dilated convolution

and Non-Local block in this regard. The average precision

and recall of all keypoints are computed in Table 7. The ac-

curacy of keypoints detection indicates the difficulty of us-

ing only keypoints for field registration. Among five sports,

American football has the worst accuracy due to the uni-

form field appearance and the small camera field-of-view.

Tennis gets almost perfect result because of the large field-

of-view and small camera movement. With dilated convo-

lution and non-local block, four of the more challenging

sports (all but tennis) in SportsFields dataset get a signifi-

cant improvement which demonstrates that using large re-

ceptive field and long-range context are critical for uniform

grid-keypoints detection.

5. Conclusions and Future Work

We presented a general framework to register sports-fields

as they appear in broadcast sports videos particularly when

there are not enough distinguishable features available on

the field. The key technical contributions we made to over-

come this challenge are: (i) detecting a uniform grid of key-

points that cover the entire field, and (ii) using dense field-

features to further refine the keypoint based homography

estimate. We collected a new and significantly more com-

prehensive field registration dataset (called SportsFields)

which covers five sports with large variations of field ap-

pearance and camera pose. We demonstrated that our

framework is able to register sports-fields more accurately

than previous approaches under challenging capturing con-

ditions and runs in real-time for HD resolution.

Going forward, we will explore combining bundle ad-

justment [15] with dense features to jointly optimize ho-

mograpy estimate for all video-frames instead of frame-by-

frame processing. Another direction we want to explore is

using semi-supervised learning to minimize labelling effort.
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