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Abstract

Critical obstacles in training classifiers to detect facial

actions are the limited sizes of annotated video databases

and the relatively low frequencies of occurrence of many

actions. To address these problems, we propose an ap-

proach that makes use of facial expression generation. Our

approach reconstructs the 3D shape of the face from each

video frame, aligns the 3D mesh to a canonical view, and

then trains a GAN-based network to synthesize novel im-

ages with facial action units of interest. To evaluate this

approach, a deep neural network was trained on two sep-

arate datasets: One network was trained on video of syn-

thesized facial expressions generated from FERA17; the

other network was trained on unaltered video from the same

database. Both networks used the same train and valida-

tion partitions and were tested on the test partition of actual

video from FERA17. The network trained on synthesized fa-

cial expressions outperformed the one trained on actual fa-

cial expressions and surpassed current state-of-the-art ap-

proaches.

1. Introduction

Facial expressions convey emotional states, behavioral

intentions, and physical state [35]. In behavior sciences the

gold-standard to decode such facial expressions is the Facial

Action Coding System (FACS) [10]. FACS decomposes fa-

cial expressions into anatomically based action units (AUs),

which alone or in combinations can represent nearly all pos-

sible facial expressions. While much progress has been

made in action unit detection, at least two significant prob-

lems impede further advances.

First, while much video of spontaneous facial expres-

sion has been collected, only a fraction have been manually

annotated. Expert FACS annotators are relatively few and

the time required to comprehensively annotate action units

slows the effort. AU annotation of a single minute of video

typically requires one to three hours from a highly trained

expert [8]. Reaching human-like accuracy in a fully super-

vised way would require labeled datasets orders of magni-

tude larger than those available today.

Second, AU labels are highly skewed in spontaneous

behavior. Many AUs occur rarely and only a sparse sub-

set of AU intensities occur at a time. As a consequence,

rare classes do not contribute equally during classifier train-

ing, which hinders learning and undermines global perfor-

mance. Although imbalanced learning has been well ex-

plored in the past, most approaches deal with a single ma-

jority and minority class and are not directly applicable to

the multi-label AU domain.

We propose a generative semi-supervised method that

can handle within a common framework both the limited

sizes of annotated data now available and the low frequen-

cies of occurrence.

Our approach makes use of a 3D facial expression gen-

erator trained on the labeled portion. The approach first re-

constructs the 3D shape of the face from each video frame,

aligns the reconstructed meshes to a canonical view to es-

tablish semantic correspondence across frames and sub-

jects, and then trains a GAN-based network to synthesize

novel images with facial action units of interest. We then

use the network to generate a large AU-balanced dataset

from unlabeled images for training.

Intensity of facial actions may be one of the most impor-

tant features in assessing a person’s emotional state [26].

Low intensity actions are detectable through motion [2].

Table 1 compares AU intensity datasets. In order to be

able to detect these fine scale changes, we selected FERA

2017 [36], DISFA [25] and UNBC Pain [24], which are

video datasets having manual fine-grained AU intensity an-

notations, to evaluate our approach (see supplementary ma-

terials for results on UNBC Pain). Note that Table 1 does

not include datasets without AU intensity annotation, such

as Aff-Wild2 [20].

Our novelties are twofold:

3D geometry based AU manipulation. Unlike previ-

ous work on facial AU manipulation that is limited to either

2D representations [30] or individual frames [13], our ap-

proach uses the 3D structure of the face to create semantic
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Table 1. Comparison of AU intensity datasets

# of AUs

with intensity codes

Continuous

Video

Manual

Ground Truth

Social

Context

Manual Coding

Reliability

FERA 2017 [36]i 7 ✓ ✓ ✓ Good

DISFA [25] 12 ✓ ✓ Good

EmotioNet [5] 12ii Semi automatediii Unknown

UNBC Pain [24] 10 ✓ ✓ Good
i The FERA 2017 dataset consists of BP4D [39] and BP4D+ [42].
ii In the EmotioNet Challenge 2020, 11 more AUs have been added for a total of 23 AUs. http://cbcsl.ece.ohio-state.edu/enc-2020/
iii They manually FACS-coded 10% of this database.

correspondence across video-frames and subjects.

Synthetic multi-label stratification of AUs. Many AU

occur infrequently, which undermines learning. To avoid

imbalanced classes, we increase the prevalence and variety

of under-represented AUs by synthesizing new facial ex-

pression.

2. Related Work

Solutions to limited AU annotations: While massive

amount of facial expression data is available, high quality

annotations of AU intensity labels are limited. To mitigate

the problems in the AU annotations, weakly-supervised,

semi-supervised, and self-supervised approaches have been

proposed. Weakly-supervised approaches aim to exploit

incomplete, inaccurate or inexact annotations to provide

supervision. Zhao et al. [44] proposed a weakly super-

vised clustering approach utilizing a large set of web im-

ages with inaccurate annotations. The annotations were

obtained from either pretrained models or query strings.

Ruiz et al. [32] proposed to train AU detectors without

any AU annotations by leveraging the expression labels and

using prior knowledge on expression-dependent AU proba-

bilities. Similarly, Zhang et al. [41] exploited expression-

dependent and expression-independent joint AU probabili-

ties as prior knowledge and learned to detect AUs without

any AU annotation. In another study, Zhang et al. [40]

used various types of domain knowledge including relative

appearance similarity, temporal intensity ordering, facial

symmetry, and contrastive appearance difference to pro-

vide weak supervision for AU intensity estimation with ex-

tremely limited annotations. Peng et al. [29] proposed a

method that learns AU classifiers from domain knowledge

and expression-annotated facial images through adversarial

training.

Semi-supervised approaches deal with partially anno-

tated data. They aim to leverage the unlabelled data with

the assumption that unlabelled data follow continuity or

form cluster with the labeled data [44]. Wu et al. [37]

used Restricted Boltzmann Machine to model the AU dis-

tribution using the annotated labels, which is used to train

the AU classifiers with partially labeled data. Zeng et al.

[38] trained a quasi-semi-supervised (QSS) classifier with

virtual labels provided by the confident positive and neg-

ative classifiers, which separate easily identified positive

and negative samples from all else, respectively. Niu et

al. [28] proposed a semi-supervised co-training approach

named as multi-label coregularization for AU recognition,

which aims to improve AU recognition with abundant unla-

beled face images and domain knowledge of AUs.

Recent works focus on self-supervised approaches where

the goal is to learn the discriminative representation from

the massive amount of videos without annotations. Li et al.

[22] proposed a self-supervised learning framework named

Twin-Cycle Autoencoder that disentangles the AU-related

movements from the pose-related ones to learn AU repre-

sentations from unlabelled videos. While the aforemen-

tioned approaches tackle the problems in the annotations,

none of them aims to balance the distribution of AU inten-

sities. For label balancing, upsampling approaches where

the infrequent labels are selected multiple times [21][43]

or multi-label minority oversampling majority undersam-

pling approach [7] have been used. Since resampling is

done within the dataset, such balancing methods do not con-

tribute additional semantic information about the infrequent

label.

GAN-based facial expression transfer: Recently

GANs have received attention to transfer facial expressions

from a source subject to a target subject. Existing work

on GAN-based facial expression transfer approaches focus

on generating facial images with discrete emotions [6][9],

or the specified facial action units [30][23]. Some of the

GAN-based approaches specifically aim to guide their mod-

els with the facial geometry information. Song et al. [34]

proposed a Geometry-Guided Generative Adversarial Net-

work (G2-GAN) which employs fiducial points as a control-

lable condition to guide facial texture synthesis with spe-

cific expression. Qiao et al. [31] applied contrastive learn-

ing in GAN to embed geometry information onto a seman-

tic manifold in the latent space for facial expression trans-

fer. Geng et al. [13] combined 3DMMs and deep genera-

tive techniques in a single framework for fine-grained face

manipulation. Yet, in these studies transfer was limited to

either 2D representation or to individual frames.

Synthetic data augmentation: Some of the recently
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Figure 1. Pipeline of our approach. (a) A dense 3D mesh of the face is reconstructed, rotated to the canonical frontal view and 2D

rasterized. (b) Given the 3D registered input image (Iys) and target expression (yt), target expression is transferred to input image (̃Iyt).
Using semantic resampling on the synthesized images, a training set of balanced AU intensity labels is formed. (c) Obtained balanced

training set is used to train a convolutional neural network to estimate AU intensity values.

proposed methods utilized synthetic data for facial expres-

sion analysis. Abbasnejad et al. [1] pre-trained their model

using synthetic face images and then fine-tuned it on real

images. Zhu et al. [46] proposed a data augmentation

method using GAN to classify basic emotions. Kollias et

al. [19] proposed an approach using 3DMMs to synthesize

facial affect: in terms of six basic emotions or in terms of

valence and arousal. Unlike the existing methods, our ap-

proach is designed to generate a large AU-balanced dataset.

3. Proposed Method

Fig. 1 shows the pipeline of our approach. First we per-

form dense 3D registration from 2D images. Then, we

train a GANimation-based architecture with idiosyncratic

loss to synthesize new facial expressions. Using semantic

resampling, we obtain a balanced distribution of AU inten-

sity labels. Finally, using the balanced synthetic expression

database, we train a convolutional neural network architec-

ture for AU intensity estimation.

3.1. 3D face registration

We normalize videos using PRNet [12], a face alignment

software that accomplishes dense 3D registration from 2D

images without requiring person-specific training. PRNet

uses an encoder-decoder architecture containing convolu-

tional layers and residual blocks to jointly perform facial

landmark alignment and 3D facial structure reconstruction.

This architecture learns a mapping from an RGB image to

UV position map (a 2D image representation of 3D coor-

dinates in UV space keeping the position and semantic in-

formation). By learning the position map, it is possible to

directly regress the complete 3D structure along with se-

mantic meaning from a single image. Using PRNet, we ob-

tain the dense 3D mesh of the face in a frontal view and

texture information. Then, we map the texture to 3D mesh

and rasterize it to 2D image of size 224 x 224.

3.2. Facial Expression Generation Architecture

We build upon GANimation [30] framework to synthe-

size novel facial expressions. First we map AU intensity

labels (0 to E-level) to values in range [0,1]. Given a

3D registered source image Iys
with the AU intensity val-

ues ys = {s1, s2, . . . , sn}, and target AU intensity values

yt = {t1, t2, . . . , tn}, we synthesize Ĩyt
. With our architec-

ture, we aim to minimize these following terms:

Image Adversarial Loss: In order to obtain realistic syn-

thesized images and ensure that the distribution of the gen-

erated images are similar to the distribution of the training

images, we use image adversarial loss. Let Ps be the data

distribution of the source image, PĨ be the random inter-

polation distribution, and λgp be the penalty loss. Then we

can write the image adversarial loss Ladv(G,Dadv, Iys
, yt)

as follows:

(1)
EIys ∼Ps

[Dadv(G(Iys
|yt))]− EIys∼Ps

[Dadv(Iys
)]

+ λgpEĨ∼P
Ĩ
[(‖∇ĨDadv(Ĩ)‖2 − 1)2]

where G denotes generator and Dadv denotes adversarial

discriminator.

Conditional Expression Loss: In order to enforce G to

synthesize images containing the target expression yt, we

use the following loss Lexp(G,Dexp, Iys
, ys, yt) to mini-
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mize the distance between AU intensities of the source and

target images:

EIys∼Ps
[‖Dexp(G(Iys

|yt))−yt‖
2

2
]+EIys∼Ps

[‖Dexp(Iys
)−ys‖

2

2
]

(2)

where Dexp denotes discriminator for expression.

Identity Loss: We aim to guarantee that the face in both

the input and output images belong to the same person. We

use this cycle-consistency loss to penalize the difference be-

tween the original image Iys
and its reconstruction Iyt

.

Lidt(G, Iys
, ys, yt) = EIys∼Ps

[‖G(G(Iys
|yt)|ys)− Iys

‖1]
(3)

Idiosyncratic Loss: With the GANimation architecture, we

can transfer the AU intensity values yt of a target image Jyt

to the source image Iys
to synthesize Ĩys

. When the identity

of source (I) and target (J) images are the same, then we

can minimize the difference between Iyt
and Ĩyt

to ensure

that both expression and identity of the synthesized image

are the same as the target image. Idiosyncratic loss can be

defined as:

Lids(G, Iys
, ys, yt) = EIys∼Ps

[‖(G(Iys
|yt)− Iyt

‖1] (4)

Final Loss: We obtain our final loss by combining of the

mentioned individual losses as follows:

L = λadvLadv + λexpLexp + λidtLidt + λidsLids (5)

where λadv , λexp, λidt, and λids are the hyperparameters

used to adjust the importance of different components.

3.3. AU intensity estimation

After we synthesize new expressions for the individuals

in our database, we perform semantic resampling and create

a training set having balanced AU intensity labels for each

AU. Then we train convolutional neural networks (VGG16)

using the balanced synthetic training set. During test time,

we obtain AU intensity outputs of each estimator.

4. Experiments

4.1. Datasets

In all of our experiments, we used three facial expression

datasets. For training the generator and evaluating within

domain performance, we used the widely accepted 2017

Facial Expression Recognition Benchmark (FERA 2017)

[36]. For generating out-of-domain samples, we used the

high resolution images from MultiPIE [14]. To evaluate the

generalizability of our AU classifiers to another domain,

we used the Denver Intensity of Spontaneous Facial Action

Database (DISFA) [25].

FERA 2017: The FERA 2017 Challenge was the first

to provide a common protocol with which to compare

approaches to detection of AU occurrence and AU intensity

robust to pose variation. FERA 2017 provided synthesized

face images with 9 head poses as shown in Fig.5. The

training set is based on the BP4D database [39], which

includes digital videos of 41 participants. The development

and test sets are derived from BP4D+ [42] and include

digital videos of 20 and 30 participants, respectively.

FERA 2017 presented two sub-challenges: occurrence

detection and intensity estimation. For the former 10 AUs

were labelled; for the latter, 7 AUs were labelled. For our

experiments, 7 AUs for intensity estimation were used.

MultiPIE: The MultiPIE databset contains images of 337

people recorded in up to four sessions over the span of

five months. Subjects were imaged under 15 view points

and 19 illumination conditions while displaying a range

of facial expressions. In addition, high resolution frontal

images were acquired as well. For synthesis, we used the

high resolution images only.

DISFA: The DISFA dataset contains videos of 27 adult sub-

jects (12 women, 15 men). It is manually annotated for AU

intensity from 0 to E-level. Participants watched a video

clip consisting of 9 segments intended to elicit a range of

facial expressions of emotion.

4.2. Experimental Setup

In this section we describe the experimental setup for the

generator network and the classifier.

4.2.1 Generator Training

In our experiments, we used the FERA 2017 dataset [36]

to train facial expression generation models. The dataset

consists of Train, Valid, and Test partition. We used Train

partition only to train our model. All the images were re-

sized to 224 × 224 pixels to match the receptive field of our

AU estimation model (VGG16).

In all of our experiments, we used a GANimation [30]

replicate implementation1. We modified the loss function

with the idiosyncratic constraint as described in the previ-

ous section.

4.2.2 Classifier Training

For the baseline experiments, we used the training partition

of the FERA 2017 dataset [36] to train AU classifiers and

1https://github.com/donydchen/ganimation_replicate
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Figure 2. Examples of 2D and 3D normalization. Note the higher image quality when 3D normalization was used.

used the test partition to test them. To create a balanced

training set and compare methods, 5,000 frames were se-

lected for each AU intensity. In the case of real images,

we randomly selected 5,000 images from the six intensity

classes (not present, and A to E levels). We down-sampled

the majority classes and up-sampled the minority classes to

reach this number. In the case of synthesized images, we

first selected 5,000 pairs of input images and target AU la-

bels for each intensity and each AU. Then we synthesized

5,000 images for these pairs. We selected 5,000 images ac-

cording to experimental results by Niinuma et al. [27]. They

analyzed the influence of training set size on FERA17, and

showed that the training set sized have minor influence on

the performance: score peaked at 5,000 images, after that

performance plateaued. During the selection input images

were selected only from frames that did not have the target

AU of interest. For example, when we synthesized images

for E level intensity of AU1, we randomly selected 5,000

input images that did not have AU1 present and 5,000 tar-

get AU labels having E level intensity for AU1. We employ

this strategy for two main reasons. First, while the gen-

erator can add realistic facial deformations (like wrinkles

and bulges) to neutral faces, it oftentimes fails in remov-

ing those. Therefore, to acquire higher quality synthesized

images, starting from neutral frame is preferable. Second,

since the AU labels are sparse, there are many more frames

in the dataset where the target AU is not present. This way

we can obtain a variety of synthesized images for each fa-

cial expression.

We selected a VGG16 network pre-trained on ImageNet

for the baseline architecture for AU estimation. Previ-

ous studies found this combination preferable for AU cod-

ing [27]. We replaced the final layer of the network with

a 6-length one-hot representation, and fine-tuned VGG16

network from the third convolutional layer. Dropout rate

was set to 0.5, and Adam optimizer was used with LR =

5× 10−5 as suggested in [27].

4.3. Synthetic vs Real Expressions under 2D vs 3D
Alignment

In this set of experiments we studied how two main com-

ponents affect the performance of the whole system.

First, we were interested in the effect of face alignment

on the synthesis and AU recognition performance. We ex-

plored both 2D and 3D alignment. 2D normalization treats

the face as 2D object. That assumption is reasonable, as

long as there is no head movement present. As soon as head

orientation deviates from frontal, one expects the classifier’s

ability to measure expressions to degrade. On the other

hand, 3D normalization should be able to preserve semantic

correspondences of the different facial regions across poses,

and result in higher performance. For 2D alignment, we ap-

plied Procrustes analysis between 68 landmarks provided

by the dlib face tracker[18] on the frames and a frontal tem-

plate. For 3D normalization we used the method described

in Sec. 3.1. Note that there are not significant differences

between shallow and deep approaches in terms of facial

alignment [16][33]. In the 300-W Challenge [33], the two

top methods are a cascade regressor and a CNN approaches.

The dlib face tracker is an implementation of a decision tree

based cascade regressor [17].

Second, we were interested how synthetic expressions

would affect the classification performance. We compared

multi-label minority oversampling & majority undersam-

pling with the proposed, completely synthetic expression

generation. Both methods balance the skewed distributions

of AUs, but while the first one can not produce more var-

ied minority samples, the latter one can. As mentioned in

Sec. 4.2.2, we used 5,000 images for each intensity each AU

for both real and synthesized image settings.

Fig. 2 shows examples of synthetic expressions generat-

ing using 2D and 3D alignment. 3D alignment results in less
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Table 2. Comparison of synthetic vs real expressions under 2D

vs 3D alignment. Scores are Inter-rater reliability (ICC) of AU

intensity level estimation. The Images row shows which is used

to train classifiers: Real or Synthetic. All of the classifiers were

tested on the real test dataset. The same Registration (2D or 3D)

were applied to both train and test datasets.

Registration 2D 2D 3D 3D

Images Real Synthetic Real Synthetic

AU1 0.431 0.336 0.343 0.381

AU4 0.223 0.116 0.260 0.219

AU6 0.796 0.790 0.751 0.804

AU10 0.777 0.812 0.785 0.773

AU12 0.801 0.792 0.806 0.795

AU14 0.118 0.238 0.084 0.244

AU17 0.395 0.374 0.391 0.461

Mean 0.506 0.494 0.489 0.525

ghosting and other texture artifacts and provide higher qual-

ity images. Inter-rater reliability (ICC) results of AU clas-

sification under these four different conditions are shown in

Table. 2. 3D registration with synthetic re-sampling outper-

formed the other three conditions.

In these experiments we conducted a parameter search

to find the optimal values of the generator for classification.

We varied parameters that control the contribution of the

adversarial loss (λadv) , conditional expression loss (λexp),

and the identity loss (λidt). In our baseline configuration,

we used 1.0 for λadv , 160 for λexp, and 10 for λidt. Fig. 3

shows the impact of parameter values on the intensity es-

timation for different AUs. λidt does not affect the classi-

fication significantly. For both λexp and λadv , we selected

the global optimal values. Pumarola et al. introduced an

attention mask and a color transformation term in the lost

function to prevent the attention mask saturation [30]. In

our experiments we did not observe this saturation effect

and removed these terms from the loss function.

4.4. The Effect of Idiosyncratic Loss

3D alignment improves the performance, image quality

is still low in some cases especially when target expression

has a high AU intensity. To mitigate the problem, we intro-

duced a new idiosyncratic term in the loss function. FERA

2017 datasets include many images with different facial ex-

pressions for each subject. Idiosyncratic loss utilizes this

feature of the datasets. Fig. 4 shows some of the examples

(λids = 1). The ICC result with the new function is 0.523.

To calculate the ICC result, 3D synthetic train images were

used to train classifiers, and 3D real test images were used

to test the classifiers. Compared with the ICC without it

(0.525), it does not improve the ICC, but we confirmed that

it improves the image quality. The Frechet Inception Dis-

tance (FID) [15] for the synthetic dataset with idiosyncratic

loss (4.88) is better than the one without idiosyncratic loss

(5.94). Note that a lower FID is better.

4.5. Temporal Normalization and Comparison with
State of the Art

Results from the previous experiment suggest that pre-

cise spatial alignment improves the performance. AUs are

temporal, we decided to test the best method under different

temporal normalization. We compared two methods that en-

hances the temporal aspect of the AUs: AU0 normalization

and mean texture normalization. AU0 normalization com-

putes the appearance differences between the actual frame

and a neutral frame. A neutral frame is not necessary avail-

able in real life conditions, but we can assume that we have

multiple frames from a single person. In personal mean tex-

ture normalization we calculate the average appearance of

a person and then calculate the differences between each

frame and the mean texture. This step minimizes individual

differences in the appearance space.

The last three columns of Table. 3 show the results. Per-

sonal mean texture normalization shows the best results.

On average, there is no gain with AU0 normalization, how-

ever, individual AU level differences are significant. While

AU0 normalization shows better results for AU1 and AU4,

it shows worse results for AU14 and AU17.

Table. 3 shows the comparison with other state-of-the-art

methods using only the frontal poses. We report Inter-rater

reliability (ICC) that is the standard metric of the FERA

2017 benchmark. Our method (with or without temporal en-

hancement) outperforms all other methods. For a fair com-

parison, we compared our approach with existing methods’

results on frontal view of the test partition.

4.6. Experiment with Non­frontal Poses

Encouraged by the results of the previous experiment,

we decided to evaluate the method’s ability to generalize to

unseen poses. FERA 2017 has nine different poses, we re-

port the performance on all of these using the Test partition.

We investigated three scenarios:

(a) real 2D normalized → real 2D normalized. For a

baseline, we used real images with 2D alignment for

training, and evaluated performance on 2D normalized

real images from the testing set.

(b) synthetic 3D normalized → real 3D normalized We

trained on synthetic 3D normalized images, and tested

on 3D normalized real images from the test set. We

applied the 3D normalization procedure described in

Sec. 3.1 to each test image with non-frontal pose. Self-

occluded facial parts were filled with black color dur-

ing the rasterization step.

(c) 3D augmented synthetic → real 2D normalized We

synthesized 3D meshes and rotated them into the nine

standard orientations found in FERA 2017. We ran-

domly selected 500 images for each intensity, AUs,
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Figure 3. Influence of parameter values on ICC for intensity estimation

Input Image

Target Expression

Output without
Idiosyncratic loss

Output with
Idiosyncratic loss

Figure 4. Comparison without and with idiosyncratic loss

Table 3. Comparison with state-of-the-art methods. Reported scores are Inter-rater reliability (ICC) on frontal views only. The results for

No norm is the same with the ones for 3D Synthetic in Table 2.

Valstar Amirian Batista Zhou Niinuma Ours

et al. [36] et al. [3] et al. [4] et al. [45] et al. [27] No norm AU0 norm Mean norm

AU1 0.025 0.270 0.311 0.286 0.433 0.381 0.539 0.613

AU4 0.003 0.074 0.098 0.130 0.281 0.219 0.361 0.409

AU6 0.616 0.644 0.721 0.625 0.786 0.804 0.764 0.779

AU10 0.662 0.733 0.741 0.739 0.768 0.773 0.787 0.757

AU12 0.709 0.745 0.754 0.822 0.812 0.795 0.792 0.794

AU14 0.066 0.030 0.127 0.075 0.153 0.244 0.114 0.170

AU17 0.015 0.271 0.252 0.342 0.382 0.461 0.288 0.465

Mean 0.299 0.395 0.429 0.431 0.516 0.525 0.521 0.570

poses. The total number of images for each inten-

sity each AU is 4,500 while 5,000 images are selected

for scenarios (a) and (b). We tested the system on 2D

aligned test images.

Fig. 5 shows the results. While (a) and (b) show low

ICCs when face poses are largely different from frontal

views, the performance drop for (c) is much smaller. The re-

sults show that our synthesized images with 3D registration

are also effective to non-frontal views by recreating non-

frontal view images from the synthesized images. Note that:

1) the approaches in Table. 5 use frontal view images only

to train models while the methods in FERA17 challenges

used images with all 9 poses to train models., 2) the reason

why the performance on frontal view for (c) is worse than
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(a) (b) (c)

Mean: 0.358 Mean: 0.419 Mean: 0.455

Figure 5. ICC for Test partition with non-frontal view.

Table 4. Cross domain ICC performance. (Synthetic training set → Real test set)

MultiPIE→FERA FERA→DISFA MultiPIE→DISFA

AU01 0.311 0.314 0.418

AU04 0.202 0.400 0.541

AU06 0.786 0.573 0.524

AU10 0.726 - -

AU12 0.792 0.748 0.698

AU14 0.168 - -

AU17 0.365 0.373 0.290

Mean 0.479 0.482 0.494

(a) and (b) is that only 500 frontal view images for each

intensity each AU are used to train.

4.7. Cross­domain Experiments

We have learned from the previous experiments that our

AU classifiers can perform well when trained and tested

within the same domain. To evaluate the generalizability

of our approach to unseen domains (both in generating ex-

pressions and evaluating classifiers), we conducted two sets

of experiments.

First, we were interested in how generating out-of-

domain samples would affect the performance on the FERA

2017 Test partition. In this case we trained the genera-

tor network on FERA 2017 Train partition, but we synthe-

sized new expressions using high resolution frontal images

present in the MultiPIE dataset. We selected 921 MultiPIE

images and generated 5 target expressions each, resulting in

4,605 images for each intensity and each AU. We trained

the classifier on these images and tested the performance on

FERA 2017 Test partition.

In the second cross-domain experiment we evaluated

out-of-domain classification. Here classifiers were trained

either on synthetic expressions generated from FERA 2017

or synthetic expressions generated from MultiPIE, and they

were tested on DISFA. The DISFA dataset differs in imag-

ing condition and type of AU coding: Context is not social

in DISFA while in FERA subjects are interacting with the

experimenter, and in DISFA, the base rates of most AUs

is very low and limited to what occurs in a film-watching

paradigm [11].

In all of these experiments, FERA17 Train partition

was used to train facial expression generation models, and

3D normalization was applied to each image. The whole

dataset of DISFA was used to test the models.

Table. 4 shows the results. Performance of models

trained on synthesized MultiPIE expressions (0.479) is

lower than the one trained on synthesized FERA 2017 ex-

pression (0.525), but there is only 1% difference with the

one trained on real FERA17 expressions (0.489). The re-

sults on DISFA shows that the result trained on synthesized

MultiPIE expressions (0.494) is slightly better than the one

trained on synthesized FERA17 expressions (0.482).

5. Conclusion

We have proposed a generative approach that achieves

3D geometry based AU manipulation with idiosyncratic

loss to synthesize facial expressions. With the semantic re-

sampling, our approach provides a balanced distribution of

AU intensity labels, which is crucial to train AU intensity

estimators. We have shown that using the balanced syn-

thetic set for training performs better than using the real

training dataset on the same test set. Generating expres-

sions using the 3D registered facial images gives better AU

intensity estimation performance compared to using 2D reg-

istered ones. Moreover, our proposed idiosyncratic loss has

improved the visual quality of the outputs. Cross-pose and

cross-domain results reveal that classifiers trained on our

synthesized images are also effective to non-frontal views

and to unseen domains.
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