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(a) overlayed input frames (b) original SepConv [38] (c) our improved SepConv++ (d) current state of the art [36]

Figure 1: Frame interpolation example where the leg of the flamingo is difficult to handle. Our techniques to improve the

original SepConv (b) enable us to synthesize results (c) that are comparable to current state-of-the-art approaches (d).

Abstract

Video frame interpolation, the synthesis of novel views

in time, is an increasingly popular research direction with

many new papers further advancing the state of the art.

But as each new method comes with a host of variables

that affect the interpolation quality, it can be hard to tell

what is actually important for this task. In this work, we

show, somewhat surprisingly, that it is possible to achieve

near state-of-the-art results with an older, simpler approach,

namely adaptive separable convolutions, by a subtle set of

low level improvements. In doing so, we propose a number

of intuitive but effective techniques to improve the frame

interpolation quality, which also have the potential to other

related applications of adaptive convolutions such as burst

image denoising, joint image filtering, or video prediction.

1. Introduction

Video frame interpolation, the synthesis of intermediate

frames between existing frames of a video, is an important

technique with applications in frame-rate conversion [33],

video editing [31], novel view interpolation [21], video com-

pression [59], and motion blur synthesis [5]. While the per-

formance of video frame interpolation approaches has seen

steady improvements, research efforts have become increas-

ingly complex. For example, DAIN [3] combines optical

flow estimation [51], single image depth estimation [26],

context-aware image synthesis [35], and adaptive convolu-

tions [37]. However, we show that somewhat surprisingly, it

is possible to achieve near state-of-art results with an older,

simpler approach by carefully optimizing its individual parts.

Specifically, we revisit the idea of using adaptive separable

convolutions [38] and augment it with a set of intuitive im-

provements. This optimized SepConv++ ranks second among

all published methods in the Middlebury benchmark [1].

The reason for choosing adaptive separable convolutions

to show that an older frame interpolation method can be

optimized to produce near state-of-the-art results are three-

fold. First, kernel-based video frame interpolation jointly

performs motion estimation and motion compensation in

a single step which makes for an elegant image formation

model [37] (see Figure 2 for more details on how this kernel-

based interpolation differs from more-traditional flow-based

interpolation). Second, adaptive separable convolutions are

an efficient way to perform kernel-based interpolation [38].

In practice, filter kernels should be as large as possible to be

able to account for large scene motion but this becomes pro-

hibitively expensive with regular two-dimensional instead of

two one-dimensional kernels. Third, adaptive convolutions

have inspired and are part of many subsequent frame inter-

polation techniques [3, 4, 8, 9, 25]. As such, our findings

on optimizing kernel-based video frame interpolation are

directly applicable to the referenced approaches.

The idea of adaptive convolutions bears many names such

as kernel prediction, dynamic filtering, basis prediction, or

local attention. This technique has been proven effective

in burst image denoising to align and merge multiple im-
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(a) flow-based interpolation with bilinearly-weighted sampling (b) kernel-based interpolation with spatially-varying kernels

Figure 2: Illustration of two prevalent video frame interpolation paradigms. Flow-based techniques first estimate the per-pixel

motion between two frames and then compensate for it by warping the pixels according the estimated motion (a). This makes

it possible to interpolate frames at an arbitrary time but one needs to account for inaccurate motion estimates and handle

occlusions where optical flow is undefined. In comparison, frame interpolation via adaptive convolution jointly performs

motion estimation and motion compensation in a single step by convolving input frames with spatially-varying kernels (b).

ages [30, 34, 60], in denoising Monte Carlo renderings by

taking weighted averages of noisy neighborhoods [2, 14, 55],

in the modelling of a broad class of image transforma-

tions [45], in optical flow upsampling and joint image fil-

tering [22, 52], in video prediction where adaptive kernels

can also model uncertainty [13, 17, 43, 64], in deblurring

to model spatially-varying blur [48, 67], or super-resolution

where they can be used to merge multiple observations with

sub-pixel accuracy [6, 19]. While our paper focuses on im-

proving adaptive separable convolutions for the purpose of

frame interpolation, some of the improvements we introduce

may be applicable in these related applications as well.

In summary, we revisit adaptive convolutions for frame

interpolation and propose the following set of techniques

that improve the method of SepConv [38] by a significant

1.76 dB on the Middlebury benchmark examples [1] with

publicly known ground truth (the relative improvement of

each individual technique is shown in parenthesis).

• delayed padding (+0.37 dB)

• input normalization (+0.30 dB)

• network improvements (+0.42 dB)

• kernel normalization (+0.52 dB)

• contextual training (+0.18 dB)

• self-ensembling (+0.18 dB)

These improvements allow our proposed SepConv++ to

quantitatively outperform all other frame interpolation ap-

proaches with the exception of SoftSplat [36] even though

many of these methods are much more sophisticated.

2. Related Work

With their work on adaptive convolutions for frame in-

terpolation, Niklaus et al. [37] proposed to perform joint

motion estimation and motion compensation based on pre-

dicting spatially-varying kernels. This idea led to several

interesting new developments such as the usage of adap-

tive separable convolutions [38], adaptive warping layers

that combine optical flow estimates and adaptive convolu-

tions [3, 4], additional per-coefficient offset vectors [8, 9],

spatially-varying deformable convolutions [25, 47], or loss

functions that leverage adaptive convolutions [42]. Many

of these efforts introduce novel ideas that enable smaller

kernel sizes while simultaneously being able to compensate

for arbitrarily-large motion. In this paper, we go back to

the roots of kernel-based frame interpolation and revisit the

idea of adaptive separable convolutions [38], which strike a

balance between simplicity and efficacy. By careful experi-

mentation, we demonstrate several intuitive techniques that

allow our proposed SepConv++ to achieve near state-of-the-

art results despite being based on an older approach.

Aside from kernel-based interpolation, there are exciting

research efforts that leverage explicit motion estimation in

the form of optical flow for video frame interpolation. These

efforts include estimating optical flow from the perspective

of the frame that is ought to be synthesized [29], not only

warping the original frames but also their feature representa-

tions such that a synthesis network can predict better results

from the additional context [35], reconstructing optical flow

representations from the perspective of the frame that is

ought to be synthesized from a given inter-frame optical

flow [18], fine-tuning the optical flow estimate for the given

task at hand [63], softmax splatting for differentiable forward

warping in combination with feature pyramid synthesis [36],

leveraging multiple optical flow fields from the perspective

of the frame that is ought to be synthesized [41], or utilizing

a coarse-to-fine interpolation scheme [54, 65]. In compar-

ison to kernel-based approaches, flow-based interpolation

techniques have the advantage that their motion estimation

component can be supervised on additional training data

with ground truth optical flow. Despite this additional su-

pervision, our proposed SepConv++ still outperforms all

flow-based methods with the exception of SoftSplat [36].

Other approaches for frame interpolation that neither

use adaptive convolutions nor optical flow include tech-

niques based on phase [32, 33] or approaches that directly

synthesize the intermediate frame [12]. There are also in-
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Figure 3: Overview of our frame interpolation framework where ϕ denotes the adaptive separable convolution operator. We

adopted the illustration style of the SepConv paper [38] to make it easier to compare our architecture with the original one.

teresting research efforts that perform frame interpolation

in unison with a second video processing task like super-

resolution [23, 61], deblurring [46], dequantization [56], or

with non-traditional acquisition setups [27, 40, 58]. Given

that neural networks for frame interpolation are usually

trained on off-the-shelf videos, it also seems natural to con-

duct research for test-time adaptation [11, 44]. While most

frame interpolation techniques only operate on two frames

as input and hence assume linear motion, there are also in-

teresting approaches that assume quadratic or cubic motion

models [10, 28, 62]. Our work is orthogonal to these ideas.

3. Method

Given two consecutive frames I1 and I2 from a video, the

frame interpolation task that we are targeting is the synthe-

sis of the intermediate frame Î that is temporally centered

between the given input frames. To achieve this, we use the

approach from Niklaus et al. [38] that leverages adaptive

separable convolutions by having a neural network φ predict

a set of pixel-wise spatially-varying one-dimensional filter

kernels 〈K1,h,K1,v,K2,h,K2,v〉 as follows.

〈K1,h,K1,v,K2,h,K2,v〉 = φ (I1, I2) (1)

These spatially-varying kernels can then be used to process

the input frames to yield Î through an adaptive separable

convolution operation ϕ. Specifically, I1 is filtered with the

separable filters 〈K1,h,K1,v〉 while I2 is filtered with the

separable filters 〈K2,h,K2,v〉 as follows.

Î = ϕ (I1,K1,h,K1,v) + ϕ (I2,K2,h,K2,v) (2)

These spatially-varying kernels capture motion and re-

sampling information, which makes for an effective image

formation model for frame interpolation. To be able to ac-

count for large motion, the kernels should be as large as

possible. However, with larger kernels it is more difficult to

estimate all coefficients. We adopt the relatively moderate

kernel size of 51 pixels from the original SepConv [38]. We

subsequently describe our proposed techniques to improve

adaptive separable convolutions for frame interpolation.

3.1. Delayed Padding

As with all convolutions of non-singular size, the input

needs to be padded if the output has to have the same reso-

lution as the input. Specifically, the original SepConv [38]

pads the input frames by 25 pixels before estimating the

adaptive kernel coefficients via a neural network φ.

〈K1,h,K1,v,K2,h,K2,v〉 = φ (pad(I1), pad(I2)) (3)

In contrast, we propose not to pad the input images when they

are given to φ but instead to pad them when the predicted

kernels are applied to the input images as follows.

Î = ϕ (pad(I1),K1,h,K1,v)+ϕ (pad(I2),K2,h,K2,v) (4)

This delayed padding has two positive effects. First, it im-

proves the computational efficiency. Using an Nvidia V100,

the original SepConv implementation takes 0.027 seconds

to interpolate a frame at a resolution of 512× 512 pixels. In

comparison, it takes 0.018 seconds with the delayed padding.

At a resolution of 1024×1024 pixels, it takes 0.083 seconds

with the original padding and 0.065 seconds with our pro-

posed delayed padding. Second, it improves the quality of

the interpolated results since the neural network φ does not

have to deal with large padded boundaries that are outside of

the manifold of natural images (we use replication padding

as in [38]). Specifically, delayed padding improves the inter-

polation results on the Middlebury benchmark examples [1]

with publicly known ground truth by 0.37 dB. Please see our

ablation experiments in Section 4.1 for more details.

3.2. Input Normalization

The contrast and brightness of the input frames should not

affect the quality of the synthesized results. In other words,

1101



1 10 20 30 40 50 60 70 80 90 100

1.0

2.0

3.0

4.0

5.0

6.0

7.0

epoch

tr
ai

n
lo

ss
-
L
1

w/o kernel normalization

w/ kernel normalization

Figure 4: Comparing the training loss with and without our

proposed kernel normalization, demonstrating that kernel

normalization greatly improves the model convergence. Note

that we halve the learning rate after 60 and 80 epochs.

the network should be invariant to contrast and brightness.

While it would be difficult to enforce such an invariance

during training, it can easily be achieved by normalizing the

input frames before feeding them to the network and denor-

malizing the synthesized result [35]. For image synthesis via

adaptive convolutions, one can skip the denormalization step

by applying the adaptive convolutions on the original input

frames and only normalizing them when feeding them to the

neural network that predicts the spatially-varying kernels.

To normalize the input frames, we shift and rescale their

intensity values to have zero mean and unit standard devia-

tion. There are multiple possibilities to do so, we have found

normalizing the two images jointly while treating each color

channel separately to work well. That is, for each color

channel we compute the mean and standard deviation of I1
and I2 as if they were one image. This input normaliza-

tion improves the interpolation quality on the Middlebury

benchmark examples [1] with publicly known ground truth

by 0.31 dB. We also tried separately normalizing the input

frames and computing singular instead of per-channel statis-

tics but have found these approaches to be less effective.

One could make a similar argument about shift invari-

ance since the quality of the synthesized interpolation results

should not be affected by jointly translating the input frames.

However, we have not been able to improve the interpolation

quality by incorporating current techniques for improving

the shift invariance of a neural network [66, 69].

3.3. Network Improvements

Since the publciation of SepConv [38], there has been

great progress in deep learning architectures, and we ex-

perimented with incorporating these into an updated neural

network architecture as shown in Figure 3. Specifically, we

added residual blocks [16] to the skip connections that join

the two halves of the U-Net, we changed the activation func-

tion to parametric rectified linear units [15], we replaced

the average pooling with strided convolutions, and we use

a Kahan sum within the adaptive separable convolutions.

Together, these changes lead to a 0.42 dB improvement in

(a) Ours - LCtx (b) Ours - LCtx - 8×

Figure 5: Comparing interpolation results without (a) and

with (b) ensembling where eight independent predictions are

combined (ensembling smooths uncertain estimates).

terms of interpolation quality on the Middlebury benchmark

examples [1] with publicly known ground truth.

These architectural changes do unfortunately not come

for free. While it took 0.065 seconds to synthesize a result

at a resolution of 1024× 1024 pixels using an Nvidia V100

with the original SepConv architecture, the new architecture

takes 0.185 seconds. This is surprising at first since our

new architecture has fewer convolutions than the original

one (31 versus 47 convolutions) and our architecture is more

parameter-efficient overall (13.6 million versus 21.7 million

parameters). However, our sub-networks that predict the

adaptive kernel coefficients perform bilinear upsampling first

whereas the original network performed bilinear upsampling

last which leads to a significant increase in compute.

3.4. Kernel Normalization

The initial paper on adaptive convolutions for video frame

interpolation includes a softmax layer to normalize the ker-

nels [37], which is similar to but different from normalized

convolutions [24] for addressing missing samples in the in-

put signal. Such a kernel normalization is missing in the

separable formulation since a softmax layer can no longer

be used with this setup [38]. As a result, the neural network

that predicts the kernel coefficients needs to take great care

not to alter the apparent brightness of a synthesized pixel.

We propose a simple normalization step that can be applied

to any kernel-based image formation model. Specifically,

we not only apply the adaptive separable convolution on the

input but also on a singular mask. Afterwards, the filtered

input can be divided by the filtered mask as follows such that

denormalized kernel weights are compensated for.

Î =
ϕ (I1,K1,h,K1,v) + ϕ (I2,K2,h,K2,v)

ϕ (1,K1,h,K1,v) + ϕ (1,K2,h,K2,v)
(5)

This simple kernel normalization step improves the quality

of the synthesis results and greatly helps with the conver-

gence of the model during training as shown in Figure 4.

With an improvement by 0.52 dB on the Middlebury bench-

mark examples [1] with publicly known ground truth, the
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Middlebury Vimeo-90k UCF101 - DVF Xiph - 1K Xiph - 2K

Baker et al. [1] Xue et al. [63] Liu et al. [29] (4K resized to 1K) (4K resized to 2K)

training

dataset

PSNR

↑

relative

improvement

PSNR

↑

relative

improvement

PSNR

↑

relative

improvement

PSNR

↑

relative

improvement

PSNR

↑

relative

improvement

original SepConv proprietary 35.73 − 33.80 − 34.79 − 36.22 − 34.77 −

reimplementation Vimeo-90k 35.49 − 33.81 − 34.63 − 35.89 − 34.18 −

+ delayed padding — ” — 35.86 + 0.37 dB 34.31 + 0.50 dB 35.09 + 0.46 dB 36.00 + 0.11 dB 34.16 - 0.02 dB

+ input normalization — ” — 36.16 + 0.30 dB 34.50 + 0.19 dB 35.18 + 0.09 dB 36.06 + 0.06 dB 34.14 - 0.02 dB

+ improved network — ” — 36.58 + 0.42 dB 34.55 + 0.05 dB 35.19 + 0.01 dB 36.58 + 0.52 dB 34.76 + 0.62 dB

+ normalized kernels — ” — 37.10 + 0.52 dB 34.79 + 0.24 dB 35.22 + 0.03 dB 36.78 + 0.20 dB 34.77 + 0.01 dB

+ contextual training — ” — 37.28 + 0.18 dB 34.83 + 0.04 dB 35.24 + 0.02 dB 36.83 + 0.05 dB 34.84 + 0.07 dB

+ self-ensembling — ” — 37.46 + 0.18 dB 34.97 + 0.14 dB 35.29 + 0.05 dB 37.00 + 0.17 dB 35.10 + 0.26 dB

Table 1: Ablation experiments to quantitatively analyze the effects of our proposed techniques. In short, they each positively

affect the interpolation quality across different dataset as long as the inter-frame motion does not exceed the kernel size.

kernel normalization has the most significant impact on the

quality of the synthesized results. Please see our ablation

experiments in Section 4.1 for more details.

3.5. Contextual Training

With adaptive convolutions for video frame interpolation,

there is no constraint that forces the kernel prediction net-

work to estimate coefficients that account for the true motion.

Instead, the kernel prediction network may simply index

pixels that have the desired color, which is similar to view

synthesis by appearance flow [68]. This may hurt the gen-

eralizability of the trained neural network though, which is

why we force it to predict coefficients that agree with the

true motion through a contextual loss. Specifically, we not

only filter the input frames but also their context which have

been obtained from an off-the-shelf network ψ (we have

found relu1 2 of a pre-trained VGG [49] network and a

trade-off weight α = 0.1 to be effective). We then mini-

mize not only the difference between the prediction and the

ground truth in color space but also in the contextual space

as follows (note that we omitted the previously introduced

kernel normalization step in this definition for brevity).

LCtx =
∥

∥

∥
〈Î , α · Îψ〉 − 〈Igt, α · ψ(Igt)〉

∥

∥

∥

1

(6)

where

Î = ϕ (I1,K1,h,K1,v) + ϕ (I2,K2,h,K2,v) (7)

Îψ = ϕ (ψ(I1),K1,h,K1,v) + ϕ (ψ(I2),K2,h,K2,v) (8)

Since each pixel in the contextual space not only describes

the color of a single pixel but also encodes its local neigh-

borhood, this loss effectively prevents the kernel prediction

network from simply indexing pixels based on their color.

Supervising the kernel prediction using this contextual loss

yields an improvement of 0.18 dB on the Middlebury bench-

mark examples [1] with publicly know ground truth.

Note that while this loss shares resemblance to a content

loss [20], it is fundamentally different from it. A content

loss applies a VGG feature loss directly on the synthesized

result which would not prevent a kernel prediction network

from estimating coefficients that mimic appearance flow. In

contrast, we extract VGG features from the input frames

before applying the adaptive separable convolution. In doing

so, the kernel prediction network cannot just index a pixel

with the same color as the ground truth as this may lead to

significant differences in the VGG feature space.

3.6. Self-ensembling

In image classification [7] and super-resolution [53], a

singular prediction is often enhanced by combining the pre-

dictions of multiple transformed versions of the same input.

Such transforms include rotations, mirroring, or cropping.

Not all image transforms are reversible though, but they have

to be when wanting to combine predictions of pixel-wise

tasks. Surprisingly, there is no study of the effect of such a

self-ensembling approach in the context of frame interpola-

tion. We hence propose to adopt this enhancement scheme

for frame interpolation and conduct a large-scale study of

its effect in Section 4.2, demonstrating improvements across

the board. In doing so, we consider taking the mean and tak-

ing the median of up to sixteen predictions with transforms

based on reversing the input frames, flipping them, mirroring

them, and applying rotations by ninety degrees.

Effectively, self-ensembling for video frame interpolation

smooths predictions in areas where the kernel estimation is

uncertain. As shown in Figure 5, this can visually lead to a

smooth result instead of one with visible artifacts. However,

self-ensembling can computationally be prohibitively expen-

sive as, for example, using eight predictions instead of just a

single one will require eight times more compute.

4. Experiments

We subsequently evaluate our contributions by answering

the following questions. What is the impact of each of our

proposed techniques? What is the effect of self-ensembling
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Middlebury Vimeo-90k UCF101 - DVF Xiph - 1K Xiph - 2K

Baker et al. [1] Xue et al. [63] Liu et al. [29] (4K resized to 1K) (4K resized to 2K)

reduction

PSNR

↑

relative

improvement

PSNR

↑

relative

improvement

PSNR

↑

relative

improvement

PSNR

↑

relative

improvement

PSNR

↑

relative

improvement

Ours - LCtx none 37.28 − 34.83 − 35.24 − 36.83 − 34.84 −

Ours - LCtx - 2× mean 37.41 + 0.13 dB 34.91 + 0.08 dB 35.26 + 0.02 dB 36.92 + 0.09 dB 35.01 + 0.17 dB

Ours - LCtx - 4× mean 37.45 + 0.04 dB 34.95 + 0.04 dB 35.28 + 0.02 dB 36.98 + 0.06 dB 35.09 + 0.08 dB

Ours - LCtx - 8× mean 37.46 + 0.01 dB 34.97 + 0.02 dB 35.29 + 0.01 dB 37.00 + 0.02 dB 35.10 + 0.01 dB

Ours - LCtx - 16× mean 37.46 + 0.00 dB 34.99 + 0.02 dB 35.30 + 0.01 dB 37.02 + 0.02 dB 35.13 + 0.03 dB

Ours - LCtx none 37.28 − 34.83 − 35.24 − 36.83 − 34.84 −

Ours - LCtx - 2× median 37.41 + 0.13 dB 34.91 + 0.08 dB 35.26 + 0.02 dB 36.92 + 0.09 dB 35.01 + 0.17 dB

Ours - LCtx - 4× median 37.44 + 0.03 dB 34.94 + 0.03 dB 35.27 + 0.01 dB 36.97 + 0.05 dB 35.07 + 0.06 dB

Ours - LCtx - 8× median 37.47 + 0.03 dB 34.96 + 0.02 dB 35.28 + 0.01 dB 36.99 + 0.02 dB 35.09 + 0.02 dB

Ours - LCtx - 16× median 37.47 + 0.00 dB 34.98 + 0.02 dB 35.29 + 0.01 dB 37.01 + 0.02 dB 35.13 + 0.04 dB

Table 2: Effect of combining multiple independent predictions when taking their mean (top) and their median (bottom).

Middlebury Vimeo-90k UCF101 - DVF Xiph - 1K Xiph - 2K

Baker et al. [1] Xue et al. [63] Liu et al. [29] (4K resized to 1K) (4K resized to 2K)

venue

without

ensemble

with

ensemble

without

ensemble

with

ensemble

without

ensemble

with

ensemble

without

ensemble

with

ensemble

without

ensemble

with

ensemble

SepConv - L1 ICCV 2017 35.73 + 0.41 36.14 33.80 + 0.24 34.04 34.79 + 0.14 34.93 36.22 + 0.24 36.46 34.77 + 0.39 35.16

CtxSyn - LLap CVPR 2018 36.93 + 0.39 37.32 34.39 + 0.31 34.70 34.62 + 0.27 34.89 36.87 + 0.32 37.19 35.72 + 0.32 36.04

DAIN CVPR 2019 36.69 + 0.35 37.04 34.70 + 0.25 34.95 35.00 + 0.13 35.13 36.78 + 0.26 37.04 35.93 + 0.26 36.19

CAIN AAAI 2020 35.11 + 0.23 35.34 34.65 + 0.16 34.81 34.98 + 0.10 35.08 36.21 + 0.19 36.40 35.18 + 0.21 35.39

EDSC - LC arXiv 2020 36.82 + 0.44 37.26 34.83 + 0.27 35.10 35.13 + 0.09 35.22 36.73 + 0.31 37.04 OOM + 0.00 OOM

AdaCoF CVPR 2020 35.72 + 0.47 36.19 34.35 + 0.45 34.80 35.16 + 0.12 35.28 36.26 + 0.47 36.73 34.82 + 0.40 35.22

SoftSplat - LLap CVPR 2020 38.42 + 0.26 38.68 36.10 + 0.18 36.28 35.39 + 0.09 35.48 37.96 + 0.23 38.19 36.63 + 0.16 36.79

BMBC ECCV 2020 36.79 + 0.12 36.91 35.06 + 0.15 35.21 35.16 + 0.08 35.24 36.59 + 0.37 36.96 OOM + 0.00 OOM

Ours - LCtx N/A 37.28 + 0.18 37.46 34.83 + 0.14 34.97 35.24 + 0.05 35.29 36.83 + 0.17 37.00 34.84 + 0.26 35.10

Table 3: Effect of combining the mean of eight independent predictions for several video frame interpolation methods.

for video frame interpolation? How does our SepConv++

compare to the original SepConv? How does our SepConv++

compare to other frame interpolation techniques?

Implementation. We generally follow the implementation

details of the original SepConv [38]. However, they were

using a proprietary training dataset whereas our reimplemen-

tation is incorporating Vimeo-90k [63] instead. Furthermore,

we simplified the augmentation pipeline and refrained from

shifting the cropping windows in opposing directions.

Datasets. We adopt the test set selection from [36] and

conduct our evaluation on Vimeo-90k [63], the Middlebury

benchmark samples with publicly known ground truth [1],

the Liu et al. [29] samples from UCF101 [50], and footage

from Xiph1. We do not adopt the “4K” cropped version

of Xiph that [36] proposed though and instead focus on

downscaled versions at a resolution of 1K as well as 2K.

Metrics. We limit the evaluation herein to the PSNR metric

since SSIM [57] is subject to unexpected and unintuitive

results [39]. However, we provide equivalent tables with

1https://media.xiph.org/video/derf

SSIM instead of PSNR in the supplementary material. These

supplementary results support our claims and are generally

aligned with PSNR in terms of relative improvements.

4.1. Ablation Experiments

We analyze how our proposed techniques affect the inter-

polation quality in Table 1. In short, each technique improves

the synthesis quality in terms of PSNR across a variety of

datasets. The results on the UCF101 samples as well as the

2K version of the Xiph videos are relatively inconsistent

though. However, this behavior is not surprising as several

of the UCF101 samples are invalid where the ground truth is

identical to either the first or the second input frame (like for

examples 1, 141, or 271). As for the high-resolution Xiph

videos, the amount of inter-frame motion that is present in

in-the-wild 2K footage is expected to exceed the maximum

magnitude of 51 pixels that our adaptive separable kernels

can compensate for. We also note that our reimplementation

is subject to worse results than the original SepConv [38] on

all datasets except the test split of our training dataset. This

finding indicates that there are better training datasets than
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(a) overlayed input frames (b) original SepConv [38] (c) our improved SepConv++

Figure 6: Qualitative comparison with SepConv. We purposefully only show a single example here for brevity and kindly refer

to our supplementary video which shows this example as well as many more examples in a fully interpolated sequence.

Middlebury Vimeo-90k UCF101 - DVF Xiph - 1K Xiph - 2K

Baker et al. [1] Xue et al. [63] Liu et al. [29] (4K resized to 1K) (4K resized to 2K)

training

dataset

PSNR

↑

relative

improvement

PSNR

↑

relative

improvement

PSNR

↑

relative

improvement

PSNR

↑

relative

improvement

PSNR

↑

relative

improvement

SepConv - L1 proprietary 35.73 − 33.80 − 34.79 − 36.22 − 34.77 −

Ours - LCtx Vimeo-90k 37.28 + 1.55 dB 34.83 + 1.03 dB 35.24 + 0.45 dB 36.83 + 0.61 dB 34.84 + 0.07 dB

Ours - LCtx - 8× — ” — 37.46 + 0.18 dB 34.97 + 0.14 dB 35.29 + 0.05 dB 37.00 + 0.17 dB 35.10 + 0.26 dB

Table 4: Quantitative comparison with SepConv. We list two separate results of our proposed approach, one without and one

with self-ensembling. The self-ensembling is denoted by 8× as it represents a combination of eight independent estimates.

Vimeo-90k [63] for supervising video frame interpolation

tasks and that our proposed SepConv++ could perform even

better if it had been supervised on the dataset from [38].

4.2. Self-ensembling for Frame Interpolation

Our findings on self-ensembling for video frame interpo-

lation summarized in Table 2 where we take the mean as

well as the median of up to sixteen independent prediction.

These findings indicate that any form of self-ensembling is

superior to a singular prediction, while taking the mean or

taking the median is similarly effective. However, there are

diminishing returns in the number of predictions.

Next, we analyze the effect of self-ensembling on all

methods that we compare to in this paper. Specifically, we

take the mean of eight independent predictions since using

sixteen predictions takes much more compute while provid-

ing little benefit. As shown in Table 3, all methods benefit

from self-ensembling across all datasets. However, self-

ensembling has little benefit for practical applications of

these frame interpolation techniques since they can already

take minutes to process a single second of high-resolution

footage. By combining eight independent predictions, this

processing time can now become tens of minutes to process

a single second of high-resolution footage which is beyond

the threshold of being practical for many applications.

4.3. Comparison with SepConv

The premise of our paper is that an older and simpler

frame interpolation approach, namely SepConv [38], can

be optimized to produce near state-of-the-art results. In

this section, we compare our SepConv++ with the original

SepConv. Specifically, we show a representative qualitative

result in Figure 6 which demonstrates the efficacy of our

proposed techniques. Please also consider our supplementary

video to better examine this as well as additional examples

in motion. Our quantitative comparison in Table 4 further

shows that our proposed techniques are effective across a

variety of datasets as long as the inter-frame motion does

not exceed the kernel size (as it occurs for the 2K version of

Xiph). Note that this table lists our results with and without

self-ensembling for fairness since self-ensembling can easily

be applied to all video frame interpolation methods.

4.4. Comparison with Others

Even though we base our approach off of an older and

simpler frame interpolation technique, we are able to achieve

near state-of-the-art quality. To demonstrate this, we com-

pare our SepConv++ to competitive approaches for frame

interpolation based on kernel prediction (SepConv [38],

EDSC [8], and AdaCoF [25]), based on optical flow esti-

mation and compensation (CtxSyn [35], DAIN [3], Soft-

Splat [36], and BMBC [41]), and based on directly synthe-

sizing the intermediate frame (CAIN [12]). We summarize

the findings in Table 5, where we separately list our results

with and without self-ensembling for fairness. In summary,

our proposed approach is only outperformed by SoftSplat

and generally does not fair well on the 2K version of the

Xiph footage where the inter-frame motion exceeds what our

adaptive separable kernels with 51 pixels can compensate for.

However, SoftSplat was additionally supervised on training

data with ground truth optical flow, whereas our approach
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Middlebury Vimeo-90k UCF101 - DVF Xiph - 1K Xiph - 2K

Baker et al. [1] Xue et al. [63] Liu et al. [29] (4K resized to 1K) (4K resized to 2K)

venue

PSNR

↑

absolute

rank

PSNR

↑

absolute

rank

PSNR

↑

absolute

rank

PSNR

↑

absolute

rank

PSNR

↑

absolute

rank

SepConv - L1 ICCV 2017 35.73 8th of 10 33.80 10th of 10 34.79 9th of 10 36.22 9th of 10 34.77 8th of 10

CtxSyn - LLap CVPR 2018 36.93 4th of 10 34.39 8th of 10 34.62 10th of 10 36.87 3rd of 10 35.72 3rd of 10

DAIN CVPR 2019 36.69 7th of 10 34.70 6th of 10 35.00 7th of 10 36.78 5th of 10 35.93 2ndof 10

CAIN AAAI 2020 35.11 10th of 10 34.65 7th of 10 34.98 8th of 10 36.21 10th of 10 35.18 4th of 10

EDSC - LC arXiv 2020 36.82 5th of 10 34.83 4th of 10 35.13 6th of 10 36.73 6th of 10 OOM OOM

AdaCoF CVPR 2020 35.72 9th of 10 34.35 9th of 10 35.16 4th of 10 36.26 8th of 10 34.82 7th of 10

SoftSplat - LLap CVPR 2020 38.42 1st of 10 36.10 1st of 10 35.39 1st of 10 37.96 1st of 10 36.63 1st of 10

BMBC ECCV 2020 36.79 6th of 10 35.06 2ndof 10 35.16 4th of 10 36.59 7th of 10 OOM OOM

Ours - LCtx N/A 37.28 3rd of 10 34.83 4th of 10 35.24 3rd of 10 36.83 4th of 10 34.84 6th of 10

Ours - LCtx - 8× — ” — 37.46 2ndof 10 34.97 3rd of 10 35.29 2ndof 10 37.00 2ndof 10 35.10 5th of 10

Table 5: Quantitative comparison with recent approaches for video frame interpolation. In addition to highlighting the best

result by underlining it, we emphasize the second-best result via a dotted underline. Note that some methods were unable to

run on 2K footage due to exceeding the 16 gigabytes of memory available on our graphics card (denoted as “OOM”).

Middlebury Middlebury

(mean error) (median error)

IE

↓

absolute

rank

IE

↓

absolute

rank

SepConv - L1 5.61 8th of 9 5.44 8th of 9

CtxSyn - LLap 5.28 7th of 9 4.77 7th of 9

DAIN 4.86 6th of 9 4.69 5th of 9

CAIN − − − −

EDSC - LC 4.72 4th of 9 4.69 5th of 9

AdaCoF 4.75 5th of 9 4.48 4th of 9

SoftSplat - LLap 4.22 1st of 9 3.97 1st of 9

BMBC 4.48 3rd of 9 4.16 3rd of 9

Ours - LCtx 4.45 2ndof 9 4.13 2ndof 9

Table 6: Quantitative results on the official Middlebury

benchmark [1]. This benchmark does not list CAIN [12].

was solely supervised on the Vimeo-90k [63] dataset.

We also submitted our results to the organizers of the Mid-

dlebury benchmark [1] where our SepConv++ ranks second

in terms of interpolation error among all published methods

(currently not publicly visible, please see our supplementary

material). We show a summary of the benchmark in Table 6

with all methods that we compare to in this paper.

4.5. Discussion

While we were able to show that it is possible to achieve

near state-of-the-art video frame interpolation results using

an older technique by carefully optimizing it, we did not

fundamentally alter its image formation model. As such, the

two main limitations of video frame interpolation via adap-

tive separable convolutions remain. First, they often do not

produce satisfying interpolation results on high-resolution

input footage due to the limited kernel size. This is exempli-

fied by the relatively poor performance of SepConv++ on the

2K version of the Xiph footage. Second, they are limited to

synthesizing the interpolation result at the temporal position

that they have been supervised on. To synthesize interpola-

tion results at t = 0.75 instead of t = 0.5, one would either

have to train a kernel prediction network with the ground

truth at t = 0.75 or first synthesize the interpolation result

at t = 0.5 and then recursively use this result as well as the

input at t = 1 to yield t = 0.75. This limits practical appli-

cations where, for example, a given video with 50 frames

per second needs to be converted to 60 frames per second.

5. Conclusion

In this paper, we show, somewhat surprisingly, that it

is possible to achieve near state-of-the-art video frame in-

terpolation results with an older, simpler approach by care-

fully optimizing it. Our optimizations are conceptually in-

tuitive, effective in improving the interpolation quality, and

are directly applicable to a variety of frame interpolation

techniques. Furthermore, while our paper focuses on im-

proving adaptive separable convolutions for the purpose of

frame interpolation, some of our proposed techniques may

be applicable to related applications as well, such as image

denoising, joint image filtering, or video prediction.
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