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Abstract

Numerous interpretability methods have been developed

to visually explain the behavior of complex machine learn-

ing models by estimating parts of the input image that are

critical for the model’s prediction. We propose a gen-

eral pipeline of enhancing visual explanations using image

transformations (EVET). EVET considers transformations

of the original input image to refine the critical input region

based on an intuitive rationale that the region estimated to

be important in variously transformed inputs is more impor-

tant. Our proposed EVET is applicable to existing visual ex-

planation methods without modification. We validate the ef-

fectiveness of the proposed method qualitatively and quan-

titatively to show that the resulting explanation method out-

performs the original in terms of faithfulness, localization,

and stability. We also demonstrate that EVET can be used

to achieve desirable performance with a low computational

cost. For example, EVET-applied Grad-CAM achieves per-

formance comparable to Score-CAM, which is the state-of-

the-art activation-based explanation method, while reduc-

ing execution time by more than 90% on VOC, COCO, and

ImageNet.

1. Introduction

Although supervised deep neural network models

achieve impressive performance in terms of the prediction

accuracy, their complexities obscure the underlying process

from which inferences are derived. Accordingly, methods

that render the model behavior human-interpretable [14, 25]

are important for improving the model performance and for

assessing the acceptability of model decisions. A number

of interpretability methods [21, 23, 8, 17, 19] provide vi-

sual explanations that identify important regions of the input

image on which a model bases its decision. By helping un-

derstand the inner workings behind the model’s prediction,

visual explanations have shown useful for achieving better

performance in tasks such as segmentation [12], classifica-

tion [9, 10], and visual question answering [15, 16, 20].

In this work, we propose a pipeline of enhancing visual

explanations using image transformations (EVET) that is

compatible with any existing visual explanation methods

and can be used in conjunction with them. A brief overview

of EVET is illustrated in Fig. 1. In EVET, we transform the

input image by applying image transformations such as ro-

tation and horizontal flip. We then compute the pixel-wise

importance maps of the transformed images with a given

explanation method and inversely transform them into the

original image space. We claim that overlapping regions

produced by the inverted importance maps are essential to

the model’s prediction. The underlying rationale is that the

region estimated to be important in variously transformed

inputs is more important than the region that is not. To

be more specific, we determine the weight of each inverted

importance map as the target class probability of the cor-

responding perturbed image and reweigh for parts that are

deemed important consistently across multiple inverted im-

portance maps. This refined weighted sum is the final map

of EVET and we show that it results in improved perfor-

mance in terms of faithfulness, localization, and stability.

We demonstrate that EVET can also be used for com-

putational efficiency. By applying EVET to an existing

computationally cheap explanation method, we can achieve

desirable performance while reducing computational cost

surprisingly. For example, EVET-applied Grad-CAM with

7 transformations achieves performance comparable to

Score-CAM, which is the state-of-the-art activation-based

explanation method, in terms of faithfulness while reduc-

ing execution time by more than 90% on VOC, COCO, and

ImageNet.
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(a)

(b)

Figure 1: An overview of our proposed EVET. (a) Conceptual figure of our motivation. (b) Pipeline of our proposed EVET.

Visual explanations are obtained by applying inverse transformation to the explanations of the transformed images from

the original method in step (i). For each importance map, its weight is determined by the target class probability of the

corresponding perturbed image, and ones with low target class probabilities are omitted in step (ii). The filtered explanations

are linearly combined with the weights and penalties are imposed to pixels with unreliable saliencies in step (iii).

In short, our contributions are as follows:

• Method to improve existing visual explanation meth-

ods. We propose a way of enhancing explanation

methods, EVET, by considering image transforma-

tions. We validate EVET qualitatively and quantita-

tively, and the results show that it brings considerable

improvement.

• Computational efficiency of enhancing the explanation

methods. By applying EVET to a computationally

cheap explanation method, we can achieve desirable

performance while reducing computational cost sur-

prisingly.

• Evaluation metric for visual explanation methods. We

propose a new metric to evaluate explanation meth-

ods in terms of stability, which captures robustness of
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the explanation method by comparing the importance

maps of the original input image and transformed im-

age.

2. Related Work

Since interpretability has no objective ground-truth an-

swers, diverse methods have been proposed to quantify

the contribution of a pixel or a group of pixels to the

model’s prediction. There are three main categories of

explanation methods widely used: backpropagation-based,

perturbation-based, and activation-based methods. First,

backpropagation-based methods [21, 24, 23, 1] utilize the

backpropagated gradient of the target class score with re-

spect to the input and formulate that a large absolute value

of the gradient of the input is equivalent to high importance

in the prediction. These methods provide fine-grained and

yet often noisy importance maps relatively fast and easily.

Second, perturbation methods [3, 8, 7, 17, 26] observe how

the model reacts when a certain part of the input is altered,

under the rationale that the more important a pixel is to the

model, the more the prediction fluctuates when the partic-

ular pixel is perturbed. Perturbation methods are intuitive

and generally produce high-quality importance maps, but

they require hyper-parameter tuning for weight coefficients

of additional regularization terms and are time-consuming

due to iterations for optimization for each instance. Lastly,

activation-based methods [29, 19, 4, 5, 28] generate an im-

portance map as a linear combination of the activation maps

from the convolutional layers, hence focusing on how to

determine the weight coefficients of the activation maps.

While rapidly computable, the resulting importance maps

tend to be coarse-grained and can be applied only to the

model which contains a convolutional layer.

On the top of these findings, there have been some

efforts to attain enhanced visual explanations using the

above explanation methods as input methods. Specifically,

[1, 23, 27] employ extra importance maps of the altered in-

put images to achieve better visual performance. They gen-

erate random noisy copies of the input image and use the av-

erage [23] or variance [1] of the resulting importance maps,

respectively. [27] introduces a smooth operation on Score-

CAM [28] to determine the weights of activation maps. Our

approach differs from these schemes in two aspects. First,

EVET uses deterministic image transformations, which can

be favorable since it does not require computing many ad-

ditional importance maps to guarantee stable performance.

Second, it uses the weighted sum of the additional impor-

tance maps and adjusts the result considering the sample

variance of them, thereby producing more reliable impor-

tance maps.

3. Image Transformations in Explanation

Methods

We utilize image transformations for the following two

purposes. First, we enhance explanation methods by con-

sidering importance maps obtained from the transformed

images (Sec 3.1). We also introduce a new evaluation met-

ric that measures stability of importance maps with respect

to image transformations (Sec 3.2).

3.1. Methodology: EVET

Our main idea is that a pixel estimated to be important

simultaneously in the inverted importance maps obtained

from the transformed images is more important than those

that are not. As illustrated in Fig 1b, EVET consists of three

major steps: (i) computation of importance maps from the

original and transformed images; (ii) assessment of the im-

portance maps; (iii) determination of the final importance

map. Our goal is to enhance a explanation method J where

the importance map of an input image x is denoted by J(x).
The details of each step are described below.

Preparation step We first list the requirements for an

image transformation to be used in EVET.

• We use the transformations that preserve most of the

information in the input image; the model’s prediction

should be insensitive to the transformation of the orig-

inal image.

• It should be ensured that the importance map of the

transformed image can be inversely transformed into

the original image space in an accurate manner for a

fair comparison with the original importance map.

In this work, we consider a set of geometric image transfor-

mations such as scale, rotate, shear, and horizontal flip. Al-

though we focus on geometric image transformations here,

the same logic can be applied to other types of transforma-

tions satisfying the above requirements.

Step (i) For a given set of image transformations

{Ti}i=1,...,n, we compute the inverted importance maps

{M (i)}i=1,...,n of the transformed image given by

M (i) = T−1
i (J (Ti(x))) (1)

for i = 1, . . . , n. For brevity, let M (0) be the importance

map of the original image and define M = {M (i)}i∈I

where I = [1, . . . , n]. In case where Ti is not invertible,

one can use a pseudo inverse instead.

Step (ii) Note that EVET is based on the premise that

the model’s prediction is robust with respect to the trans-

formation of x given class k of interest. However, there

is a possibility that Ti might affect the model’s inference

considerably for some i ∈ I . To address this problem, we
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filter out suspicious importance maps whose perturbed im-

age has a lower target class probability compared to that of

the original map. More specifically, we exclude M (j) from

M given threshold Γ if

fk

(

Φ(x,M (j))
)

≤ Γfk

(

Φ(x,M (0))
)

(2)

where the perturbed image Φ(x,M) is defined by

Φ(x,M) := x⊗M + xd ⊗ (1−M) (3)

and xd, ⊗, and fk denote the distorted version of x (e.g. a

blurred or black image), element-wise multiplication, and

softmax output in the model f of class k, respectively. Let

Ĩ denote the set of the indices of the maps left after filtering

out. Here, we upsample M into the input size if necessary.

In our experiments, Γ is set as 0.99 and black images are

used as xd.

Step (iii) Next, we consider a weighted sum M̂ to

form a single importance map which inherits condensed in-

formation from {Mi}i∈Ĩ . The weights are set in propor-

tion to the target class probabilities of the perturbed images,

so that each weight represents the estimated importance of

each map. That is, M̂ is given by M̂ =
∑

i∈Ĩ wiM
(i)

where

wi =
fk

(

Φ(x,M (i))
)

∑

j∈Ĩ fk
(

Φ(x,M (j))
) for i ∈ Ĩ . (4)

Furthermore, we assess the importance of each pixel in

terms of stability. We maintain that for a given pixel lo-

cation (r, c), a small sample standard deviation σ(r,c) of

{M
(i)
(r,c)}i∈Ĩ implies that the estimated saliencies of the cor-

responding pixel are stable, and therefore reliable. Based

on the above perspective, we adjust M̂(r,c) using σ(r,c)

such that M̂(r,c) with small σ(r,c) is boosted for (r, c) ∈
{1, . . . , R} × {1, . . . , C}. For instance, if a pixel (r, c) is

estimated to be important (i.e., M̂(r,c) > 0.5) and σ(r,c) is

small, we increase M̂(r,c). On the other hand, we decrease

M̂(r,c) if M̂(r,c) < 0.5 and σ(r,c) is small. Formally, given

M̂(r,c), we define the boosted saliency M̃(r,c) as

M̃(r,c) = max
(

min
(

M̂(r,c) + α(M̂(r,c) − 0.5), 1
)

, 0
)

(5)

and set the final M∗
(r,c) as a weighted average of M̂(r,c) and

M̃(r,c) as follows:

M∗
(r,c) = σ(r,c)M̂(r,c) + (1− σ(r,c))M̃(r,c). (6)

One can see that a smaller standard deviation makes the fi-

nal M∗
(r,c) closer to the boosted saliency. In (5), the max

and min functions are to ensure that M∗
(r,c) stays within

[0, 1]. We also suppose that σ(r,c) is normalized by the up-

per bound for the given sample size (i.e., σ(r,c) ∈ [0, 1]).

Here, α is a hyper-parameter which controls the amount of

the boost. As a final step, we perform min-max normaliza-

tion of M∗. Fig. 1b describes the procedure drawing out

the final importance map M∗ from M .

Let J∗ denote the resulting explanation method when

EVET is applied to J . Combining the above steps together,

we rewrite the final importance map in matrix notation:

J∗(x) = V ⊗ M̂ + (1− V )⊗ M̃ (7)

where V represents the standard deviation matrix.

In summary, EVET outputs the importance map from the

auxiliary maps derived from the transformed images in the

following two perspectives. Each inverted importance map

M (i) ∈ M is assessed in terms of the target class probabil-

ity of its perturbed image (focusing on a single importance

map), then enforced to boost the estimated importance of a

pixel presumed to be stable (observing multiple importance

maps).

3.2. Evaluation Metric: Stability Index

If a transformation is not influential to the model’s pre-

diction, it is reasonable to assume that the high dissimilarity

between the original and the inverted importance map im-

plies that the explanation method is unfavorable. From this

viewpoint, we propose a new evaluation metric for explana-

tion methods, called the stability index (SI). We first define

a similarity function Ψd(M1,M2) of two importance maps

M1,M2 for a given difference measure d(·, ·) as follows:

Ψd(M1,M2) = 1−
d(M1,M2)

dmax

(8)

where dmax is the maximum difference, i.e.,

maxM1,M2
d(M1,M2), so the SI is normalized into

the range [0, 1]. We use Frobenius norm as d(·, ·), and

accordingly dmax is the square root of the number of

elements in M1.

For a given explanation method J , transformation T and

dataset D, we define SI by:

SI =

∑

x∈D Ψd(J(x), T
−1(J(T (x))))

|D|
. (9)

Therefore, a larger value of SI indicates that the explanation

method is more invariant with respect to the transformation.

4. Experiments

In this section, we validate the effectiveness of EVET

both qualitatively and quantitatively. The results demon-

strate that EVET generates improved explanation methods

which produce more accurate and stable importance maps.

We also confirm that EVET can be used to achieve desir-

able performance efficiently. For instance, EVET-applied
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Figure 2: Qualitative comparison before and after applying EVET. Given an explanation method, the left and right columns

represent the original and EVET-applied results, respectively. Gradient [21], Grad-CAM [19], Grad-CAM++ [4], and Score-

CAM [28] are used with a VGG-16 network trained on ImageNet.

Grad-CAM [19] achieves performance comparable to the

state-of-the-art activation based method, Score-CAM [28],

with shorter execution times.

Experimental setup Our experiments are conducted

on the following datasets: PASCAL VOC [6] (2007 seg-

menation task test set of 210 images, abbreviated as VOC),

COCO [13] (2014 validation set ≃ 50k images), and Ima-

geNet [18] (2012 validation set of 50k images). For COCO

and ImageNet, we use 1000 randomly sampled images for

quantitative evaluation. We use the ResNet-50 [11] mod-

els provided in Torchray 1 for VOC and COCO. Pre-trained

VGG-16 [22] network from the torchvision models 2 is used

for ImageNet. For explanation methods to apply EVET,

we consider Gradient [21], Grad-CAM [19], Grad-CAM++

[4], and Score-CAM [28]. Hyper-parameter α is chosen for

each case separately and the detailed procedure is provided

in Section C. of the supplementary materials.

For implementation, we use a variant of Score-CAM,

called Faster-Score-CAM 3, instead of the original Score-

CAM unless mentioned otherwise. It is designed to reduce

execution time by utilizing activation maps with large vari-

ances only.

Choice of transformations As candidates of transfor-

1We use the code from https://github.com/facebookresearch/TorchRay

for explanation methods: Gradient, Grad-CAM, Guided Backpropagation

[24], and extremal perturbation [7].
2https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
3https://github.com/tabayashi0117/Score-CAM

mations to be used for EVET, we consider scale, rotate,

shear, and horizontal flip since they are widely used in im-

age data augmentation and easy to apply. Specifically, we

use horizontal flip, scale (by 0.9), rotate (by 10◦), shear (by

0.2), and the transformations that apply these scale, rotate,

shear after horizontal flip. Given the set of transformations,

we evaluate the performance when its subsets are used for

EVET. Empirically, we observe that EVET tends to show

better performance when more transformations are used, so

we decide to use all 7 transformations. The more details are

provided in Section B. of the supplementary materials.

4.1. Qualitative Evaluation of EVET

Fig. 2 provides a qualitative comparison between be-

fore and after applying EVET to existing explanation meth-

ods. It indicates that EVET generally removes redundant

noise and generate importance maps that cover more pix-

els belonging to the target object compared to the original

method. Especially, the improvement is significant for Gra-

dient. The results in Table 5 provide useful clues to explain

the reason. Note that the low values of SI imply that there

are large differences between the importance maps in M .

Therefore, there is a plenty of room for the final map, which

is a combination of many different inverted maps, to be im-

proved from the original one.
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Gradeint Grad-CAM Grad-CAM++ Score-CAM

VOC CO Img VOC CO Img VOC CO Img VOC CO Img

Average Original 24.8 24.4 40.6 11.0 15.3 27.8 9.0 13.2 26.2 3.4 7.7 19.0

drop (%) w/ EVET 16.6 17.4 30.0 7.8 12.2 20.4 7.0 10.7 18.2 2.0 5.3 14.4

Increase in Original 29.5 40.1 21.6 50.0 57.5 32.7 41.4 52.4 28.7 53.3 59.8 36.5

confidence (%) w/ EVET 36.7 47.5 29.4 55.2 60.4 38.6 47.1 55.4 38.0 60.0 64.6 41.4

Win (%) Original 25.7 29.8 25.2 40.5 42.0 26.2 38.1 37.3 27.5 40.5 31.6 32.7

w/ EVET 70.5 69.5 73.3 51.9 56.0 72.0 55.2 61.3 71.0 54.8 66.6 65.3

Table 1: Faithfulness evaluation of EVET on VOC, COCO, and ImageNet. Results before and after applying EVET are

presented. Lower is better for average drop; higher is better for increase in confidence and win.

4.2. Quantitative Evaluation of EVET

We examine the importance maps generated by EVET

on the object recognition task by faithfulness tests adopted

in [4, 5, 28] which evaluate the faithfulness of the expla-

nations using three metrics: (i) average drop; (ii) increase

in confidence; (iii) win. We also assess the generated im-

portance maps in terms of localization ability based on the

energy-based pointing game.

Faithfulness evaluation Generally, occluding parts

of an image decreases its target class probability estimated

by the model. However, if we occlude only unimportant

regions while maintaining most of the important regions for

the prediction of the target class, this fall would be small.

From this perspective, average drop is formulated by:

Average drop(%) =
1

N

N
∑

i=1

max(0, Y c
i −Oc

i )

Y c
i

× 100

(10)

where N is number of images in the dataset, and Y c
i and

Oc
i denote the softmax outputs of the image xi and the per-

turbed image for class c, respectively, i.e., Y c
i = fc(xi)

and Oc
i = fc(Φ(xi, J(xi))). Complementary to the above,

highlighting the important regions of an image can increase

the target class probability of the perturbed image. Increase

in confidence is defined by the ratio of the images having

such an increase:

Increase in confidence(%) =

N
∑

i=1

1{Y
c
i < Oc

i }

N
× 100.

(11)

We also explicitly compare the target class probabilities of

the perturbed images obtained before and after applying

EVET. Win (%) is defined by the ratio of the images where

the target class probability of one method is higher than that

of the other.

Table 1 shows that EVET achieves improved results in

all cases; applying EVET lowers average drop, elevates in-

crease in confidence and target class probabilities (higher

win). This demonstrates that EVET enhances explanation

methods in terms of more accurately finding out the most

distinguishable region of the target class.

Localization evaluation The energy-based pointing

game aims to quantify the degree in which the importance

map is focused on the target object. It measures how much

energy of the importance map falls into the target object as

follows:

Epoint(x, J) =

∑

(r,c)∈object J(x)(r,c)
∑

(r,c)∈{1,...,R}×{1,...,C} J(x)(r,c)
(12)

Instead of using the bounding box [28], we use segmenta-

tion maps of VOC and COCO for more exact evaluation.

The results are reported in Table 2. It indicates that apply-

ing EVET increases the proportion of the importance map

belonging to the target object for every tested case.

4.3. Computational Efficiency

In order to illustrate that EVET can be used to achieve

desirable performance with a low computational cost, we

provide comparative evaluation of the EVE-applied Grad-

CAM [19], denoted by Grad-CAM*, and Score-CAM. Note

that here we consider the original version of Score-CAM for

a fair comparison because Faster-Score-CAM might be de-

graded due to not utilizing the entire activation maps. It was

shown that Score-CAM outperforms other perturbation-

based and activation-based methods in terms of faithfulness

by large scale [28]. However, Score-CAM is more com-

putationally expensive than Grad-CAM because it requires

forward propagations as many as the number of the acti-

vation maps NA while Grad-CAM requires only a single

backward pass.

For instance, VGG-16 entails 15.3 billion floating-point

operations (FLOPs) for a single forward pass [2] and NA =
512; the last convolutional layer is chosen as recommended

in [28]. Accordingly, Score-CAM needs about 15.3×512 =
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Gradeint Grad-CAM Grad-CAM++ Score-CAM

Metric VOC COCO VOC COCO VOC COCO VOC COCO

Energy-based Original 28.0 27.4 47.5 44.9 35.5 33.6 34.8 31.7

pointing game (%) w/ EVET 30.9 30.5 50.0 47.2 39.9 36.2 38.4 33.8

Table 2: Localization evaluation of EVET on VOC and COCO; higher is better.

Score-CAM vs Grad-CAM Grad-CAM*

VOC COCO ImageNet VOC COCO ImageNet

Average difference -0.0640 -0.0436 -0.0731 -0.0191 -0.0183 -0.0089

Win (%) 49.0 50.6 37.6 47.8 52.6 50.4

Table 3: Comparative evaluation of EVET for Grad-CAM on the target class probabilities versus Score-CAM; higher is better

for average difference and win. Grad-CAM* represents EVET-applied Grad-CAM.

VOC COCO ImageNet

Grad-CAM* 0.130 ± 0.030 0.134 ± 0.023 0.124 ± 0.007

Score-CAM 4.755 ± 0.474 4.811 ± 0.514 2.045 ± 0.020

Table 4: Execution time of Grad-CAM* and Score-CAM (seconds) where Grad-CAM* represents EVET-applied Grad-CAM.

Figure 3: Qualitative comparison of Grad-CAM, Grad-

CAM∗ and Score-CAM. A VGG-16 network trained on Im-

ageNet is used.

7833.6 G-FLOPs. On the other hand, Grad-CAM* in-

volves (number of transformations + 1)×(FLOPs for im-

age transformations and a backward pass). Considering the

case of dense and convolutional layer, we assume that the

backward pass is twice as compute-intensive as the forward

pass. Since the cost of image transformations is negligible

compared to the backward pass, Grad-CAM* has roughly

8× 15.3× 2 = 244.8 G-FLOPs. Therefore, GRAD-CAM*

requires approximately 7833.6/244.8 ≃ 32.0 times less

computations compared to Score-CAM.

Applying EVET to Grad-CAM, the resulting importance

maps appear to be closer to those of Score-CAM (see Fig.

3). For a concrete comparison, we calculate the average

difference of the target class probabilities and the ratio of

images where Grad-CAM* has higher target class probabil-

ity. We then measure the execution time of those methods to

compare computational efficiency. The results are reported

in Table 3 and 4, respectively. It can be seen that Grad-

CAM* is comparable to Score-CAM on VOC, COCO, and

ImageNet with much shorter execution time (reduced by

97.3 %, 97.2 %, and 94.0% , respectively).

4.4. Stability Evaluation with Respect to Image
Transformations

Using the proposed SI, we examine the image transfor-

mation robustness of explanations generated by existing ex-

planation methods [21, 19, 4, 28, 8, 7] (see Table 5). It

shows that activation-based methods have high SI in gen-

eral while perturbation-based methods do not. We interpret

this result as follows. Since perturbation-based methods go

through many iterations to converge to the optimal solution,

the result can be sensitively changed to the variation of the
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(a) Stability index for transformations used in EVET.

(b) Stability index for transformations not used in EVET.

Figure 4: Stability evaluation of EVET on ImageNet. We compare SIs before and after applying EVET with respect to both

the transformations used in EVET (a) and those not (b).

Method SI

Gradient 0.879

Grad-CAM 0.909

Grad-CAM++ 0.907

Score-CAM 0.891

Mask [8] 0.754

Extremal perturbation [7] 0.863

Table 5: Stability evaluation of explanation methods on

VOC. The average of the SI calculated for scale (by 0.9),

rotate (by 10◦), shear (by 0.2), and horizontal flip is used.

input image. Meanwhile, Extremal perturbation [7] which

resolves the balancing issues in [8] by regularizing pertur-

bations has higher SI compared to Mask [8].

We investigate SI to quantify how much performance

is improved by applying EVET in terms of stability. In

the following, we calculate SI for transformations used in

EVET to derive the final importance map and transforma-

tions that are not. Considering that EVET deems the parts

estimated important consistently in the inverted importance

maps more influential, it is reasonable to assume that EVET

increases SI compared to the original explanation method

for the former case. In fact, it turns out that applying EVET

leads to an evident increase in SI (see Fig. 4a). This trend is

observed in common for VOC and COCO (refer to Section

D. of the supplementary materials).

Moreover, it is worthwhile to note that SI also increases

for transformations other than those used in EVET (see Fig.

4b). It suggests that EVET makes explanation methods bet-

ter at finding parts which are consistently important in the

transformed images over a range of transformations rather

than just those used in EVET.

5. Conclusion and Future Research

In this paper, we proposed a new method which can be

applied to enhance existing explanation methods. We con-

jecture that the parts of the input image estimated to be im-

portant consistently in the transformed images are essential

to the model’s prediction as long as the prediction is robust

to the transformations. EVET uses importance maps from

the transformed images to yield the final importance map by

considering their importance and stability. We highlight that

EVET is easily applicable to various types of explanation

methods without violating the criterion for estimating the

importance. The effectiveness of EVET is validated both

qualitatively and quantitatively. In particular, it is shown

that EVET-applied explanation methods return more stable

and trustworthy results compared to existing explanation

methods. Future work includes considering different ways

of modifying the input image other than geometric trans-

formations and alternative methods of combining inverted

importance maps.
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