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Abstract

How bad is my wound? How fast will the wound heal?

Do I need to get hospitalized? Questions like these are criti-

cal for wound assessment, but challenging to answer. Given

a wound image and patient attributes, our goal is to build

models for two wound assessment tasks: (1) predicting if the

patient needs hospitalization for the wound to heal, and (2)

estimating wound progression, i.e., weeks to heal. The prob-

lem is challenging because wound progression and hospi-

talization risk depend on multiple factors that need to be

inferred automatically from the given wound image. There

exists no work which performs a rigorous study of wound

assessment tasks considering multiple wound attributes in-

ferred using a large dataset of wound images. We present

HealTech, a two-stage wound assessment solution. The first

stage predicts various wound attributes (like ulcer type, lo-

cation, stage, etc.) from wound images, using deep neural

networks. The second stage predicts (1) whether the wound

would heal (using conventional in-house treatment) or not

(needs hospitalization), and (2) the number of weeks to

heal, using an evolutionary algorithm based stacked Light

Gradient Boosted Machines (LGBM) model. On a large

dataset of 125711 wound images, HealTech achieves a re-

call of 83 and a precision of 92 for wounds with the risk

of hospitalization. For wounds that can be healed without

hospitalization, precision and recall are as high as 99. Our

wound progression model provides a mean absolute error

of 3.3 weeks.

1. Introduction

Nearly 15% of Medicare beneficiaries (8.2 million) had

at least one type of wound or infection. The total Medicare

spending estimates for all wound types (in the US) ranged

from $28.1 to $96.8 billion [1]. Including infection costs,

the most expensive estimates were for surgical wounds, fol-

∗The first two authors made equal contribution.
†The author is also a Principal Applied Scientist at Microsoft.

lowed by diabetic foot ulcers. Hence, any steps in reducing

the cost incurred per wound would significantly impact the

overall healthcare spending.

Most wounds (∼90% in our dataset) do not need hospi-

talization. Determining whether you need to visit a doctor

or not, and weeks to heal depends on the following factors1:

(1) how big is the wound (area, depth, has ragged edges,

has debris), (2) how bad is the bleeding, (3) wound location

(around a joint such as elbow or knee, face, hand, genitals,

mouth, near the eye), and (4) is it getting infected (fever,

red streaks, oozing pus, etc.). While these are some basic

rules, often, it is challenging to apply these objectively and

determine the hospitalization risk and weeks to heal.

Incorrect decision to visit a hospital or not has its reper-

cussions. Unnecessary hospitalization leads to discomfort

for the patient, costs, and possible hospital-acquired infec-

tions. Delay in hospitalization may lead to increased treat-

ment costs, less effective treatment, infections, and in gen-

eral, worsening of the wound. Traditionally, wounds are

assessed manually by clinicians who, in turn, document var-

ious observations. Some of the challenges for the clinician

diagnosis include: (i) frequent assessments of a patient, (ii)

the entry of wound attributes in the database, (iii) applying

the right diagnosis and (iv) inter-observer discordance. Au-

tomating the wound assessments can help overcome some

of the limitations and aid the clinicians to make informed

decisions.

In this paper, our first goal is to build a model to predict

the patient’s risk of hospitalization. Further, for wounds

that show a higher likelihood of healing without hospital-

ization, our second goal is to predict the number of weeks

to heal. To achieve the two goals, our proposed system,

HealTech, mainly depends on wound images. It also uses

patient attributes like age, BMI, etc., since they are com-

plementary and cannot be predicted using wound images.

We argue that the development of such a system can help

in early detection of the complexities in the wound, which

might affect the healing process and also reduce the time

1https://www.webmd.com/first-aid/

does-this-cut-need-stitches

2463



Joint	Necrosis
Exposed

Bone/Muscle
Necrosis	Exposed

Ligament	Necrosis
Exposed

Adipose/Tendon
Necrosis	ExposedRed	GranulationAdherent	Yellow

Slough

Diabetic	Ulcer Ankle Full	Thickness Area:	13161.7 Flat	and	Intact Exudate:	1.0

Figure 1. Examples of wound images labeled with various attributes used in our dataset.

spent by a clinician to diagnose the wound. The problem is

challenging because wound progression and hospitalization

risk can depend on multiple factors like wound/ulcer type,

wound location, wound size, etc. Other challenges include

combining multiple wound image related factors with pa-

tient demography parameters, variations across images in

terms of lighting conditions, skin color variations, etc. and

use them for the wound assessment tasks.

Motivated by the immense success of convolutional neu-

ral networks (CNNs) across various image analytics tasks,

we investigate their application for prediction tasks related

to wound images. Figure 1 shows a sample of wound im-

ages labeled with a variety of wound attributes. The main

contributions of this paper are as follows.

• We formulate the problem as a two-stage deep learn-

ing based method for hospitalization risk and wound

progression prediction.

• In the first stage, we analyze multiple factors to be ob-

tained from wound images for wound characterization.

We build classifiers to estimate such factors.

• In the second stage, we develop a heal/hospitalization

(or hospitalization risk) classifier and a wound pro-

gression (or weeks to heal prediction) model using an

evolutionary algorithm-based stacked Light Gradient

Boosted Machines (LGBM), which uses the wound

factors predicted from first stage, as well as a list of

five patient features.

• We experiment with a large dataset of 125711 images,

unlike previous research works that experiment with

much smaller datasets.

2. Related Work

Wound image analysis: Chronic wound diagnosis,

monitoring, and healing process of a wound is an ongo-

ing research area in the field of medical image analysis.

While several methods have been proposed in the literature

to classify the wound tissue or segmentation of related skin

lesions, these experiments fail to provide a robust tool for

process automation [2–4]. The classical image processing

techniques such as color descriptors and texture detectors

have been used to extract features from wound images to

classify the skin patches as normal or abnormal to automat-

ically monitor the healing process in [5–10].

Deep learning for medical imaging: Motivated by the im-

mense success of deep learning techniques in general vi-

sion, speech as well as text problems, there has been a

lot of focus on applying deep learning for medical imag-

ing recently [11, 12]. Specifically, problem areas include

image quality analysis [13, 14], image segmentation [15–

17], image/exam classification [18, 19], object/lesion clas-

sification [20], registration (i.e. spatial alignment) of med-

ical images [21], image enhancement, and image recon-

struction [22]. While several researchers used deep learn-

ing models for segmenting and classifying the different ul-

cer images in [23–25], the corpus size is minimal (e.g.,

Medetec wound images dataset [26] which has only 607

images) leading to relatively brittle systems. Few papers

focused on wound assessment [14, 27, 28], but the authors

experimented on a limited set of wound attributes and ulcer

types, diagnosis was limited to wound type classification,

and dataset sizes were 100x smaller than our dataset.

3. HealTech System Architecture

Figure 2 illustrates the architecture of the proposed two-

stage system. In the first stage, we use CNNs to predict 14
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Wound attribute # Instances # Classes Top classes

Wound/Ulcer Type 125711 5 Diabetic Ulcer (19773), Pressure Ulcer (47541), Surgical Wound

(12238), Trauma Wound (13667), Venous Ulcer (32492)

Wound Location 91177 6 Lower Leg (31775), Sacral (20501), Foot (12753), Heel (11226), An-

kle (10375), Great Toe (4547)

17918 3 Diabetic: Grade-2 (13248), Grade-1 (2401), Grade-3 (2269)

Wound Stage (3 sub types) 41055 3 Pressure: Grade-3 (20343), Grade-4 (10581), Unstageable (10131)

52530 2 Remaining Ulcers: Full Thickness (47849), Partial Thickness (4681)

Wound Margin 113519 7 Attached to Wound Base (45595), Flat and Intact (23735), Well De-

fined (12917), Undefined (10784), Not Attached to Wound Base

(7172), Flattened (6741), Thickened (6575)

Wound Area 122417 NA Numerical values

Wound Volume 99719 NA Numerical values

Joint Necrosis Exposed 125661 2 No (101275), Yes (24386)

Ligament Necrosis Exposed 125666 2 No (101282), Yes (24384)

Adipose Necrosis Exposed 125607 2 No (101195), Yes (24412)

Muscle Necrosis Exposed 125598 2 No (101261), Yes (24337)

Exudate 90792 2 Class-1 (56124), Class-2 (34668)

Red Granulation 88818 4 Class-1 (54229), Class-2 (12120), Class-3 (11355), Class-4 (11114)

Bone Necrosis Exposed 125641 2 No (101261), Yes (24380)

Adherent Yellow Slough 35803 5 Class-1 (13770), Class-2 (8814), Class-3 (8223), Class-4 (3923),

Class-5 (1073)

Table 1. Statistics for the 14 wound attributes in our dataset

Wound Image

Patient

Patient  

features

Ulcer Type  

Prediction

Location  

Prediction

Joint Necrosis  

Prediction

LGBM Model/Stacked LGBM

…

Heal HospitalizationWeeks to Heal

Figure 2. Model architecture with two stages of wound assess-

ment. The first stage predicts features from wound images. The

second stage uses wound image features along with patient fea-

tures to predict hospitalization risk and weeks to heal.

different wound parameters. In the second stage, we use

these predictions along with patient features to predict (1)

whether hospitalization would be needed for the wound, and

(2) weeks to heal (or wound progression).

3.1. Stage 1: Wound Feature Prediction from Image

The 14 attributes are described in detail in Table 1. While

multiple deep CNN model architectures are available like

VGGNet, Inception, Xception, ResNet, DenseNet, etc., we

chose to use Xception architecture [29] based on cross-

validation accuracy and model training speed. In practice,

a deep CNN model like Xception trained from scratch with

randomly initialized weights using a few tens of thousands

of data points may overfit. Hence, we use ImageNet pre-

trained Xception models.

Transfer learning: We employed pre-trained Xception ar-

chitecture weights [29] trained on more than a million im-

ages from the ImageNet database. A pre-trained network

is 71 layers deep and can classify images into 1000 object

categories. We hope that this pre-training helps the network

learn rich feature representations for a wide range of im-

ages. The network has an image input size of 299 pixels x

299 pixels. The pre-trained model is fine-tuned with each

of the 14 wound attributes as targets.

We tried multiple methods to train the Xception archi-

tecture for better prediction accuracy. We first trained in-

dividual models for each of the 14 attributes in two ways:

(i) fine-tuning all the layers of the model and (ii) gradual

unfreezing, i.e., fine-tuning the last ten layers (freezing the

rest) and thereafter increasing the layers for fine-tuning by

a factor of 10 in every iteration. In each iteration, we fine-

tuned the model with a very low learning rate, such that the

current training does not drastically change the feature rep-
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resentations learned from Imagenet dataset. We observed

that the complete fine-tuning model gave the best results.

We trained the models using Adam optimizer [30] and cate-

gorical cross-entropy loss. We used a batch size of 128 im-

ages, and early stopping to halt the training when the model

accuracy did not improve for a few epochs.

Multi-task learning (MTL): Each of the 14 CNN mod-

els is fine-tuned using task-specific labeled training data

in single-task setting initially. We performed the pairwise

correlation analysis between these 14 wound variables and

then used the multi-task learning setup for joint learning of

highly correlated variables. We jointly learned the follow-

ing combinations: (1) wound type, wound location, wound

stage, (2) wound type, wound margin, (3) wound type,

joint necrosis exposed, ligament necrosis exposed, adipose

necrosis exposed, muscle necrosis exposed, bone necrosis

exposed, (4) wound type, red granulation, adherent yellow

slough, (5) wound type, exudate. However, for the follow-

ing attributes, we found better results using a single-task

setup rather than MTL and hence use the single task clas-

sifier results: wound area, wound volume, wound type, and

wound location. Thus, in the MTL set up, we learn a total

of 9 Xception CNN models. As shown in Table 2, we also

tried a single unified MTL model but accuracy of certain

tasks was very low possibly due to class imbalance and lack

of strong correlations across some task pairs.

3.2. Stage 2: Heal/Hospitalization Classification
and Weeks to Heal Prediction

The 14 predictions from the first stage are combined

with 5 patient features (age, BMI (body mass index), eth-

nicity, pulse rate, location), which cannot be predicted us-

ing wound images. The 19 features are used to train (1) a

binary hospitalization risk (or heal/hospitalization) LGBM

(Light Gradient Boosted Machines) classifier [31], and (2)

weeks-to-heal LGBM regression model. LGBM is a gra-

dient boosting framework that uses a tree-based learning

algorithm to grow trees leaf-wise rather than level-wise.

To identify the best way of encoding the CNN-predicted

wound attributes, we tried three methods: (i) we used fea-

ture representation from the penultimate layer of each of

Xception models (14×2048 dimensions), decreased dimen-

sions for each attribute to 5 (14×5 features) using Princi-

pal Component Analysis (PCA), and then used them along

with patient attributes (5 features) to train the model. (ii)

We combined predictions from Xception models, and their

probabilities (14×2 features) along with patient attributes to

train the model. (iii) Only the 14 predictions from Xception

models were combined with 5 remaining variables to train

the model. We observed that the performance of the model

trained with Xception model predictions and their proba-

bilities, i.e., the (ii) method, is better than the rest of the

methods. Hence, we performed all experiments using the

(ii) method with (14×2+5=) 33 features.

Imbalanced dataset handling: The heal/hospitalization

data has class imbalance issue, as detailed in Section 4. We

observe that the majority class (“heal”) has ∼10x more in-

stances compared to the “hospitalization” class. To circum-

vent this problem, we tried methods such as data augmen-

tation, SMOTE (Synthetic Minority Oversampling Tech-

nique) [32] based over-sampling, and under-sampling tech-

niques.

Evolutionary algorithm with Stacked LGBM: Tradition-

ally boosting using LGBM has benefited many prediction

tasks. However, in the hope of better accuracy, we exper-

iment with a 2-level stacking model, inspired by the ar-

chitecture of [33], where individual learners are LGBMs

themselves. Unfortunately, stacked LGBMs have too many

hyper-parameters to tune manually. Motivated by the recent

success of Evolutionary algorithms [34], we used genetic

algorithms to discover a promising hyper-parameter config-

uration. Specifically, our genetic algorithm with stacked

LGBM used the following features as chromosomes for

hyper-parameter tuning: (i) number of leaves (ii) maximum

depth (iii) learning rate (iv) boosting type (v) minimum

child samples (vi) maximum bin (vii) the number of iter-

ations. We use the same parameter configuration for each

LGBM in the stacked-LGBM model.

4. Experiment Results

4.1. Dataset

Our wound image dataset is an accumulation of 4 years

(Jun 2015–Mar 2019) of patients’ wound care data captured

by a Wound care organization. The images have been cap-

tured using typical smartphone cameras of various brands.

Data collection was carefully done by following the survival

model conditions [35] to ensure that we cover the “Patient

Demographics details”, “Procedures”, “Medications”, and

“Laboratory/Diagnosis of Wound condition”. Our dataset

contains 125711 images obtained from 11632 patients, cor-

responding to five wound types: “Diabetic Ulcer”, “Pres-

sure Ulcer”, “Surgical Wound”, “Trauma Wound”, and “Ve-

nous Ulcer”. Along with the images, the dataset also con-

tains 14 wound-related attributes and 5 patient attributes, all

of which are gathered by clinicians during in-house patient

treatments. The clinician’s wound assessment is further re-

viewed by a team of care monitors led by medical directors

to ensure that the clinician’s diagnosis is correct. Among

the 14 predicted wound variables, as detailed in Table 1,

six are binary, two are numeric, and remaining are categor-

ical features. The average age of patients is 73.63 years

and the average BMI is 29.66. The wound care organiza-

tion is HIPAA compliant (Health Insurance Portability and

Accountability Act) and got approval from its Institutional

Review Board (IRB) before using this data for analysis. We
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Wound attribute Baseline (similar to [5]) Single Task CNN Single Multi-Task CNN Multi-Task CNN

Precision Recall Precision Recall Precision Recall Precision Recall

Wound/Ulcer Type 0.46 0.48 0.80 0.81 0.64 0.70 0.66 0.80

Wound Location 0.49 0.48 0.87 0.87 0.66 0.58 0.66 0.65

Wound Stage 0.58 0.54 0.63 0.65 0.50 0.55 0.78 0.71

Wound Margin 0.46 0.46 0.54 0.58 0.29 0.35 0.60 0.63

Joint Necrosis Exposed 0.55 0.55 0.79 0.83 0.67 0.71 0.77 0.84

Ligament Necrosis Exposed 0.71 0.61 0.77 0.70 0.67 0.69 0.74 0.81

Adipose Necrosis Exposed 0.64 0.64 0.69 0.83 0.66 0.69 0.71 0.83

Muscle Necrosis Exposed 0.66 0.64 0.69 0.83 0.66 0.69 0.72 0.83

Exudate 0.60 0.60 0.65 0.68 0.59 0.61 0.71 0.73

Red Granulation 0.44 0.44 0.65 0.68 0.44 0.61 0.66 0.68

Bone Necrosis Exposed 0.67 0.74 0.76 0.74 0.69 0.72 0.74 0.81

Adherent Yellow Slough 0.42 0.44 0.62 0.64 0.51 0.54 0.65 0.67

Table 2. Stage 1 Results: Accuracy for wound attribute prediction using Xception CNN classifiers. The precision and recall for feature

engineering based baseline model, single-task, single multi-task and combination of nine multi-task experiments are listed in the table.

have released a small subset of the dataset and code here2.

We pre-processed the dataset to handle issues like label

noise, occlusion, illumination, imbalanced data and defor-

mation. Pre-processing details are mentioned in Section 1

of the supplementary material.

4.2. Results

To reduce clinician workload, our first goal is to predict

the 14 wound-related attributes automatically from wound

images using Xception models. Our second goal is to use

this set of (14 predicted+5 patient) features to build the final

heal/hospitalization and weeks to heal prediction models.

We use 70:10:20 split for the train:validation:test for all our

experiments. Experiments were done on a machine with 4

Tesla V100-SXM2-32GB GPUs.

Baseline Method: Our baseline method is based on tradi-

tional image processing features (similar to [5]). For each

wound image, we considered the color histogram, canny

edge detector features, Hough transform features, and His-

togram of Gradients (HOG) features to train the model. Us-

ing these features, we build an LGBM classifier for predic-

tion of the 14 image attributes.

Oracle Method: For stage 2, we used the ground truth val-

ues for the 14 image features and the 5 patient features. We

refer to this as the oracle method. In the remaining, we

present comparisons of stage 1 and 2 results obtained using

the baseline, oracle, and the proposed HealTech system.

4.2.1 Stage 1 Results

As part of stage 1, we predict the 14 wound attributes us-

ing baseline as well as HealTech methods. Table 2 shows

the 5-fold cross-validation precision and recall values for

each of the 14 wound attributes obtained using baseline

2https://drive.google.com/file/d/1m2yStm6qlc2s_

9zBNh_mUtgb5JYRBLOY/view?usp=sharing

features, single-task as well as multi-task Xception CNN

models. We can observe that the proposed HealTech based

single-task and multi-task CNN results are better compared

to the baseline approach. Further, the following variables

see significant gains in accuracy when multi-task learning is

used: Stage, Margin, Ligament Necrosis Exposed, Adipose

Necrosis Exposed, Muscle Necrosis Exposed, Exudate, Red

Granulation, Bone Necrosis Exposed. We also tried a single

unified MTL CNN model but this usually performs worse

than the combination of 9 multi-task CNNs.

Table 3 shows model accuracy for different ulcer sub-

types. Of the five ulcer types, prediction accuracy is best

for pressure ulcers and worst for trauma wounds. The clas-

sifier was confused between the (diabetic, pressure and sur-

gical), and (trauma and venous) categories. As per the clin-

icians’ diagnosis, a surgical wound at a later stage can lead

to a diabetic ulcer. Similarly, a trauma wound can lead to

a venous ulcer. We attribute the lower performance of our

model on some of the ulcer types to the visual similarity

of these ulcer types. Table 4 describes the detailed accu-

racy of various ulcer locations. Accuracy is best for sacral

and worst for great toe. The classifier was confused be-

tween the (great toe, heel and foot), and (ankle, heel and

foot) pairs. Table 5 describes the wound stage prediction

results for each individual stage. The best results are for

full-thickness while the worst is for unstageable. The term

unstageable is used when clinicians are confused about the

correct wound stage. Thus, the model behaves as expected.

The classifier was most confused between the full thickness,

partial thickness and Stage-3 classes. To measure the per-

formance of continuous-valued output variables “Area”, and

“Volume”, we use Mean Absolute Error (MAE) as metric.

Here, we applied the scaling on the target values, since val-

ues are of different range. We found MAEs for area and

volume as 1.16 and 1.28, respectively. The minimum area

of the wound is 0.0, the avg area is 7.74, and the max area
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Ulcer Type P R F1-score

Diabetic Ulcer 0.79 0.84 0.81

Pressure Ulcer 0.87 0.89 0.88

Surgical Wound 0.76 0.65 0.70

Trauma Wound 0.65 0.56 0.61

Venous Ulcer 0.82 0.89 0.85

Table 3. Ulcer Type Results

Ulcer Location P R F1-score

Lower Leg 0.88 0.90 0.89

Sacral 0.99 0.98 0.98

Foot 0.83 0.83 0.83

Heel 0.84 0.88 0.86

Ankle 0.73 0.77 0.75

Great Toe 0.67 0.55 0.61

Table 4. Wound Location

Stage P R F1-score

Full Thickness 0.83 0.90 0.86

Stage-2 0.68 0.66 0.67

Stage-3 0.70 0.69 0.69

Stage-4 0.64 0.66 0.65

Unstageable 0.76 0.61 0.67

Partial Thickness 0.62 0.60 0.61

Table 5. Wound Stage

1 Xception-CNN 14 Xception-CNNs

Sampling Method→ None Over Under None Over Under

Class↓ P R P R P R P R P R P R

Heal 0.73 0.97 0.82 0.81 0.85 0.67 0.80 0.93 0.84 0.83 0.86 0.70

Hospitalization 0.64 0.13 0.49 0.51 0.41 0.66 0.64 0.37 0.53 0.54 0.45 0.69

Table 6. Stage 2 Results: Heal/Hospitalization accuracy comparison for various sampling methods using 1/14 Xception-CNNs.

Baseline Oracle Xception CNN (HealTech)

Sampling Method→ None Over Under None Over Under None Over Under

Feature set↓ Class↓ P R P R P R P R P R P R P R P R P R

All Heal 0.98 0.98 0.98 0.98 0.98 0.94 0.98 0.99 0.98 0.99 0.99 0.94 0.98 0.99 0.99 1 1 0.94

All Hospitalization 0.80 0.73 0.90 0.76 0.51 0.87 0.88 0.75 0.87 0.79 0.52 0.87 0.89 0.77 0.92 0.8 0.54 0.9

Image Heal 0.97 0.97 0.98 0.98 0.97 0.85 0.98 0.98 0.98 0.98 0.98 0.87 0.98 0.98 0.98 0.98 0.98 0.87

Image Hospitalization 0.82 0.67 0.73 0.67 0.35 0.80 0.8 0.66 0.76 0.75 0.33 0.82 0.79 0.68 0.77 0.76 0.35 0.83

Table 7. Stage 2 Results: Heal/Hospitalization accuracy comparison for LGBM method using different sampling methods with

Baseline/Oracle/Xception-CNN (HealTech).

Baseline Oracle Xception CNN (HealTech)

Sampling Method→ Over Under Over Under Over Under

Feature set↓ Class↓ P R P R P R P R P R P R

All Heal 0.98 0.99 0.99 0.93 0.98 0.99 0.99 0.94 0.99 0.99 1 0.94

All Hospitalization 0.86 0.78 0.49 0.86 0.89 0.79 0.52 0.91 0.92 0.83 0.55 0.95

Image Heal 0.97 0.98 0.98 0.78 0.98 0.99 0.99 0.79 0.98 0.99 0.99 0.8

Image Hospitalization 0.77 0.65 0.23 0.84 0.78 0.74 0.24 0.86 0.78 0.76 0.24 0.85

Table 8. Stage 2 Results: Heal/Hospitalization accuracy comparison for GAT Stacked LGBM method using different sampling methods

with Baseline/Oracle/Xception-CNN (HealTech).

of the wound is 14.25 on a log scale. Similarly, the mini-

mum volume of the wound is 0.0, avg volume is 8.95, and

the max area of the wound is 16.86 on a log scale.

Figure 4 shows gradient heatmaps of different wound

variables as predicted by the HealTech’s Xception CNN

models. The results showcase that GradMap is correctly

highlighting the wounded part but not the surroundings.

This encourages us to believe that CNNs are performing

predictions based on a good semantic understanding of the

wound image.

Experiments on Medetec Dataset [26]: The dataset con-

tains 367 wound images belonging to the five major ulcer

types. To evaluate our model performance, we fine-tune

our Xception CNN models on the publicly available Mede-

tec dataset. Also, we train several baseline models, as pro-

posed earlier in the literature. Previous models [27, 36] re-

port results on Medetec dataset only on these three binary

attributes: necrosis, granulation, and slough level. Hence,

we show these comparative results in Table 9. From the Ta-

ble 9, we observe that our Xception CNN based HealTech

model outperforms the state-of-the-art models on the Mede-

tec dataset. Also, note that the baseline models [27, 36]

focused on first segmenting the wound patch from the im-

age and then making the prediction. Unlike these meth-

ods, HealTech directly applies the Xception models on the

Medetec dataset of images thereby avoiding the expensive

segmentation pre-processing step.

Class Bayesian [27] SVM [27] RF [36] HealTech

Necrosis 0.79 0.80 0.82 0.89

Slough 0.78 0.91 0.85 0.88

Granulation 0.87 0.88 0.87 0.92

Table 9. Stage 1 Results: Binary classification Micro-Averaged

Accuracy on the Medetec Dataset.
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Hospitalization Hospitalization Heal Heal

Actual: 10 weeks, Predicted: 7 weeks Actual: 10 weeks, Predicted: 8 weeks Actual: 5 weeks, Predicted: 6 weeks Actual: 5 weeks, Predicted: 6 weeks

Figure 3. HealTech Results: (i) Top row showcases sample wound images for which our model correctly predicted the heal vs hospitaliza-

tion class, (ii) bottom row showcases sample wound images along with the actual and predicted weeks to heal.
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Figure 4. GradMaps of different wound variables predicted by Xception models trained by respective wound variables. We can observe

that the model accurately predicted the location of the wound, despite occlusion and other limitations.

4.2.2 Stage 2 Results

Heal/Hospitalization Classification: First, we train an

Xception-CNN heal/ hospitalization classifier using the

wound image alone. Next, we train 14 different Xception-

CNN models to predict each image attribute separately. The

second last layer output from each of the 14 models is con-

catenated and connected to the output softmax layer for

heal/ hospitalization prediction. Table 6 shows the results

obtained using the one-CNN versus the 14-CNNs models.

Further, we train a heal/ hospitalization classifier us-

ing the golden set of 19 features (including 14 wound im-

age attributes), which were provided by clinicians. We

refer to this as the oracle classifier. However, to save

on labeling bandwidth of the clinician, we predict these

14 wound image attributes automatically, and then build

a heal/hospitalization classifier using 5 patient features +

14 predicted image attributes. Overall, we experiment with

three methods: baseline, oracle, and Xception-CNN based

classifiers (HealTech), across multiple methods (no sam-

pling, under-sampling, and over-sampling) to create our

classifier using: (1) LGBM and (2) (Genetic Algorithms

Tuned) GAT-Stacked LGBM methods. Of a total of 20376

samples, 18932 examples are of heal category, and 1444 ex-

amples belong to the hospitalization class.

The experiments in Table 7 describe the performance
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Baseline Oracle Xception CNN (HealTech)

Feature set↓ LR LGBM GS-LGBM LR LGBM GS-LGBM LR LGBM GS-LGBM

All 4.4 4.1 4.0 4.0 3.4 3.1 4.0 3.6 3.3

Image 4.4 4.3 4.1 4.2 3.8 3.3 4.3 4.0 3.4

Table 10. Stage 2 Results: Weeks to Heal prediction comparison for LGBM (HealTech) method and the baseline Linear Regression on

MAE. LR=Linear Regression. GS-LGBM=GAT Stacked LGBM

of LGBM models, and experiments in Table 8 summa-

rize the performance of GAT Stacked LGBM method in

predicting patients heal/ hospitalization risk. We experi-

mented with two different features sets to assess our per-

formance of Baseline, Oracle, and Xception CNN (Heal-

Tech) models: (i) All features: which include wound at-

tributes and patient features. (ii) Image features: contains

just the wound image attributes. First, we observe that re-

sults in Tables 7 and 8 are much better compared to simple

1/14 Xception-CNN models (Table 6). Next, better results

are obtained when all the features are utilized for training a

GAT Stacked LGBM model rather than just the image fea-

tures. Surprisingly, as Table 7 shows, the baseline also per-

forms well for the heal class, but HealTech outperforms the

baseline significantly on F1 for the hospitalization class. As

shown in Table 8, we observed the best precision and re-

call of 0.92 and 0.83, respectively for the hospitalization

class, when trained with over-sampling methods with GAT

Stacked LGBM. We found these results to be statistically

significantly better compared to the baseline. The under-

sampling experiments were conducted to increase the recall

of the hospitalization risk patients. We also observe that the

under-sampling based results were better when we use GAT

Stacked LGBM model, with 0.95 recall for the hospitaliza-

tion class, although the precision is relatively bad. Overall,

we observe that our proposed GAT Stacked LGBM models

with over-sampling provide the best results.

Weeks to Heal Prediction: For the weeks to heal predic-

tion our labeled data follows a power law distribution (refer

Section 4 of the supplementary material). To perform the

weeks to heal prediction, we use the same features as used

in the Heal/Hospitalization classification model. However,

here the target variable is the weeks to heal for a partic-

ular wound image. The results in Table 10 illustrate the

performance of the LGBM model in comparison with the

baseline linear regression model. Again, we use either the

set of all features or just the image features, to assess our

weeks to heal model performance. To measure the model

performance, we use mean absolute error (MAE) as the

metric. The minimum number of weeks to heal is one, the

maximum is 30 weeks, and the average is 14 weeks in our

dataset. The LGBM model achieves an MAE of 4.0 weeks

if we consider only image features, and 3.6 MAE on all fea-

tures. Our GS-LGBM model is even better with an MAE of

3.3 using all features, and an MAE of 3.4 using image fea-

tures only. Note that the results obtained using the wound

attributes predicted by Xception CNN (HealTech) models

are very similar to those obtained using the Oracle method

(i.e., ground truth labels for the 14 image attributes).

Feature Importance Analysis: We observed that age and

BMI are the most important patient attributes. Wound area

was the best predictor for the heal/ hospitalization classifier,

which is expected since the wound area intuitively corre-

lates with the seriousness of the wound. Similarly, wound

location, area, and type are important image attributes for

weeks to heal prediction. More details are in Section 2 of

the supplementary material.

Case Studies: Top row of Figure 3 shows sample wound

images for which our model correctly predicted the heal vs.

hospitalization class, while the bottom row shows sample

wound images along with the actual and predicted weeks to

heal. The results clearly look very intuitive.

Error Analysis: We analyzed the error cases in detail for

both the wound assessment tasks. Among patients where

the actual class was hospitalization but predicted class was

heal, we found the following discriminative patterns: 65%

cases had class-4 red granulation, 81% had class-2 adher-

ent yellow slough. Among patients where the actual class

was heal but predicted class was hospitalization, we found

the following discriminating patterns: 87% cases had joint

necrosis exposed. For the weeks to heal prediction model,

we observed that most cases have very small error, while

some cases have large errors (refer Section 3 in the supple-

mentary material).

5. Conclusion

We proposed two interesting wound assessment tasks:

hospitalization risk prediction and weeks to heal predic-

tion. Our HealTech system operates in two stages. In the

first stage, the wound image is analyzed by Xception CNN

models to predict 14 critical wound attributes. In the sec-

ond stage, these attributes are leveraged to perform the two

wound assessment predictions. We are the first to perform

extensive experiments on a large dataset for wound anal-

ysis. Our experiments show that HealTech leads to good

accuracy values, and therefore can be practically deployed.

We believe that our solution can help clinicians make bet-

ter decisions regarding whether a patient needs to be sent to

an acute wound care facility in order to heal. We hope our

work can support clinicians in the diagnosis process while

reducing the time spent on assessing each wound.
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