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1Centre for Mathematical Sciences

Lund University

2Department of Electrical Engineering
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Abstract

In this paper we present a novel algorithm for onboard

radial distortion correction for unmanned aerial vehicles

(UAVs) equipped with an inertial measurement unit (IMU),

that runs in real-time. This approach makes calibration

procedures redundant, thus allowing for exchange of op-

tics extemporaneously. By utilizing the IMU data, the cam-

eras can be aligned with the gravity direction. This allows

us to work with fewer degrees of freedom, and opens up

for further intrinsic calibration. We propose a fast and ro-

bust minimal solver for simultaneously estimating the fo-

cal length, radial distortion profile and motion parameters

from homographies. The proposed solver is tested on both

synthetic and real data, and perform better or on par with

state-of-the-art methods relying on pre-calibration proce-

dures. Code available at: https://github.com/

marcusvaltonen/HomLib.1

1. Introduction

In epipolar geometry, the relative pose of two uncali-

brated camera views is encoded algebraically as the fun-

damental matrix F concomitant with the two views. When

trying to estimate F from point correspondences, it is well-

known that the minimal case—i.e. the smallest number of

point correspondences for which there exists at most finitely

many solutions—uses seven point correspondences [19].

By using eight point correspondences instead of seven,

the estimation problem results in a system of eight lin-

ear equations, which can be solved fast and in a numeri-

cally robust manner using the singular value decomposition

(SVD) [18]. To solve the minimal case, i.e. using only seven

point correspondences, one must conjoin the seven linear

equations with one cubic equation emanating from the rank
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Figure 1: Utilizing the IMU data it is possible to align the

camera views, only leaving an unknown translation t. This

assumes that the IMU drift is negligible, which is a realistic

assumption if the measurements are not taken too far apart

in time.

constraint detF = 0. In the case of calibrated cameras,

the minimal case involves only five point correspondences;

however, the corresponding system of polynomial equations

now contains ten cubic equations, and the complexity of the

solver increases further [40].

There are several benefits of reducing the number of

point correspondences used to estimate the motion parame-

ters. In most cases, this comes at the cost of increased com-

plexity of the system to be solved. Solving systems of poly-

nomial equations numerically, in a sufficiently fast and ro-

bust way, is a challenging task. One popular method, some-

times referred to as the action matrix method, works if there

are finitely many solutions [10, 38]. The system of polyno-

mial equations defines an ideal, for which a Gröbner basis

can be computed, leading to an elimination template, where
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the solutions to the original problem are obtained by solv-

ing an eigenvalue problem [23, 8, 6]. This process has been

automated by several authors, with the automatic solver by

Kukelova et al. [23] as one of the first. Recent advances

use syzygies to make the elimination template smaller [30],

as well as discarding spurious solutions by saturating the

ideal [31]. Using Gröbner bases is not the only option; it

has for example been shown that other bases can yield bet-

ter performance [34], and that overcomplete spanning sets

sometimes give better numerical stability [8]. Recently, al-

ternative methods relying on resultants show promising re-

sults [2, 1].

Apart from adding extra constraints to the motion of the

cameras, one may add scene requirements to reduce the

number of necessary point correspondences. A classic ex-

ample is when the point correspondences lie on a plane, in

which case they are related through a homography. In appli-

cations where a planar environment is known to exist, such

as indoor environments, the minimal number of point corre-

spondences for the uncalibrated case is reduced from seven

to four, and the corresponding system of equations—known

as the Direct Linear Transform (DLT) equations—is linear

in the entries of the homography, and can thus be solved

using SVD.

If available, additional input data can be obtained from

auxiliary sensors. In this paper we will consider UAVs

equipped with an IMU, from which the gravity direction

can be obtained. This, in turn, is assumed to be aligned

with the ground plane normal.

Many commercially available UAVs are equipped with

a camera that suffers from radial distortion to some degree.

In order for the pinhole camera model to apply, such dis-

tortions must be compensated for, which is usually done in

a pre-calibration process involving a calibration target. In

contrast, we investigate a process for onboard radial distor-

tion auto-calibration, i.e. a method capable of computing

the radial distortion profile (and focal length) of the optics

as well as the motion parameters, without a specific cali-

bration target, thus eliminating the pre-calibration process.

This enables the user of the UAV to exchange optics, with-

out the need of intermediate calibration procedures, which

may not be feasible without a calibration target. The main

contributions of this paper are:

(i) a novel polynomial solver for simultaneous estimation

of radial distortion profile, focal length and motion pa-

rameters, suitable for real-time applications,

(ii) new insights in how to handle IMU drift, and

(iii) extensive validation on synthetic and real data on a

UAV system demonstrating the applicability of the

proposed method.

While the algorithms proposed in this paper works for any

application where a camera and IMU are available, we will

use them exclusively for UAV positioning.

2. Related work

In most Simultaneous Localization and Mapping

(SLAM) frameworks the distortion profile is pre-calibrated

using a calibration target. This requires extra off-line pro-

cessing, as well as scene requirements. For general scenes,

there are a number of algorithms for simultaneously es-

timating the distortion profile and the motion parameters.

Some authors propose methods based on large-scale opti-

mization (bundle adjustment) [37], while others suggest us-

ing polynomial solvers [20, 7, 25, 29, 5, 24, 22, 26, 32, 41,

42, 33, 47]. A polynomial solver for the minimal case, i.e.

the smallest number of point correspondences, is referred

to as a minimal solver. There are several reasons to prefer

minimal solvers, as they accurately encode intrinsic con-

straints, and transfer such properties to the final solution.

Furthermore, they are suitable for robust estimation frame-

works, e.g. RANSAC, as the number of necessary iterations

(to obtain an inlier set with a pre-defined probability) is

minimized.

There exists a number of different models for estimat-

ing the distortion profile. One classic approach, that is

still frequently used in applications is the Brown–Conrady

model [4]; however, although exceptions do exist [35], the

division model by Fitzgibbon [12] is almost universally

used in the construction of minimal solvers that deal with

radial distortion. One reason for this is that the distortion

profile can be accurately estimated using fewer parameters,

which is consistent with the general theory behind minimal

solvers. Other parametric models, recently e.g. [45], have

been proposed, but are not suitable for minimal solvers for

the same reason.

There are several methods that leverage the IMU data—

or, simply, rely on the mechanical setup to be accurate

enough—to assume a motion model with a known reference

direction [13, 39, 21, 43, 46, 44, 15, 14, 11, 16, 48]. None

of the mentioned papers, however, include simultaneous ra-

dial distortion correction, while only a handful consider the

case of unknown focal length [14, 11, 16, 48]. To the best

of our knowledge, we propose the first ever simultaneous

distortion correction, focal length and motion estimation al-

gorithm utilizing IMU data.

3. Embracing the IMU drift

Prevailing methods have been conceived under the as-

sumption that only two angles can be compensated for us-

ing the IMU data, which is true under general conditions.

The drift in the yaw angle, however, is often very small for

consecutive frames. The idea is that we can disregard the

error for the yaw angle initially, and instead correct for it

later in the pipeline when enough time has passed for the

drift to make a noticeable impact. This makes the equations

significantly easier to handle, and allows for further intrin-
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Figure 2: The pitch and roll angles can be accurately esti-

mated using an IMU; however, the yaw angle (about the y-

axis, also the gravity direction) often suffers from a drift that

accumulates over time. By fusing angular velocity and ac-

celerometer measurements, the drift is negligible for small

time frames.

sic calibration, such as radial distortion correction.

Using [36], the orientation can be estimated both ro-

bustly and efficiently by fusing angular velocity and ac-

celerometer measurements to form a single estimate of the

orientation. The filter operates by integrating gyroscopic

data and compensating for bias and integration errors by us-

ing the orientation that can be observed from the accelerom-

eter. The rotation about the gravitational direction, however,

is not observable and an inevitable drift will accumulate,

see Figure 2. The drift is typically very small for short time

frames since the sensor noise of the gyroscope is usually

very low and the bias changes slowly.

3.1. New assumptions on the homography

Assume the reference direction is known, and aligned

with the gravitational direction, chosen as the y-axis. Then,

after a suitable change of coordinates, we may assume that

Hy ∼ I +
1

d
tnT , (1)

where I is the identity matrix, t is the translation vector

and n is the unit normal of the plane, see Figure 1. We will

assume that the plane normal is aligned with the gravita-

tional direction, which is a valid assumption when using the

ground floor, thus n = [0, 1, 0]T . To ease notation, define

y
(j)
i := RT

j K
−1xi, (2)

where Rj is the rotation between the two coordinate sys-

tems (given by the IMU) and K = diag(f, f, 1) is the

calibration matrix, where f is the focal length, which is

assumed to be constant. Then for two point correspon-

dences x1 ↔ x2 the DLT equations can be written as

y
(2)
2 ×Hyy

(1)
1 = 0 . (3)

The relation between the general (uncalibrated) homog-

raphy H and Hy is thus given by

Hy ∼ RT
2 K

−1HKR1, (4)

where x2 ∼ Hx1. From this, the relative rotation Rrel and

the direction of the relative translation trel can be extracted,

and are given by

Rrel = R2R
T
1 and trel ∼ R2t . (5)

Due to the global scale ambiguity, we may assume d = 1,

and write

Hy =





1 h1 0
0 h2 0
0 h3 1



 , (6)

where t can be extracted directly through the entries hi,

given by

t =





h1

h2 − 1
h3



 . (7)

In order to apply the pinhole camera model, radially dis-

torted feature points must be rectified. Assuming the distor-

tion can be modeled by the division model [12], using only

a single distortion parameter λ, the distorted (measured) im-

age point xi in camera i obeys the relationship

xu
i = φ(xi, λ) =





xi

yi
1 + λ(x2

i + y2i )



 , (8)

where xi = [xi, yi, 1]
T , and xu

i are the undistorted image

points compatible with the pinhole camera model. Here we

implicitly assume that the distortion center is at the center

of the image. The modified DLT equations, can therefore

be written as

φ(xi, λ)×Hφ(xj , λ) = 0, (9)

for two point correspondences xi ↔ xj .

3.2. Benefits of this approach

The homography described in Section 3.1 is greatly sim-

plified compared to a general homography and has fewer

parameters that need to be determined. In the case of

unknown radial distortion profile, the competing meth-

ods [26, 12] return a general homography, i.e. with eight

degrees of freedom. Unless one makes assumptions about

the motion of the cameras—for example that it consists only

of pure rotations—it is not possible to extract the motion pa-

rameters, even in the partially calibrated case. To see this,

note that a Euclidean homography

Heuc ∼ R+ tnT , (10)

has eight degrees of freedom—three in R, three in t and

two in n (since the length of n is arbitrary). This is to be

compared to a general homography that also has eight de-

grees of freedom. We conclude that a partially calibrated
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Figure 3: Error histogram for 10,000 randomly generated problem instances for the proposed solvers: (left) fHf and (right)

frHfr. The solver [26] estimates two focal lengths, and we calculate the error for both and report the geometric mean. Most

solvers have an acceptable error distribution, since in practice it rarely has an impact if the error is of the magnitude 10−14

or 10−10.

homography on the form KHeucK
−1 must have nine de-

grees of freedom (the focal length f in K and the eight from

Heuc), hence is over-parametrized, i.e. there exists a one-

dimensional family of possible decompositions. For this

reason, we cannot extract the pose of the methods [26, 12],

unless we assume that we know the focal length a priori,

or constrain the motion. This, in itself, makes the methods

infeasible to include in a SLAM framework, where we want

to estimate the camera positions.

4. Polynomial solvers

In this section we present two-sided solvers, i.e. when the

same intrinsic parameters (focal length and/or radial distor-

tion parameter) are assumed for both cameras.

4.1. Calibrated case (1.5 point)

This case does not model an unknown focal length or

distortion parameter, and is essentially the same approach

as in [15], but is given here for completeness. Given 1.5

point correspondences it is possible to form the linear sys-

tem Ah = b, where A is a 3 × 3 matrix and h contains

the hi from (6). For non-degenerate configurations, the ma-

trix A has full rank, and the solution can be obtained imme-

diately as h = A−1b. This is a very fast solver, since it is

linear and can be solved without SVD.

4.2. Equal and unknown focal length (fHf , 2 point)

Parameterize the inverse of the unknown calibration ma-

trix as K−1 = diag(1, 1, w), and consider the rectified

points (2), which now depend linearly on the unknown pa-

rameter w. Parameterizing Hy as in (6), it is clear that the

equations obtained from (3) are linear in h1, h2 and h3 and

quadratic in w. This system of equations has infinitely many

solutions, if we allow w = 0. Such solutions, however,

do not yield geometrically meaningful reconstructions, and

should therefore be excluded. This can be achieved using

saturation, through the method suggested in [31].

We exploit the linear relation of h1, h2, h3, making it

possible to write the equations as

M

[

h

1

]

= 0, (11)

where M is a 4×4 matrix depending on w, and h is the vec-

tor containing the elements hi. Thus, we may consider find-

ing a non-trivial nullspace of M , which exists if and only

if detM = 0. This equation reduces to a sextic polyno-

mial in the unknown w, thus has six solutions, which can be

found using a simple root finding algorithm (action matrix

method is not necessary). Since we know from before that

the original problem has four solutions, we conclude that

two spurious solutions have been added; in fact, these can

easily be disregarded as a pre-processing step, as they cor-

respond to nullspace basis vectors with last element equal

to zero. Numerical tests confirm that this is the case.

When the (up to) four possible real solutions of w have

been obtained, the unknowns h1, h2 and h3 can be obtained

using SVD.

4.3. Equal and unknown focal length and radial
distortion coefficient(frHfr, 2.5­point)

Let us now consider the case with equal and unknown

focal length and radial distortion coefficient. We use the

division model introduced in [12], with a single distortion

parameter λ.

Given two point correspondences x1 ↔ x2, the modi-

fied DLT equations (9) hold true. Building an elimination

template from these equations yields a large and numeri-

cally unstable solver, and therefore, we reparameterize the

problem. Applying Hy = I + tnT to (4), we get

K−1HK ∼ R2HyR
T
1 = R2R

T
1 +R2tn

TRT
1 . (12)
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Figure 4: Noise sensitivity comparison for Gaussian noise with standard deviation σN . For each noise level 1,000 random

problem instances were generated. The geometric mean error is shown for [26].

Denote the elements of R1 by rij . Introducing R̂ =
R2R

T
1 , t̂ = R2t and n̂ = R1n = [r12, r22, r32]

T , the

general homography can now be written as

H ∼ K
(

R̂+ t̂n̂T
)

K−1 . (13)

This accomplishes two things: (1) we have replaced several

multiplications, (2) we have reduced the number of input

data necessary. Analyzing the quotient ring of the corre-

sponding ideal, we conclude that there are three possible

solutions.

We parameterize the calibration matrix as K =
diag(f, f, 1) and its inverse K−1 = diag(f−1, f−1, 1),
respectively. From here on it would be possible to construct

an elimination template; however, we may eliminate one

variable in order to get a reduced system. Using only the

third row of (9), from three point correspondences, one ob-

tains a system on the form Mv = 0, where M is a 3 × 9
coefficient matrix, and v is the vector of monomials, more

precisely2

v =
[

t̂1fλ t̂1f t̂1 t̂2fλ t̂2f t̂2 fλ f 1
]T

.

(14)

Since t̂1 and t̂2 are present in only three monomials, either

of the two can be eliminated; we will proceed by eliminat-

ing the latter, as it yields a smaller elimination template. Af-

ter Gauss–Jordan elimination, the coefficient matrix is given

2It turns out that the third row does not contain any reciprocal f .

by

M̂ =





t̂2fλ t̂2f t̂2 t̂1fλ t̂1f t̂1 fλ f 1
1 • • • • • •

1 • • • • • •
1 • • • • • •



,
(15)

from which we establish the following relations

t̂2fλ+ g1(t̂1, f, λ) = 0,

t̂2f + g2(t̂1, f, λ) = 0,

t̂2 + g3(t̂1, f, λ) = 0,

(16)

where gi are polynomials of three variables. Furthermore,

the following constraints must be fulfilled

g1(t̂2, f, λ)− λg2(t̂2, f, λ) = 0,

g2(t̂2, f, λ)− fg3(t̂2, f, λ) = 0,

g1(t̂2, f, λ)− λfg3(t̂2, f, λ) = 0 .

(17)

We can now use the first row of (9), from which we get

two equations (which must be multiplied by f to make it

polynomial). Together with (17) we have five equations in

four unknowns.

To build a solver we saturate f , to remove spurious so-

lutions corresponding to zero focal length. Analyzing the

quotient ring we have again three solutions and the basis

heuristic [34] yields a template size of 26 × 29. Using the

hidden variable trick, as in Section 4.2, we were able to con-

struct a solver with a template size of 17×20; however, this

solver was not as numerically stable as the one proposed,

nor faster.
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(a) Our, 70 % inliers. (b) Kukelova et al. [26], 62 % inliers. (c) Fitzgibbon [12], 67 % inliers.

Figure 5: Selection of panoramas created with the competing methods. The blue frame is added for visualization, as well as

inliers (green circles) and outliers (red crosses). Note that none of the methods require a checkerboard to be visible in the

scene, but is simply chosen to ease the ocular inspection of the stitching. A correct rectification will map physically straight

lines to straight lines, i.e. the yellow area should be a quadrilateral. Only our method is capable of producing this result.

5. Experiments

5.1. Numerical stability and noise sensitivity

We compare the proposed methods with other state-of-

the-art methods on synthetic data, to evaluate the numerical

stability. For the case of unknown focal length we compare

to the 2.5 point method [48] and the 3.5 pt method [11],

and in the case of unknown radial distortion we compare

to the 5 point methods [26, 12]. We generate noise free

problem instances, by generating homographies and rota-

tion matrices, and project a random set of points to estab-

lish point correspondences. In the case of radial distortion,

these points are distorted using the division model. The er-

ror histograms are shown in see Figure 3. In the case of

unknown focal length our method is superior to the oth-

ers; however, with unknown radial distortion, we are not

as stable as others. The accuracy, however, is in the order of

10−10. This is sufficient for most applications. We will see

in future experiments, that this does not cause any practical

issues. The homography error is measured as the difference

between the estimated homography and the ground truth in

the Frobenius norm, normalized with the Frobenius norm of

the ground truth homography, where the homographies are

chosen such that h33 = 1. The errors of the focal length

and radial distortion coefficient are measured as the abso-

lute difference divided by the ground truth value.

Lastly, Gaussian noise is added to the image correspon-

dences, in order to compare the noise sensitivity of the

methods. The standard deviation σN is varied for a num-

ber of different noise levels. For all noise levels, our solvers

perform superior to the other methods, for both the case

with and without radial distortion, see Figure 4.

5.2. Speed evaluation

Next we compare the execution time for the considered

methods. We compare the mean execution time given a

minimal set of point correspondences until the putative ho-

mographies, and other parameters are obtained, i.e. includ-

ing all pre-processing and post-processing steps. Further-

more, for the 2.5 and 3.5 point methods, we discard false

solutions using the previously unused DLT equation.

As we are interested in performing the computations on-

board the UAV, we evaluate the performance on a Raspberry

Pi 4, and the mean execution times are listed in Table 1. All

solvers are implemented in C++ using Eigen [17] and com-

piled in g++ with the -O2 optimization flag. Lastly, we list

the maximal number of iterations possible on a 30 fps sys-

tem, which we will use in Section 5.3 to compare real-time

performance.

Table 1: Mean execution time on a Raspberry Pi 4 for

100,000 randomly generated problem instances in C++.

The last column is the maximal number of iterations pos-

sible when running 30 fps.

Author Time (µs) No. iter.

Our fHf 215 155

Our frHfr 149 223

Valtonen Örnhag et al. [48] 80 416

Ding et al. [11] 3301 10

Kukelova et al. [27] 371 89

Fitzgibbon [12] 428 77

Kukelova et al. [26] 226 147

5.3. Real data

In this section, we compare the proposed methods on real

data. We use the datasets from [48], captured using a UAV

with a monochrome global shutter camera (OV9281) with

resolution 640× 480. The UAV is equipped with an inertial

measurement unit (MPU-9250). In the experiments with

only unknown focal length, the extracted features where

undistorted using a pre-calibrated distortion profile (using

the OpenCV [3] camera calibration procedure); for the case
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Figure 6: Estimated trajectories from the Indoor dataset. From left to right: Our fHf , our frHfr, Valtonen Örnhag et

al. [48], Ding et al. [11] and Kukelova et al. [27]. The green dots indicate points that have been selected as inliers at least

once, and the red points those which have been consistently rejected. Rectified images were used as input to all solvers except

for frHfr, which received the raw input images.

with unknown radial distortion profile, the raw unprocessed

coordinates were used as input.

The ground truth was obtained using a complete SLAM

system where the reprojection error and IMU error were

minimized. No scene requirements are enforced by the sys-

tem, hence feature points from non-planar structures will

be present—such feature points should be discarded by a

robust framework as outliers.

The dataset consists of both indoor and outdoor se-

quences containing planar surfaces, and includes varying

motions and length of sequences. Example images from

the sequences are shown in Figure 7.

We exclusively use consecutive keyframes for extract-

ing and matching features. The following keyframe inser-

tion heuristic is used: (i) If the frame has moved more than

2.5% of its median depth from the previous keyframe, then

proceed to next step, (ii) If we are tracking 10 % fewer

3D points in the current frame compared to the closest

keyframe, or if the uncertainty of the projection of a 3D

point is higher than a predefined threshold, then increase

new information counter, otherwise, reset counter. (iii) If

the new information counter is above 3 and the current

frame tracks at least 10 3D points, add frame as keyframe.

We use the IMU filter technique [36], described in Sec-

tion 3, to obtain the estimates. Since these measurements

are noisy, we propose to use the novel solvers in a LO-

Basement Carpet

Indoor Outdoor

Figure 7: Example images from the dataset [48].

RANSAC framework [9]. As a first step the solvers are

used to discard outliers and in the inner LO loop we pro-

pose to optimize over the space of Euclidean homographies

with unknown focal length. This refinement step allows for

correction of the errors initially caused by the IMU filter.

Empirically, we have seen that this improves the accuracy.

For a fair comparison, we simulate a scenario where the

UAV uses a frame rate of 30 fps, and limit the number of

RANSAC cycles to fit this time frame. For simplicity, we

use the values from Table 1 alone, acknowledging there are

other parts in the pipeline—such as image capturing, feature

extraction and matching, LO cycles, etc.—that would affect

a complete system; however, we argue that this overhead

time is roughly independent of the solver used.

When working with radial distortion correction, one may

choose to minimize the reprojection error in the undistorted

image space, or in the distorted image space. In [28], it was

shown that it is beneficial to perform triangulation in the

distorted image space. Therefore, we chose to measure the

reprojection in the distorted space.

5.3.1 Image stitching

As argued in Section 3.2 we cannot decompose the homo-

graphies obtained from [26, 12], into a relative pose; how-

ever, we can still test the ability of the methods to return an

accurate distortion profile.

We simulate a scenario where a UAV is navigating in 30

fps, and limit the number of iterations for each method ac-

cording to Table 1. We use the same pixel threshold for

all methods, for two consecutive keyframes of the Indoor

sequence. We chose this sequence, because it naturally

contains a checkerboard pattern, which facilitates in mak-

ing an accurate ocular evaluation of the quality of the esti-

mated distortion profile. Physically straight lines should be

mapped to straight lines if the rectification is successful.

In Figure 5 we show the results of the estimated distor-

tion profile. We notice that the distortion profile is correct

for the proposed method as the yellow area is a quadrilat-

1757



10−4

10−2

1

102
F
.

le
n

g
th

er
ro

r

10−2

1

102

R
o

t.
er

ro
r

Basement Carpet Indoor Outdoor
1

101

102

T
ra

n
s.

er
ro

r

10−4

10−2

1

102

F
.

le
n

g
th

er
ro

r

10−2

1

102

R
o

t.
er

ro
r

Basement Carpet Indoor Outdoor
1

101

102

T
ra

n
s.

er
ro

r

Figure 8: Errors for the different methods—from left to right: fHf , frHfr, Valtonen Örnhag et al. [48], Ding et al. [11],

Kukelova et al. [27]—using the metrics (18). (Left) rectified input images were used for all but the frHfr. (Right) unrecti-

fied images were used for all methods.

eral, whereas this is not the case for other methods. Fur-

thermore, we note that the method by Kukelova et al. [26]

does not contain all inliers of the ground plane, and that the

method by Fitzgibbon [12] pick incorrect matches of the

wall.

For the same pair of images we measure the inliers as a

function of time, see Figure 9. The only method converging

to the correct number of inliers in the allotted time is our

method, which it does by a large margin.
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Figure 9: Number of inliers over time (average of 100 tests).

The proposed method is the only method to converge to

the correct number of inliers (black dashed line) within the

33.3 ms allotted per frame when running at 30 fps.

5.3.2 Pose estimation

In this final section, we compare both proposed methods

to [27, 11, 48]. Note that only one of these methods

(our frHfr) estimates the radial distortion profile. As ar-

gued in Section 3.2, the methods [26, 12] cannot estimate

the motion parameters without additional requirements that

are not applicable for UAVs, hence cannot be compared in

this section.

The error metrics are defined as in [44, 11, 48], and are

given by

eR = arccos

(

tr(RGTR
T
est)− 1

2

)

,

et = arccos

(

tTGTtest

‖tGT‖‖test‖

)

,

ef =
|fGT − fest|

fGT
.

(18)

In Figure 6 we compare the estimated trajectories for all

methods. It can be seen that there are only small differences

between the methods using pre-calibrated radial distortion

profile, and the proposed frHfr solver. Furthermore, we

measure the errors, according to (18) for all four sequences.

In the left part of Figure 8 we use rectified images for all

except the frHfr method, which still performs best or on

par with the other methods in terms of all errors. In the

right part of the figure, we run the same experiment, but all

methods are given the raw (unrectified) images as input—

here it is clear that out method achieves superior results.

6. Conclusions

We have presented the first ever method capable of si-

multaneously estimating the distortion profile, focal length

and motion parameters from a pair of homographies, while

incorporating the IMU data. The method relies on a novel

assumption that the IMU data is accurate enough, to dis-

regard the IMU drift for small time frames, allowing for

simpler equations and faster solvers. We have shown that

this assumption is true on both synthetic and real data, and

that the proposed methods are robust. The method has been

shown to give accurate reconstructions, and performs on

par or better than state-of-the-art methods relying on pre-

calibration procedures, while being fast enough for real-

time applications.
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