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Abstract

Although providing exceptional results for many com-

puter vision tasks, state-of-the-art deep learning algorithms

catastrophically struggle in low data scenarios. However, if

data in additional modalities exist (e.g. text) this can com-

pensate for the lack of data and improve the classification

results. To overcome this data scarcity, we design a cross-

modal feature generation framework capable of enriching

the low populated embedding space in few-shot scenarios,

leveraging data from the auxiliary modality. Specifically,

we train a generative model that maps text data into the vi-

sual feature space to obtain more reliable prototypes. This

allows to exploit data from additional modalities (e.g. text)

during training while the ultimate task at test time remains

classification with exclusively visual data. We show that in

such cases nearest neighbor classification is a viable ap-

proach and outperform state-of-the-art single-modal and

multimodal few-shot learning methods on the CUB-200 and

Oxford-102 datasets.

1. Introduction

Despite the great success of deep learning models, the

necessity of large training sets for these models is often a

limiting factor. Many applications come with the natural

problem of limited data, making it too expensive or even

impossible to collect a sufficient number of training samples

and leading to poor model accuracies. This is in contrast to

the human ability to quickly learn new concepts. Conse-

quently, the study of few-shot classification, i.e. learning

new concepts from a very limited amount of training data,

has gathered focus in recent years [19, 39, 2, 30, 11, 37, 31].

Finetuning DNNs has been shown to be effective in a con-

text where the big data assumption holds [25]. However,

scenarios where access is limited to only very few samples

of novel data are extremely susceptible to over-fitting.
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Figure 1: Multimodal Prototypical Networks: Cross-modal

generated representations can condense the embedding

space and move the visual prototypes pI towards more reli-

able multimodal prototypes pM and it improves the classi-

fication accuracy on unseen test samples (e.g., x1).

Originally, few shot learning defined a scenario where

the only very few samples per class were accessible [20,

18, 19]. With the advent of deep learning the assumption

was broadened, into having large amounts of data accessi-

ble for a number of base classes, with novel classes bound

by a scarce data regime. This more realistic scenario falls

under a meta-learning context, where a representation is

learned on the base classes to be employed later on the novel

classes.

To leverage the powerful representations that can be

learned on the base classes with a DNN, a wide variety

of meta-learning methods have been proposed. Santoro et

al. [34] make use of a memory network to better assimilate

new data and make predictions using it. Edwards et al. [6]

aim to make use of learned dataset statistics to better fine-

tune on new samples.

In contrast to more model-driven methods, [39] learns an

embedding of the labelled examples over which an attention

mechanism can be utilized, while [37] learns a mapping

from the input to an embedding for which its class is repre-

sented by a prototype. Upon learning an embedding, both

methods make use of a simple k-nearest neighbor approach

to infer the class membership of unseen samples, implying
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that they can leverage the representational power of DNNs

in a low data regime. See also [41] for a discussion.

However, even when optimizing the learning process for the

low-shot scenario, the lack of novel samples remains a hin-

drance. To mitigate this, a series of generative approaches

have been developed, increasing the number of novel class

samples that can be utilized during training. Hariharan et

al. [11] facilitates training the classifier by generating fea-

tures, disregarding realism or diversity criteria. While this

approach provides a stable meta-learning process, and prac-

tically generates useful hallucinated samples, the diversity

of generated samples is bound by the samples used to learn

the generator. The key assumption is that incorporating

multimodal data can provide the means to inject diversity

into the generation process. This is achieved by learning a

cross-modal mapping which in turn broadens the scope of

the generated sample space. The most closely related work

to us is [28], which makes use of additional textual data in

an adversarial context, followed by a self-paced selection of

the most discriminative samples.

Our method builds upon the observation that the repre-

sentations learned through DNNs are powerful enough for

the use of simple non-parametric classification techniques

[1], and that multi-modal data can improve generation di-

versity. To this end, an image encoder is first trained on

the available base classes, after which a text-conditional

GAN learns a cross-modal mapping between the textual

and visual embedding spaces. This mapping can then be

used to generate feature representations that reside in the

visual space, conditioned by textual data. Intuitively, our

method makes use of the cross-modal feature mapping to

shift single-modal prototypes pI (representing visual data)

to pM , mimicking unseen samples of the novel classes. This

process can be observed in Fig. 1, where a given sample xi

is classified differently though the shift in the prototypes. In

a prototypical space, k-NN, a non-parametric classification

technique is used, and thus only the representation learning

stage requires multi-modal data, the inference stage requir-

ing only visual data.

The main contributions of this work include the use of

a cross-modal feature generation network in the context

of few-shot learning. Furthermore, we suggest a strategy

to combine real and generated features, allowing us to in-

fer the class membership of unseen samples with a simple

nearest neighbor approach. Our method outperforms our

baselines and the state-of-the-art approaches for multimodal

and image-only few-shot learning by a large margin for the

CUB-200 and Oxford-102 datasets.

2. Related Work

In this section we briefly review the previous works re-

lated to few-shot learning and multimodal learning.

2.1. Few­Shot Learning

For learning deep networks using limited amounts of

data, different approaches have been developed in recent

years. Following Taigman et al. [38], Koch et al. [18]

interpreted this task as a verification problem, i.e. given

two samples, it has to be verified, whether both samples be-

long to the same class. Therefore, they employed siamese

neural networks [3] to compute the distance between the

two samples and perform nearest neighbor classification in

the learned embedding space. Some recent works approach

few-shot learning by striving to avoid overfitting by modifi-

cations to the loss function or the regularization term. Yoo

et al. [46] proposed a clustering of neurons on each layer of

the network and calculated a single gradient for all mem-

bers of a cluster during the training to prevent overfitting.

The optimal number of clusters per layer is determined by

a reinforcement learning algorithm. A more intuitive strat-

egy is to approach few-shot learning on data-level, mean-

ing that the performance of the model can be improved

by collecting additional related data. Douze et al. [5] pro-

posed a semi-supervised approach in which a large unla-

beled dataset containing similar images was included in ad-

dition to the original training set. This large collection of

images was exploited to support label propagation in the

few-shot learning scenario. Hariharan et al. [11] combined

both strategies (data-level and algorithm-level) by defining

the squared gradient magnitude loss, that forces models to

generalize well from only a few samples, on the one hand

and generating new images by hallucinating features on the

other hand. For the latter, they trained a model to find com-

mon transformations between existing images that can be

applied to new images to generate new training data [42].

Other recent approaches to few-shot learning have lever-

aged meta-learning strategies. Ravi et al. [30] trained a long

short-term memory (LSTM) network as meta-learner that

learns the exact optimization algorithm to train a learner

neural network that performs the classification in a few-

shot learning setting. This method was proposed due to

the observation that the update function of standard opti-

mization algorithms like SGD is similar to the update of

the cell state of a LSTM. Similarly, Finn et al. [9] sug-

gested a model-agnostic meta-learning approach (MAML)

that learns a model on base classes during a meta learning

phase optimized to perform well when finetuned on a small

set of novel classes. Moreover, Bertinetto et al. [2] trained a

meta-learner feed-forward neural network that predicts the

parameters of another, discriminative feed-forward neural

network in a few-shot learning scenario. Another technique

that has been applied successfully to few-shot learning re-

cently is attention. [39] introduced matching networks for

one-shot learning tasks. This network is able to apply an at-

tention mechanism over embeddings of labeled samples in

order to classify unlabeled samples. One further outcome
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of this work is that it is helpful to mimic the one-shot learn-

ing setting already during training by defining mini-batches,

called few-shot episodes with subsampled classes. Snell et

al. [37] generalize this approach by proposing prototypical

networks. Prototypical networks search for a non-linear em-

bedding space (the prototype) in which classes can be repre-

sented as the mean of all corresponding samples. Classifica-

tion is then performed by finding the closest prototype in the

embedding space. Other related works include [43, 21, 29].

2.2. Multimodal Learning

Kiros et al [17] propose to align visual and semantic

information in a joint embedding space using a encoder-

decoder pipeline to learn a multimodal representation.

Building upon this, Faghri et al [8] improve the mixed rep-

resentation by incorporating a triplet ranking loss.

Karpathy et al [14] generate textual image descriptions

given the visual data. Their model infers latent alignments

between regions of images and segments of sentences of

their respective descriptions. Reed et al [32] focus on fine-

grained visual descriptions. They present an end-to-end

trainable deep structured joint embedding trained on two

datasets containing fine-grained visual descriptions.

In addition to multimodal embeddings, another related field

using data from different modalities is text-to-image gener-

ation. Reed et al [33] study image synthesis based on tex-

tual information. Zhang et al [47] greatly improve the qual-

ity of generated images to a photo-realistic high-resolution

level by stacking multiple GANs (StackGANs). Extensions

of StackGANs include an end-to-end trainable version [47]

and considering an attention mechanism over the textual

input [45]. Sharma et al. [36] extended the conditioning

by involving dialogue data and further improved the image

quality. Beside the usage of GANs for conditioned image

generation, other work employed Variational Autoencoders

[16] to generate images [22]. However, they conditioned on

attribute vectors instead of text.

Some works have leveraged multimodal data to improve

classification results. Elhoseiny et al [7] collect noisy text

descriptions and train a model that is able to connect rel-

evant terms to its corresponding visual parts. This allows

zero-shot classification for unseen samples, i.e. visual sam-

ples for novel classes do not exist. Similarly, Zhu et al. [48]

train a classifier with images generated by a GAN given

noisy text descriptions and test their approach in a zero-shot

setup. Xian et al [44] follow this notion, however, generat-

ing feature vectors instead of images. In the context of few-

shot learnig, Pahde et al [28, 27, 26] have leveraged textual

descriptions to generate additional training images, as op-

posed to visual feature embeddings generated in this work.

Along with a self-paced learning strategy for sample selec-

tion this method improves few-shot learning accuracies.

3. Multimodal Prototypical Networks

To define our developed method we first introduce the

necessary notation and then describe the architecture of our

framework.

3.1. Preliminaries

Let I denote the image space, T the text space and

C = {1, ..., R} be the discrete label space. Further, let

xi ∈ I be the i-th input data point, ti ∈ T its correspond-

ing textual description and yi ∈ C its label. In the few-shot

setting, we consider two disjunct subsets of the label space:

Cbase - labels for which we have access to sufficient data

samples, and Cnovel novel classes, which are underrepre-

sented in the data. Note that both subsets exhaust the label

space C, i.e. C = Cbase ∪ Cnovel. We further assume that

in general |Cnovel|< |Cbase|.
We organize the data set S as follows. Training data Strain
consists of tuples {(xi, ti, yi)}

n
i=1 taken from the whole

data set and test data Stest = {(xi, yi) : yi ∈ Cnovel}
m
i=1

that belongs to novel classes such that S = Strain ∪
Stest, Strain ∩ Stest = ∅. Naturally, we can also con-

sider Snovel
train

= {(xi, ti, yi) : (xi, ti, yi) ∈ Strain, yi ∈

Cnovel}
k
i=1 ⊂ Strain, where in accordance with a few-shot

scenario k =
∣

∣

∣
Snovel

train

∣

∣

∣
≪

∣

∣Strain

∣

∣ = n. Additionally, in a

few-shot learning scenario, the number of samples per cat-

egory of Cbase may be limited to g, denoted by Snovel
train

(g).
Note that contrary to the benchmark defined by Hariharan et

al. [11], the few-shot learning scenario in this paper is mul-

timodal in training. However, the testing phase is single-

modal on image data of Cnovel.

3.2. Nearest Neighbor in Visual Embedding Space

The classification in the embedding space is performed

with a simple nearest neighbor approach. The assump-

tion is that given a powerful feature representation, such

as ResNet-18 feature vectors, nearest neighbor is a vi-

able choice as classification model and has proven to out-

perform more sophisticated few-shot learning approaches

[1]. Therefore, we use the visual data from base classes

Cbase to train an image encoder ΦI , providing a discrimi-

native visual embedding space ϕ. For novel visual samples

xi ∈ Snovel
train

, ΦI(xi) then provides the embedding accord-

ingly, featuring discriminativeness given by the pre-trained

visual embedding space ϕ.

Following [37], for every novel class k ∈ Cnovel we calcu-

late a visual prototype pk of all encoded training samples:

pk =
1

|Sk
train

|

∑

(xi,yi)∈Sk
train

ΦI(xi), (1)
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Figure 2: Architecture of our proposed feature-generating network for few-shot learning: The GAN framework containing a

generator Gt and a discriminator D is optimized to transform a text embedding given a pre-trained text encoder into the visual

embedding space ϕ yielded by a pre-trained image encoder. The discriminator computes a reconstruction loss (real/fake) and

an auxiliary classification loss.

where Sk
train

= {(xi, yi) ∈ Snovel
train

|yi = k}ni=1 is the set of

all training pairs (xi, yi) for class k. Classification of test

samples is performed by finding the closest prototype given

a distance function d(·). Thus, given a sample xtest ∈ Stest
the class membership is predicted as follows:

c = argmin
k

d(ΦI(xtest), p
k) (2)

This assigns the class label of the closest prototype to an un-

seen test sample. Given the assumption that ϕ is a discrim-

inative representation of visual data, Eq. 2 provides a pow-

erful classification model. However, due to the few-shot

scenario and the intrinsic feature sparsity in training space,

Snovel
train

is rather limited such that the computed class pro-

totypes {pk : k ∈ Cnovel} consequentially yields merely a

rough approximation of the true class mean.

3.3. Cross­modal Feature Generation

A viable solution to enrich the training space to enable

the calculation of more reliable estimations of the class pro-

totypes is to leverage the multimodality in Snovel
train

. Thus,

the core idea of our method is to use textual descriptions

provided in the training data to generate additional visual

feature vectors compensating the few-shot feature sparsity.

Therefore, we propose to train a text-conditional generative

network Gt that learns a mapping from the encoded textual

description into the pre-trained visual feature space ϕ for a

given training tuple (xi, ti, yi) according to

Gt(ΦT (ti)) ≈ ΦI(xi). (3)

For the purpose of cross-modal feature generation we use

a modified version of text-condtional generative adversarial

networks (tcGAN) [33, 47, 45]. The goal of tcGAN is to

generate an image given its textual description in the GAN

framework [10]. More specifically, the tcGAN is provided

with an embedding φT (·) of the textual description. There-

fore, a common strategy is to define two agents G and D

solving the adversarial game of generating images that can-

not be distinguished from real samples (G) and detecting

the generated images as fake (D). Because our strategy is

to perform nearest-neighbor classification in a pre-trained

embedding space ϕ, we slightly change the purpose of tc-

GAN. Instead of generating images xi ∈ I, we optimize G

to generate its feature representation ΦI(xi) in the space ϕ.

Generally, the representation vector in an embedding space

has a significantly lower dimensionality than the original

image. Consequentially, the generation of feature vectors

is a computational cheaper task compared to the generation

of images, can be trained more efficiently and is less error-

prone.

To this end, using data from Strain our modified tcGAN can

be trained by optimizing the following loss function,

LtcGAN (Gt, D) = Exi∼pdata
[logD (ΦI(xi))]

+Eti∼pdata,z [logD (Gt (ΦT (ti), z))] ,

(4)

which entails the reconstruction loss that is used for the tra-

ditional GAN implementation [10]. Moreover, following

[24, 28, 48] we define the auxiliary task of class prediction

during the training of the tcGAN. This entails augmenting

the tcGAN loss given in Eq. 4 with a discriminative classi-

fication term, which is defined as

Lclass (D) = EC,I [log p (C | I)] (5)

and Lclass (Gt) , Lclass (D) . (6)

Augmenting the original GAN loss with the defined auxil-

iary term, the optimization objectives for D and Gt can now
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Dataset Method 1-shot 2-shot 5-shot 10-shot 20-shot

CUB Pahde et al. [28] 57.67 59.83 73.01 78.10 84.24

Image Only Baseline(Resnet-18+NN) 62.65±0.22 73.52±0.15 82.44±0.09 85.64±0.08 87.27±0.08

ZSL Baseline (Generated Resnet-18+NN) 58.28±0.22 65.62±0.19 71.79±0.14 74.15±0.11 75.32±0.13

Our Method (Multimodal Resnet-18 + NN) 70.39±0.19 78.62±0.12 84.32±0.06 86.23±0.08 87.47±0.09

Oxford-102 Pahde et al. [28] 78.37 91.18 92.21 - -

Image Only Baseline (Resnet-18+NN) 84.18±0.48 90.25±0.20 94.18±0.13 95.63±0.14 96.25±0.10

ZSL Baseline (Generated Resnet-18+NN) 73.35±0.52 77.52±0.34 81.14±0.25 82.95±0.28 83.97±0.21

Our Method (Multimodal Resnet-18 + NN) 86.52±0.36 91.31±0.18 94.57±0.13 95.74±0.13 96.38±0.10

Table 1: Top-5 accuracy in comparison to other multimodal few-shot learning approaches and our baselines for CUB-200

(50-way classification) and Oxford-102 (20-way classification) datasets with n ∈ {1, 2, 5, 10, 20}

be defined as

L (D) = LtcGAN (Gt, D) + Lclass (D) (7)

L (Gt) = LtcGAN (Gt, D)− Lclass (Gt) , (8)

which are optimized in an adversarial fashion. The adver-

sarial nature of the task forces the generator to focus on the

most class-discriminative feature elements. A visualization

of our cross-modal feature generating method can be seen

in Fig. 2.

3.4. Multimodal Prototype

Having learned a strong text-to-image feature mapping

Gt on data provided for the base classes Cbase we can em-

ploy the conditional network to generate additional visual

features Gt(ΦT (ti)) given an textual description ti and a

pre-trained text encoder ΦT (·). This allows for computing

a prototype from generated samples Gt(ti) according to

pkT =
1

|Sk
train

|

∑

(ti,yi)∈Sk
train

Gt(ΦT (ti)). (9)

Next, having both the true visual prototype pk from Eq. 1

and a prototype pkT computed from generated feature vec-

tors conditioned on textual descriptions from Eq. 9 a new

joint prototype can be computed using a weighted average

of both representations:

pk =
pk + λ ∗ pkT

1 + λ
, (10)

where λ is a weighting factor and k ∈ Cnovel represents

the class label of the prototype. Note that the step in Eq. 10

can be repeated multiple times, because Gt allows for the

generation of a potentially infinite number of visual feature

vectors in ϕ. The prediction of the class membership of

unseen test samples can now be performed with Eq. 2 using

the updated prototypes.

4. Experiments

To confirm the general applicability of our method we

perform several experiments using two datasets. These

experiments include comparisons to state-of-the-art multi-

modal and single-modal approaches for few-shot learning.

4.1. Datasets

We test our method on two fine-grained multimodal

classification datasets. Specifically, we use the CUB-200-

2011 [40] with bird data and Oxford-102 [23] contain-

ing flower data for our evaluation. The CUB-200 dataset

contains 11,788 images of 200 different bird species, with

I ⊂ R
256×256. The data is split equally into training and

test data. As a consequence, samples are roughly equally

distributed, with training and test set each containing ≈ 30
images per category. Additionally, 10 short textual descrip-

tions per image are provided by [32]. Similar to [47], we use

the text-encoder pre-trained by Reed et al. [32], yielding a

text embedding space T ⊂ R
1024 with a CNN-RNN-based

encoding function. Following [47], we split the data such

that |Cbase| = 150 and |Cnovel| = 50. To simulate few-

shot learning, n ∈ {1, 2, 5, 10, 20} images of Cnovel are

used for training, as proposed by [11]. We perform 50-way

classification, such that during test time, all classes are con-

sidered for the classification task. In contrast, the Oxford-

102 dataset contains images of 102 different categories of

flowers. Similar to the CUB-200 dataset, 10 short tex-

tual descriptions per image are available. As for the CUB-

200 dataset, we use the text-encoder pre-trained by Reed

et al. [32], yielding a text embedding space T ⊂ R
1024.

Following Zhang et al. [47], we split the data such that

|Cbase| = 82 and |Cnovel| = 20. To simulate few-shot

learning, n ∈ {1, 2, 5, 10, 20} images of Cnovel are used for

training. Again, we perform classification among all avail-

able novel classes, yielding a 20-way classification task.

4.2. Implementation Details

Image Encoding For image encoding we utilize a slightly

modified version of the ResNet-18 architecture [12].
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Method 1-shot 5-shot

MAML [9] 38.43 59.15

Meta-Learn LSTM [30] 40.43 49.65

Matching Networks [39] 49.34 59.31

Prototypical Networks [37] 45.27 56.35

Metric-Agnostic Conditional Embeddings [13] 60.76 74.96

ResNet-18 [4] 66.54 ± 0.53 82.38 ± 0.43

ResNet-18 + Gaussian [4] 65.02 ± 0.60 80.79 ± 0.49

ResNet-18 + Dual TriNet [4] 69.61 ± 0.46 84.10 ± 0.35

Image Only Baseline (ResNet-18 + NN) 68.85 ± 0.86 83.93 ± 0.57

Our Full Method (Multimodal ResNet-18 + NN) 75.01 ± 0.81 85.30 ± 0.54

Table 2: Top-1 accuracies for the 5-way classification task on the CUB-200 dataset of our approach compared with single-

modal state-of-the-art few-shot learning methods. We report the average accuracy of 600 randomly samples few-shot episodes

including 95% confidence intervals.

Specifically, we halve the dimensionality of every layer

and add two 256-dimensional fully connected layers with

LeakyRelu activation after the last pooling layer, followed

by a softmax classification layer with |Cbase| units. This

network is trained on base classes using the Adam opti-

mizer [15] for 200 iterations with learning rate 10−3, which

is decreased to 5 × 10−4 after 20 iterations. The last fully

connected layer is employed as embedding space ϕ.

Cross-Modal Generation For the text-to-image feature

mapping we use a tcGAN architecture inspired by Stack-

GAN++ [47]. In the generator Gt, following [47] the text

embedding ΦT (ti) is first passed into a conditioning aug-

mentation layer to condense the input space during train-

ing. This is followed by some upsampling convolutions,

yielding a 256-dim output vector, equivalent to the dimen-

sionality of the image feature space ϕ. Given the calculated

feature vector Gt(ΦT (ti) and the original text embedding

ΦT (ti), the discriminator D outputs a conditional and an

unconditional loss (see [47]) along with the auxiliary classi-

fication loss. Adam is used to optimize both networks with

learning rate 2 × 10−4 for 500 iterations. Having trained a

feature generating network Gt, we compute Gt(ΦT (ti)) for

all 10 available textual descriptions per image and take the

average in ϕ as its feature representation.

Classification We predict the class membership of test

samples by calculating the nearest prototype in the embed-

ding space ϕ (see Eq. 2). As distance function we use co-

sine distance. To average visual and textual prototypes we

set λ = 1 (see Eq. 10) and repeat this step 10 times, updat-

ing Gt in every iteration. Hence, in each iteration we reuse

real samples from Sk
train

, combined with novel generated

samples given an updated generator Gt.

4.3. Results

For the evaluation, we test our approach in the 50-way

classification task for CUB-200, and 20-way classification

for Oxford-102. We designed a strong baseline, in which

we predict the class label of unseen test samples by finding

the nearest prototype in the the embedding space ϕ, where

the prototype pkI is computed exclusively using the limited

visual samples (image only). Note that nearest neighbor

classification is a powerful baseline in the context of few-

shot learning, as similarly suggested by other works [1].

Furthermore, we evaluate our method in a zero-shot set-

ting, in which we generate feature vectors given the textual

descriptions. The class-label of unseen test samples is pre-

dicted by computing the nearest prototype pkT containing

exclusively generated features conditioned on the textual

descriptions (ZSL). Our full method calculates the average

of both prototypes (multimodal).

We compare our method with [28], which to the best of

our knowledge is the only existing work leveraging multi-

modal data in the context of few-shot learning. Because the

classification results highly depend on the choice of sam-

ples available in a few-shot scenarios, we run the experi-

ments 600 times following [37] and sample a random few-

shot episode, i.e. a random choice of n samples per class

in every iteration to cover randomness. We report the av-

erage top-5 accuracy including 95% confidence intervals in

Tab. 1.

It can be observed that in every n-shot scenario we out-

perform our strong baselines and the other existing ap-

proach for multimodal few-shot learning. In the CUB-200

dataset, we outperform the baselines by a large margin, con-

firming our assumption that multimodal data in training is

beneficial. For Oxford-102 the margins are lower, however,

we still increase the classification results and outperform

state-of-the-art results. Interestingly, our approach also sta-

bilizes the results as the confidence intervals decrease com-
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Figure 3: tSNE visualization of test samples (dots), prototypes pI computed from only real image features (crosses) and

multimodal prototypes pM computed from real image features and generated features conditioned on text (triangles) in 5-

way 1-shot scenario for CUB-200. The color indicates the class membership. Furthermore, we show the top-5 results for an

image retrieval task for unseen images given the image-only prototype pI and the multimodal prototype pM . The color of

the border indicates the class membership.

pared to the baselines.

4.4. Comparison to Single­modal Methods

Due to the lack of existing approaches leveraging mul-

timodal data for few-shot learning, we additionally com-

pare our approach to existing methods using only im-

age data during training. Outperforming these state-of-

the-art image-only few-shot learning proves the beneficial

impact of additional text data during training. Specifi-

cally, we compare our method with MAML [9], meta-

learning LSTM [30], matching networks [39], prototypi-

cal networks [37] and metric-agnostic conditional embed-

dings [13]. The results for CUB-200 for these methods are

provided in [4]. We also include theirs results in our com-

parison. However, their experimental setup differs slightly

from our evaluation protocol. Instead of performing 50-way

classification, the results in [4] are reported for 5-way clas-

sification in the 1- and 5-shot scenarios. This implies that

in every few-shot learning episode, 5 random classes are

sampled for which a classification task has to be solved,

followed by the choice of n samples that are available per

class. For the sake of comparability, we also evaluated our

approach in the same experimental setup. We repeat our

experiment for 600 episodes and report average top-1 accu-

racy and 95% confidence intervals in Tab. 2.

It can be observed that even our image-only baseline,

which performs nearest neighbor classification using pro-

totypes in our modified ResNet-18 feature representation

reaches state-of-the-art accuracies. Note that out image-

only baseline can be interpreted as ResNet-version of Proto-

typical Network [37], which uses a simpler model network

architecture in its original version. Including multimodal

data during training outperforms the other approaches in

both 1- and 5-shot learning scenarios. This proves the

strength of our nearest neighbor baseline and shows that

enriching the embedding space ϕ with generated features

conditioned on data from other modalites further improves

the classification accuracies. In Fig. 3 we show a tSNE vi-

sualization of the embedding space ϕ including the image-

only and multimodal prototypes pI and pM respectively in

the 5-way classification task. The graph clearly shows some

clusters indicating the class membership. It can be observed

that the generated feature vectors shift the prototypes into

regions where more unseen test samples can be classified

correctly. Moreover, Fig. 3 shows retrieval results of un-

seen classes for pI and pM . See further retrieval results in

the Supplementary Materials.

5. Analysis

In order to get a further in-depth understanding of cer-

tain aspects of our method, we performed some additional

experiments analyzing its behavior. To this end, we use the

CUB-200 dataset for the experiments in this section.

5.1. Reducing Textual Data

In a first experiment we want to analyze the importance

of the amount of available textual descriptions. Note that

for the experiments in Tab. 1 we used all 10 textual descrip-

tions per image to generate a feature vector Gt(Φ(ti). In

this experiment we want to understand how the model be-

haves at reduced text availability. Therefore, in addition to

limiting the amount of available images per novel class to

n, we limit the amount of textual descriptions per image to

k ∈ {1, 2, 5, 10}. We evaluate the classification accuracy

for n ∈ {1, 2, 5} with reduced number of textual descrip-
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Figure 4: Relative top-5-accuracy gain for different

amounts of available texts. The y-axis shows the accuracy

gain in relation to the image-only baseline and the x-axis

the amount of available texts per image k.

tions. In Fig. 4 we show the relative accuracy gains for the

different amount of texts compared to the image-only base-

line. The x-axis shows the amount of texts and the y-axis the

relative accuracy gain. It can be observed that the lower the

amount of images n the higher is the accuracy gain given

the text. The graphs show an increasing trend which indi-

cates that the more texts are available the more the classi-

fication accuracies can be increased. This proves our as-

sumption that enriching the embedding space ϕ is crucial to

reach high classification results. Interestingly, in every n-

shot scenario the second text leads to the highest accuracy

gain. However, adding more text constantly improves the

results and is never harmful to the model.

5.2. Impact of Prototype Shift

We investigate how the adjustment of a certain prototype

impacts the classification performance. Therefore, we ana-

lyze the per-class accuracy gain in correlation with the shift

of the prototype when exposed to multimodal data. The

assumption we want to confirm whether large adjustments

to the prototype go along with higher accuracy gain com-

pared to classes for which the prototype remains almost

unchanged. To this end, we measure change in prototype

between the original image-only prototype pI and the up-

dated multimodal prototype pM using the cosine distance

denoted by d(pI , pM ). For every novel class, we analyze

the correlation of the prototype update to the accuracy gain

compared to the image-only baseline. In Fig. 5 we show the

per-class accuracy gain for all prototypes in the 1-shot sce-

nario. The x-axis shows the rank of the prototypes for all 50

novel classes of the CUB-200 dataset sorted by d(pM , pI)
in a descending order. The y-axis represents the accuracy

gain for the certain prototype. We report top-5 accuracy and
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Figure 5: Per-class accuracy gain for prototypes after the

adjustment with generated feature vectors. The x-axis

shows the rank of the prototype sorted by d(pI , pM ) and

the y-axis the top-5-accuracy gain for that particular class.

show the average of the result for 100 few-shot episodes.

It can be observed that the more the prototype is changed

(low rank) the higher is the accuracy gain for this particular

class. On average, the most changed prototype leads to a

per-class top-5 accuracy gain of ca. 15%. Smaller changes

have a smaller impact on the classification performance and

on average, adjusting the prototype with multimodal data is

not harmful for the accuracy. This suggests that the mul-

timodal features carry complimentary information that is

used to simulate unseen novel class samples. At the same

time it shows that the text-to-image feature mapping is well

learned, as the most diverse, or farthest multimodal features

net the largest performance gains.

6. Conclusion and Future Work

In this paper we tackled the few-shot learning problem

from a multimodal perspective. Therefore, we proposed

to leverage a nearest neighbor classifier in a powerful rep-

resentation space. To mitigate the low population prob-

lem caused by the few-shot scenario we developed a cross-

modal generation framework that is capable of enriching

the visual feature space given data in another modality (e.g.

text). Classification can now be performed by finding the

nearest multimodal class prototype to an unseen test sam-

ple. We evaluated our proposed methods on the two mul-

timodal datasets CUB-200 and Oxford-102 and showed the

applicability of our approach. We outperformed our strong

baselines and state-of-the-art single-modal and multimodal

methods by a large margin. For future work we plan to fol-

low the notion of [35] which entails optimizing jointly the

learned representation on multimodal data.
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