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Abstract

While general object detection has seen tremendous

progress, localization of elliptical objects has received lit-

tle attention in the literature. Our motivating application

is the detection of knots in sawn lumber images, which is

an important problem since the number and types of knots

are visual characteristics that adversely affect the quality of

sawn lumber. We demonstrate how models can be tailored

to the elliptical shape and thereby improve on general pur-

pose detectors; more generally, elliptical defects are com-

mon in industrial production, such as enclosed air bubbles

when casting glass or plastic. In this paper, we adapt the

Faster R-CNN with its Region Proposal Network (RPN) to

model elliptical objects with a Gaussian function, and ex-

tend the existing Gaussian Proposal Network (GPN) archi-

tecture by adding the region-of-interest pooling and regres-

sion branches, as well as using the Wasserstein distance as

the loss function to predict the precise locations of elliptical

objects. Our proposed method has promising results on the

lumber knot dataset: knots are detected with an average in-

tersection over union of 73.05%, compared to 63.63% for

general purpose detectors. Specific to the lumber applica-

tion, we also propose an algorithm to correct any misalign-

ment in the raw lumber images during scanning, and con-

tribute the first open-source lumber knot dataset by labeling

the elliptical knots in the preprocessed images.

1. Introduction

Knots are formed by branches or limbs during the growth

of a tree and commonly appear as dark ellipses on the sur-

faces of sawn lumber. As they significantly affect both the

aesthetic quality and mechanical properties of lumber, knots
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have a central role in determining the commercial value of

lumber. Such determination is performed by inspecting and

measuring the visual characteristics on the surface of the

piece. The cost associated with manual defect detection is

prohibitive in industrial fabrication, and thus automated sys-

tems are needed. However, lumber is a highly variable ma-

terial: sizes and shapes of knots and other defects, as well

as color and texture of sawn lumber, have much variabil-

ity from tree to tree. The automatic classification of sawn

lumber is therefore more challenging than domains where

computer vision algorithms are already applied routinely,

such as for air bubble detection in glass or plastic casts.

Simple inspection systems that monitor the wood sur-

face with color cameras are already deployed in the lum-

ber industry, exploiting the fact that knots are usually of

darker color than the background. Most commonly, color

thresholding is used to mark all knot pixels with a ‘1’.

However, this requires appropriate tuning either by a do-

main expert or threshold selection methods [26]. As a re-

sult, the performance of these detection methods is highly

sensitive to the choice of threshold and associated geomet-

ric features selected for a particular wood type and cam-

era setup. Moreover, ellipse detection in imperfectly bina-

rized images remains a difficult and error-prone problem

[19, 36, 3, 24, 35, 1]. We provide a comparison of our

proposed deep-learning-based ellipse detection method to

one of the geometric detection methods in [14] and to other

learning-based variants on the lumber knot images in the

experiment section.

In the literature, knots are typically modeled as elliptical

cones when a piece of lumber is treated as a 3-dimensional

object [13]. Hence, we model knot faces on a 2-dimensional

surface are as ellipses (conic sections). The proposed knot

detection method takes color images of lumber captured

by high-definition cameras as the input and returns a 5-

dimensional parameter vector, (cx, cy, rx, ry, θ), represent-
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Figure 1: Sample lumber with the four surfaces scanned.

The wide surfaces are shown on the first and the third rows

and the narrow surfaces are shown on the second and last

rows. Knots can be seen from their darker color and the

noticeable grain distortion around them.

ing the position of the center of the knot face on the x-axis

and y-axis, the length of the semi-diameters along the x-

and y-axes, along with the rotation angle of the ellipse θ,

respectively. The available data for this paper consist of im-

ages of 113 large sawn Douglas-fir lumber specimens with

4894 knots in total. The data are collected in a collabora-

tive research project between the Department of Statistics at

the University of British Columbia and FPInnovations. Fig-

ure 1 shows an example of knots on a piece of sawn lumber.

Four images are taken for each board: two for the wide sur-

faces and another two for the narrow surfaces. For training

and testing purposes, we manually labeled each knot.

In this paper, we address the knot detection and localiza-

tion problem by adapting the Faster R-CNN framework [30]

for rectangular object detection. Our main contributions are

as follows:

• We adapt the Faster R-CNN to identify elliptical knots

on the sawn lumber surfaces. Specifically, we re-

place the Region Proposal Network in the Faster R-

CNN framework with the Gaussian Proposal Network

to adapt to the ellipse detection problem, and propose

an alternative loss function for ellipse regression.

• We propose an effective algorithm to fix the misalign-

ment of raw images of lumber specimens.

• We prepare a labeled dataset of elliptical lumber knots,

which can be used by future researchers to train and

evaluate methods for knot detection and localization.

Knot detection is vital for assessing the strength and

value of sawn lumber in a non-destructive manner. In

particular, knot detection and localization based on lum-

ber images is an integral step that generates input for ex-

isting knot matching algorithms that reconstruct the 3-

dimensional structure of knots, e.g., [16]. Thus, this paper

provides an important step in the pipeline towards advanc-

ing the state-of-the-art in automatic strength prediction of

lumber and quality assessment of other materials contain-

ing elliptical defects.

This paper is organized as follows. Related work regard-

ing lumber knot localization and elliptical object detection

is reviewed in Section 2. The data preparation procedures

and the lumber knot dataset are discussed in Section 3. Sec-

tion 4 introduces our proposed method to solve the knot de-

tection and localization problem. Experiment results and

model performance evaluations are presented in Section 5.

Section 6 concludes this paper.

2. Related Work

In this section, we discuss existing lumber defect detec-

tion methods, including active sensor-based solutions and

vision-based solutions using geometry, machine learning

(ML), and combinations thereof.

Active, using the laser tracheid effect. An existing

method for knot location and size measurements in veneer

(a thin layer of wood) surfaces using the laser tracheid effect

is introduced in [34]. This method is based on the scatter-

ing patterns formed by laser spots. The laser light that pen-

etrates the lumber surface is scattered mainly in the grain

direction; this is often referred to as the “tracheid effect”.

The major features used to detect knots are the deviation of

wood grain obtained by analyzing the amount of scattering.

Areas with knots generally indicate the existence of large

wood grain deviations and can be detected by thresholding.

Methods based on the “tracheid effect” focus on finding im-

proved approaches to computing the grain deviation. For

example, Daval et al.[6] use the thermal conduction proper-

ties of lumber captured by a thermal camera to extract infor-

mation such as the slope of grain and the presence of knots.

The performance of the tracheid effect-based methods de-

pends on the analysis of multiple individual laser spots pro-

jected on the surface. A practical limitation is in the res-

olution at which surface characteristics are captured. Em-

pirical results show that tracheid effect-based methods are

incapable of identifying knots of smaller sizes since they

are usually located between adjacent laser spots. Therefore,

these small knots are difficult to detect as they do not cause

sufficiently large changes in the scattering patterns.

Passive geometric localization. Computer vision-based

ellipse detection methods often use a multi-stage filtering

process, by finding geometric features, such as lines, curves,

arcs, and extended arc patterns as intermediate represen-

tations [19, 32, 17, 23, 4, 27, 5, 10, 28, 14, 7]. Improve-

ments on the contour extraction and arc combination algo-

rithms have been recognized in many real-world applica-

tions [36, 22, 15]. Previous work applied to knot detec-

tion used image processing, morphological processing, and

feature extraction procedures to detect sizes and locations

of knots on lumber surfaces [33, 38]. Global threshold-
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ing is used to segment images through morphological op-

erations to isolate regions that are likely to contain knots.

Adaptive thresholding is then applied to suspected areas to

improve the accuracy of knot segmentation results. How-

ever, the lack of robustness to noise and blurry shape edges

still persists as major limitations to knot detection applica-

tions. The shape detection accuracy often deteriorates sub-

stantially when noise and blurriness of knots edges increase.

ML-based detection and localization. To identify and

detect the locations of knots based on images, an alterna-

tive to modeling the knots as ellipses is to use object detec-

tion methods to find bounding boxes around knots. Bound-

ing box regression and object detection have been a long-

standing problem in the field of computer vision. The aim of

bounding box regression is to refine or predict the minimum

localization boxes within which objects of interest lie. With

the developments in deep learning in recent years, many ef-

fective methods have been proposed to detect objects from

an image. Methods such as R-CNN [12], Fast R-CNN [11],

and Faster R-CNN [30] apply different methods to select

possible regions containing objects. In particular, Faster

R-CNN implements a Region Proposal Network (RPN) to

propose plausible regions that are likely to contain objects.

YOLO [29] segments images into smaller pieces and detects

objects within and across the smaller pieces. SSD [21] is

another single shot detection method similar to YOLO, but

it uses feature maps from different layers to detect objects

of different sizes. However, these object-detection meth-

ods are proposed to use bounding boxes to detect rectangu-

lar objects and have limitations when operating on elliptical

objects with inherent symmetries.

Elliptical object localization. More recently, papers have

been proposed to detect elliptical objects using machine

learning-based methods. For example, Dong et al. [8] pro-

pose Ellipse R-CNN to detect clustered and occluded el-

lipses and suggest an objective function for performing el-

lipse regression. However, their method has a complicated

pipeline which includes many image cropping and scaling

operations tailored for detecting occluded ellipses, which

is not the case for lumber knots. Moreover, Wang et al.

[37] propose an Ellipse Proposal Network to detect optic

boundaries in fundus images. However, the technical de-

tails regarding the objective functions and network architec-

ture were not elaborated in the paper. Another application

to pupil localization based on region proposal network and

Mast R-CNN is proposed with a new computational sched-

ule of anchor ellipse regression in [20]. Li [18] proposes a

Gaussian Proposal Network (GPN) to replace the usual re-

gion proposal network in object detection frameworks such

as Faster R-CNN. The elliptical proposals are parameter-

ized as Gaussian distributions and the GPN is trained to

minimize the Kullback-Leibler (KL) divergence between

the ground truths and the proposed ellipses. However, the

proposed GPN is only designed to be a replacement for the

RPN and does not have the Region of Interest (RoI) pooling,

classification, and regression components. Therefore, using

GPN alone cannot complete the ellipse detection pipeline.

Moreover, we improve the KL divergence loss by using the

Wasserstein distance.

3. Data Preparation

In this section, we discuss the procedures for preparing

the lumber knot dataset. Specifically, Section 3.1 introduces

the proposed algorithm to fix the misalignment in the raw

images, while Section 3.2 gives a brief introduction to the

annotated lumber knot dataset.

3.1. Preprocessing Algorithm

Similar to the lumber image samples in Figure 1, we

have a total of 113 pieces of lumber with four sides being

scanned. The raw data do not contain any labels for knot

faces, and the quality of the images is not ideal for object

detection purposes. For example, it can be seen from Fig-

ure 1 that for each sample lumber image, there is one edge

that is much longer than the other edge. Moreover, a major

issue with the data is the pixel misalignment in the images

of narrow surfaces.

An example of pixel misalignment in the image data is

illustrated in Figure 2. To effectively improve the data qual-

ity, the preprocessing step needs to simultaneously recog-

nize and address two challenges:

• The backgrounds do not have uniformly black color

and contain noise pixels. Specifically, the dark back-

ground color exhibits an arbitrary change pattern close

to the lumber edges.

• The color of knot faces can be very similar to the

background. If a knot lies on either edge of a lum-

ber board, it is often difficult to distinguish it from the

background purely based on its color.

These features make it impractical to fix the misalign-

ment issue by simply setting up a threshold to distinguish

the background from the lumber area. Preliminary analy-

sis shows that methods based on thresholds produce non-

smooth edges of the lumber region and may fail when the

knots lie on either edge of the surface.

Taking these considerations into account, we propose an

iterative algorithm to fix the misalignment problem through

column-by-column alignment of pixels. We illustrate the

procedures in Figure 2. An RGB image is first converted

to grey scale. For each pixel column, the algorithm deter-

mines its optimal shift by comparing the current column

with its previous shifted neighbouring columns by taking
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10 8 11 3

9 12 91 4

15 91 123 9

90 101 120 17

102 90 101 87

95 124 97 99

120 89 8 130

98 14 15 91

13 11 20 110

11 5 19 11

10 5 20 4

9 8 19 9

15 12 11 17

90 91 91 87

102 101 123 99

95 90 120 130

120 124 101 91

98 89 97 110

13 14 8 11

11 11 15 3

Figure 2: Illustration of fixing misalignment for one piece

of lumber board. The RGB image is first converted to

greyscale and fed to our algorithm to get the optimal dis-

placement, which is used to shift the RGB image column-

by-column to get the ideal result.

Figure 3: Bounding ellipse annotations for the visible knots

on the wide surface of one sawn lumber.

the sum of the vector norms that are weighted inversely

by the distances between columns. That is, the weights

are proportional to the inverse of the distance raised to

the power p. Denote the pixel values in the ith column

by ci. Let the number of neighbours be n and the norm

order be k. The optimal shift ŝ for column i, i > 1,

is obtained by searching among all possible shifts s ∈
{simin, . . . ,−1, 0, 1, . . . , simax} such that

ŝ = argmin
s∈{si

min
,...,−1,0,1,...,si

max
}

i−1∑

j=min(1,i−n)

1

|i− j|p
||csi−cj ||k,

(1)

where c
s
i represents pixels of the ith column shifted by s.

The values of n, p, and k are fine-tuned to achieve opti-

mal results. Taking the extent of misalignment into account,

we set n = 100, k = 2, and p = 1 to search for the opti-

mal shifts for each pixel column. This method proves to be

effective in resolving the misalignment in the lumber im-

ages. A simplified example is depicted in Figure 2. It can

be seen that our proposed greedy method is robust to the

nonuniform dark background and edge-lying knots.

3.2. Lumber Knot Dataset

After removing the dark background, lumber images are

manually annotated using the free image annotation VGG

Image Annotator [9] with each ellipse parameterized by five

parameters: the x and y coordinates of the center of each

ellipse denoted by cx and cy; the semi-diameters along the

x- and y-axes denoted by rx and ry; the counterclockwise

rotation angle in radians denoted by θ.

Figure 3 shows an example of the bounding ellipses

for all the visible knots on the wide surface of a piece of

lumber. It can be seen that all the visible knots on the board

are accurately and tightly annotated. We then randomly

crop and resize the annotated images to generate square

images for the detection task. This step also re-computes

the parameters of the bounding ellipse based on their

relative positions in each cropped image. The dimension

of each cropped and resized image is 512×512 pixels.

For each piece of lumber, an average of 57.4 cropped

images that partially contain at least one elliptical knot

are generated. The complete dataset contains 4894 anno-

tated lumber knots and is freely accessible on https:

//forestat.stat.ubc.ca/tiki-index.php?

page=Databases+-+Products to the public for

future research.

4. Proposed Method

In this section, we formulate our elliptical detection and

localization method. The input to our method is a single

image. The outputs are detected ellipses parameterized by

(cx, cy, rx, ry, θ). Since we are interested in a single class

of knots, there is no need to further classify the category

to which the objects contained in the bounding ellipses be-

long. Our approach combines Faster R-CNN and its region

proposal networks with the GPN introduced in [18]. The

overview of the model pipeline is discussed in Section 4.1.

We introduce the GPN in Section 4.2. Our extensions in

terms of the region proposal branch and ellipse regression

loss functions are explained in Sections 4.3 and 4.4, respec-

tively.

4.1. Overview of the Model Pipeline

As an illustration, Figure 4 shows the architecture of our

proposed model. We adopt the basic architecture of the

Faster R-CNN, which was originally designed to solve rect-

angular object detection problems. An image is first passed

to the convolutional layers for feature map extraction. In-

stead of proposing bounding boxes, we use the GPN to pro-

pose bounding ellipses as 2D equi-probability contours of

Gaussian distributions on the image plane. With the RoI

pooling branch, the feature maps corresponding to the pro-

posed regions are then obtained. The feature maps and pro-

posals are finally fed to the ellipse regression and classifica-

tion branch for final ellipse prediction.

4.2. Gaussian Proposal Network

In this section, we introduce the adaptations made by the

GPN to accommodate Faster R-CNN for localizing ellipses,

as required for the lumber knot detection problem.
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Image

Conv layers

RoI pooling

Gaussian Proposal Network

Proposals

Classifier

Regression

Feature maps

Figure 4: Overview of the ellipse localization and predic-

tion model pipeline.

4.2.1 Parameterizing Ellipses by Gaussian Distribu-

tions

In [18], ellipses are reparameterized as 2-dimensional con-

tours of Gaussian distributions. As a result, the usual objec-

tive function for minimizing the L1 or L2 loss used in per-

forming bounding box regression can be replaced by mini-

mizing the distance metrics between two Gaussian distribu-

tions for ellipse regression. This section shows how ellipses

can be represented using 2D Gaussian distributions.

An ellipse in a 2D coordinate system without rotation

can be represented by

(x− µx)
2

σ2
x

+
(y − µy)

2

σ2
y

= 1, (2)

where µx and µy are coordinates representing the centers of

the ellipse, and σx and σy are the lengths of the semi-axes

along the x and y axes.

The probability density function of a 2D Gaussian distri-

bution is given by

f(x|µ,Σ) =
exp

(
− 1

2 (x− µ)TΣ−1(x− µ)
)

2π|Σ|
1

2

, (3)

where the vector µ denotes the coordinate vector represent-

ing the center (x, y), while µ and Σ are the mean vector

and covariance matrix of the Gaussian distribution. If we

assume the off-diagonal entries of Σ are 0 and parameter-

ize µ and Σ as

µ =

[
µx

µy

]
and Σ =

[
σ2
x 0
0 σ2

y

]
, (4)

the equation in Equation (2) for the ellipse corresponds to

the density contour of the 2D Gaussian distribution when

(x− µ)TΣ−1(x− µ) = 1. (5)

When the major axis of the ellipse is rotated of an angle

θ with respect to the x-axis, a rotation matrix R(θ) can be

defined as

R(θ) =

[
cos θ sin θ
− sin θ cos θ

]
. (6)

This matrix can be used to map the coordinates in the orig-

inal (x, y) system into a new (x′, y′) system, i.e.,

[
x′

y′

]
= R(θ)

[
x
y

]
(7)

Denote the lengths of the semi-major and semi-minor

axes of the ellipse by σl and σs. It can be shown that the el-

lipse centered at (µx, µy) with semi-major and semi-minor

axes of lengths σl and σs, and a rotation angle of θ between

its major axis and the x-axis where θ ∈ [−π
2 ,

π
2 ] can be

parameterized by a 2D Gaussian distribution with

µ =

[
µx

µy

]
and Σ

−1 = RT (θ)

[
1/σ2

l 0
0 1/σ2

s

]
R(θ). (8)

4.2.2 Replacing Region Proposal Network with Gaus-

sian Proposal Network

The goal of the GPN is to propose bounding ellipses such

that the Gaussian parameters (µx, µy, σl, σs, θ) are close to

the ground truth ellipses through a distance metric. In [18],

Kullback-Leibler (KL) divergence is used as the distance

measure. It is easily seen that the KL divergence between a

proposed 2D Gaussian distribution Np(µp,Σp) and a target

2D Gaussian distribution Nt(µt,Σt) is

DKL(Np||Nt) =
1

2
[tr(Σ−1

t Σp) + (µp − µt)
T
Σ

−1
t (µp − µt)

+ log
|Σt|

|Σp|
− 2], (9)

where tr(·) is the trace of a matrix. GPN replaces RPN in the

Faster R-CNN framework by predicting five parameters for

ellipses instead of four parameters for bounding boxes and

minimizing KL divergence instead of the smooth L1 loss.

With these modifications, the RPN module can be replaced

by the GPN to propose bounding ellipses.

4.3. Region Proposal and Offset Regression

GPN was originally only designed to replace the RPN

in the Faster R-CNN framework to generate elliptical pro-

posals with the remaining components removed. Further

detecting and predicting the exact locations of the ellipses

in an image is out of the scope of GPN. We re-introduce the

necessary RoI pooling as well as the ellipse classification

and regression components to complete the ellipse detec-

tion pipeline in analogy to Faster R-CNN. Faster R-CNN

pools the feature maps in a rectangular region around the

detection to have a fixed resolution, applies a CNN to these,

and predicts offsets between the proposed parameters and

the ground-truth parameters for each detection using a fully-

connected layer. Similarly, given each ellipse proposal out-

put by the GPN, we find the tightest axis-aligned bounding
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box covering the proposal. Feature maps in this rectangu-

lar are pooled in a similar manner to the Faster R-CNN. A

fully-connected layer is then used to predict the parameter

offsets based on the proposal center as well as the ellipse

direction and shape for each detected ellipse.

4.4. Loss Function for Ellipse Regression

In Faster R-CNN, L1 or L2 losses are used as the loss

function to predict the offsets between the four pairs of pre-

dicted and ground-truth parameters defining a rectangular

object. However, these losses do not work well for elliptical

object detection problems since the angle parameter needs

to be treated differently than the other four parameters.

A natural choice for the ellipse regression loss is the

KL divergence in GPN, which is used as the distance

measure between two Gaussian distributions in generat-

ing ellipse proposals. Nevertheless, KL divergence has

a few non-negligible drawbacks. Firstly, KL divergence

is asymmetric, i.e., DKL(D1||D2) does not always equal

DKL(D2||D1) given two distributions D1 and D2. Sec-

ondly, KL divergence can sometimes be numerically un-

stable and it tends to be very large in magnitude when the

two distributions are far apart. This may cause problems

in gradient evaluation, hindering convergence of the neural

network. Lastly, KL divergence does not satisfy the trian-

gle inequality and is not a valid mathematical metric in that

sense.

Wasserstein distance is another popular distance measure

defined between two probability distributions. In contrast to

KL divergence, Wasserstein distance is symmetric and sat-

isfies the triangle inequality. In recent years, Wasserstein

distance has been proposed to replace other asymmetric

losses to improve the results generated by neural network

models. For example, Arjovsky et al. [2] propose Wasser-

stein GAN to stabilize the training of GANs.

The p-Wasserstein distance between two probability

measures µ and ν is

Wp(µ, ν) = (inf E[d(X,Y )p])
1/p

, (10)

where d(·, ·) is a norm function, X ∼ µ, and Y ∼ ν. For

two 2D Gaussian distributions, the 2-Wasserstein distance

between them with respect to the usual Euclidean norm

has a convenient form. For a proposed 2D Gaussian dis-

tribution Np(µp,Σp) and a target 2D Gaussian distribution

Nt(µt,Σt), the 2-Wasserstein distance with respect to the

Euclidean norm is

[W2(Np,Nt)]
2 = ||µp − µt||

2
2 + tr

[
Σp +Σt

− 2
(
Σ

1

2

p ΣtΣ
1

2

p

) 1

2
]

(11)

according to the results in [25], where tr(·) is the trace of a

matrix. In the commutative case where ΣpΣt = ΣtΣp, the

2-Wasserstein distance between two 2D Gaussian distribu-

tions can be further simplied to

[W2(Np,Nt)]
2 = ||µp − µt||

2
2 + ||Σ

1

2

p −Σ
1

2

t ||
2
F , (12)

where || · ||F is the Frobenius norm of a matrix. The two

covariance matrices can be computed based on the inverses

in Equation (8) from the ellipse parameters. The square root

matrices Σ
1

2

p and Σ
1

2

t have a closed-form solution:

Σ
1

2

p = RT
p (θ)

[
σp,l 0
0 σp,s

]
Rp(θ) (13)

and

Σ
1

2

t = RT
t (θ)

[
σt,l 0
0 σt,s

]
Rt(θ). (14)

With all these modifications and adaptions, the overall

loss function is the weighted sum of three components: the

GPN ellipse proposal loss, the ellipse regression loss, and

the cross entropy of classifying ellipses and backgrounds.

5. Experimental Results

Comprehensive evaluations of our proposed method for

detecting elliptical knots in the lumber knot dataset are pre-

sented in this section. We introduce the experimental setup

in Section 5.1 and summarize the quantitative detection

performances across different experiment settings in Sec-

tion 5.2. Visualizations of the detection results are pro-

vided in Section 5.3. We also compare our proposed method

against the baseline deep learning-based solution and geo-

metric reconstructions in 5.4.

5.1. Experiment Setup

Among all the annotated lumber specimens in the lum-

ber knot dataset, 70% are randomly chosen as the training

set, 10% are chosen as the validation set, and the remaining

20% are used as the test set. We trained the model on the

training set for 20 epochs; the model with the lowest vali-

dation total loss is saved for testing purposes. As with the

original Faster R-CNN model, the pretrained VGG-16 net-

work in [31] is used as the base model for ellipse proposal

generation and feature map extraction. We trained our pro-

posed model with PyTorch 1.0.

The average of the intersection over union (IoU) between

all the detected ellipses and ground truth ellipses are com-

puted and used as the metrics to evaluate the performance of

a proposed detection methods. Since there are not closed-

formed formula to compute the overlapping area between

two ellipses, we draw a grid of points from both ellipses

and use a discretized sampling method to compute the IoU

between the two ellipses. The width and height of the point

grid are the same as those of the tightest axis-aligned rect-

angle covering both ellipses. One point is assigned at each

pixel location.
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Setting RPN, L2 GPN, L2 GPN, KLD GPN, 2-WD

Exp 1 60.16 64.74 73.37 73.00

Exp 2 65.59 66.14 73.13 73.32

Exp 3 64.54 65.82 72.48 72.98

Exp 4 65.98 66.97 71.07 72.85

Exp 5 61.87 65.40 73.26 73.10

Mean IoU 63.63 65.81 72.66 73.05

s.e. 2.52 0.83 0.95 0.18

Table 1: The IoUs between the detected and ground-truth

ellipses under each of the four settings in each repeated

experiment along with the mean IoU and the standard er-

ror. L2, KLD, and 2-WD represent L2 loss, KL divergence,

and 2-Wasserstein distance, respectively. All numbers are

in percentages.

5.2. Quantitative Evaluation of Detection Perfor­
mance

To evaluate the performance of our proposed method,

four experimental settings are considered as follows:

1. RPN with L2 loss for ellipse offset regression. RPN in

the Faster R-CNN is used to generate bounding ellipse

proposals. Instead of the four parameters characteriz-

ing a rectangle, the RPN outputs the five parameters

characterizing an ellipse. L2 loss is used for the el-

lipse offset regression. This setting directly modifies

the RPN for the ellipse detection problem and serves

as the baseline model.

2. GPN with L2 loss for ellipse offset regression. RPN in

the Faster R-CNN is replaced with the GPN to gener-

ate ellipse proposals. L2 loss is used for ellipse offset

regression.

3. GPN with KL divergence for ellipse offset regression.

4. GPN with 2-Wasserstein distance for ellipse offset re-

gression.

Note that GPN uses KL divergence while RPN uses

smooth L1 loss in the proposal network. We trained the

model five times under each setting. The IoUs between

the detected and ground-truth ellipses under each setting

in each repeated experiment along with the mean IoU and

standard error are reported in Table 1.

From Table 1, it can be seen that using our proposed

method, which generates elliptical proposals with GPN and

uses the 2-Wasserstein distance as the loss function for el-

lipse offeset regression, improves the mean IoU by 10%

compared with a general detector such as Faster R-CNN,

which generates proposals with RPN and uses L2 distance

as the loss function for offset regression. Directly replacing

RPN in Faster R-CNN with GPN improves the mean IoU

by around 2%. Replacing the general-purpose L2 loss with

KL divergence or 2-Wasserstein distance both significantly

improves the ellipse detection performance. In particular,

models using 2-Wasserstein distance outperform models us-

ing KL divergence by more than 0.4%. Moreover, using

the Wasserstein distance instead of KL divergence led to a

much lower (0.18 vs. 0.95) standard deviation across exper-

iments.

5.3. Qualitative Evaluation of Detection Perfor­
mance

In the previous section, we quantitatively evaluated

the performance of our proposed ellipse detection method

against the baseline Faster R-CNN model. In this section,

visualizations of the detected ellipses in the lumber knot

dataset are provided to qualitatively assess our proposed

method.

Figure 5 shows the ground-truth knots from three pieces

of lumber as well as the detected knots using the base-

line method (RPN, L2) and our proposed method (GPN,

2-WD). It can be seen that the elliptical bounds for knots

are drawn more tightly and accurately using our proposed

method compared with the baseline method. This holds par-

ticularly true for knots close to the board boundary, which

are only partially visible. Nonetheless, it can be seen that

the rotation angles of the detected ellipses have relatively

large errors in some of the examples shown in Figure 5. Fu-

ture research can be done to further improve the prediction

performance for the rotation angles, possibly by introduc-

ing oriented instead of axis-aligned pooling regions in the

GPN.

5.4. Comparisons to Geometric Ellipse Detection

To compare with our proposed method, we applied the

geometric fast ellipse detector using projective invariant

pruning method proposed in [14] to the lumber knot dataset

(their code is available on https://github.com/

dlut-dimt/ellipse-detector). Jia’s method uses

geometric features to find ellipses, which performs ex-

tremely poorly on lumber knot images. Among all the test

images, less than 1% of the ellipses can be detected using

their method. In particular, Jia’s method failed to detect

any ellipses in all the 12 images in Figure 5. Furthermore,

Jia’s method is also sensitive to the positioning of ellipses.

For example, Figure 6 visualizes the detection results using

our proposed method (GPN + 2-WD) versus Jia’s method

on the same knot across different cropped images of a lum-

ber board. It can be seen that among these five positions,

our method consistently generates accurate position estima-

tions while Jia’s method is only able to successfully yet in-

accurately detect this ellipse at one out of the five positions.

Therefore, we conclude that our method is more robust and
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Figure 5: Examples of detected ellipses from three speci-

mens of lumber using the baseline method (RPN, L2) and

our proposed method (GPN, 2-WD). Images in every two

rows are from the same specimen. Green, blue, and red

ellipses are the ground-truth ellipses, the detected ellipses

using the baseline method, and the detected ellipses using

our proposed method, respectively.

reliable than non-machine learning-based ellipse methods

and works much better on detecting knots in lumber im-

ages. In terms of runtime, for an image of 512×512 pixels,

Jia’s method takes around 8.8 milliseconds to generate pre-

dictions, while our proposed method (GPN + 2-WD) takes

around 226 milliseconds in the test stage. Although Jia’s

method is faster than our proposed method, both methods

are sufficiently fast for real-world applications.

6. Conclusion

In this paper, we propose a method tailored to detect and

localize elliptical objects in images. Our method adapts the

Region Proposal Network in Faster R-CNN to model el-

liptical objects. We also extend the existing Gaussian Pro-

posal Network by adding RoI pooling as well as the ellipse

classification and regression branches to complete the el-

Figure 6: Examples of detecting the same ellipse in differ-

ent cropped images using our method (GPN, 2-WD) and

Jia’s method. Green and blue ellipses in the first row are

the ground-truth ellipses and the detected ellipses using our

proposed method. Green ellipses in the second row are the

detected ellipses using Jia’s method. Note that Jia’s method

only detects the knot in the last cropped image.

liptical object detection pipeline. Furthermore, we propose

Wasserstein distance as the loss function for ellipse offset

predictions. Experiments on the sawn lumber images show

that our proposed method improves the mean IoU of the de-

tected ellipses by 10% compared with the baseline method.

This is a major improvement in this illustrative application

in so far as the result will be used in models that predict lum-

ber strength and hence determine the grade class into which

a piece of lumber will be placed. That in turn benefits con-

sumers who use these grades in selecting lumber for their

specific application. And it benefits producers who will use

machine grading techniques to classify their lumber. For

the forest products industry, this can result in products of

better quality for intended use and in turn improvements

to the manufacturer’s bottom line. In addition, specific to

the lumber example, we propose an algorithm to correct the

misalignment of raw images of lumber specimens and cre-

ate the first open-source lumber knot dataset with labeled el-

liptical knots, which can be used for future research. While

experiments in this paper focus on the knot detection prob-

lem in sawn lumber images, our proposed method can eas-

ily be applied to detect ellipses in datasets containing other

types of elliptical objects. In future work, we will attempt to

predict the 3D knot shapes given 2D ellipsoid supervisions

from both sides. It would also be interesting to predict the

entire elliptical cone given images of all three sides, super-

vised by the 2D ellipse/Gaussian formulation.
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Wasserstein generative adversarial networks. In Interna-

tional Conference on Machine Learning, pages 214–223,

2017.

[3] Alex Yong Sang Chia, Maylor KH Leung, How-Lung Eng,

and Susanto Rahardja. Ellipse detection with hough trans-

form in one dimensional parametric space. In 2007 IEEE

International Conference on Image Processing, volume 5,

pages V–333. IEEE, 2007.

[4] Alex Yong-Sang Chia, Susanto Rahardja, Deepu Rajan, and

Maylor Karhang Leung. A split and merge based ellipse de-

tector with self-correcting capability. IEEE Transactions on

Image Processing, 20(7):1991–2006, 2010.

[5] Alex Yong-Sang Chia, Deepu Rajan, Maylor Karhang Le-

ung, and Susanto Rahardja. Object recognition by discrim-

inative combinations of line segments, ellipses, and appear-

ance features. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 34(9):1758–1772, 2011.

[6] Vincent Daval, Guillaume Pot, Mohamed Belkacemi, Fab-

rice Meriaudeau, and Robert Collet. Automatic measure-

ment of wood fiber orientation and knot detection using an

optical system based on heating conduction. Optics Express,

23(26):33529–33539, 2015.

[7] Huixu Dong, Dilip K Prasad, and I-Ming Chen. Accurate de-

tection of ellipses with false detection control at video rates

using a gradient analysis. Pattern Recognition, 81:112–130,

2018.

[8] Wenbo Dong, Pravakar Roy, Cheng Peng, and Volkan Isler.

Ellipse r-cnn: Learning to infer elliptical object from cluster-

ing and occlusion. arXiv preprint arXiv:2001.11584, 2020.

[9] Abhishek Dutta and Andrew Zisserman. The VIA annota-

tion software for images, audio and video. In Proceedings of

the 27th ACM International Conference on Multimedia, MM

’19, New York, NY, USA, 2019. ACM.

[10] Michele Fornaciari, Andrea Prati, and Rita Cucchiara. A fast

and effective ellipse detector for embedded vision applica-

tions. Pattern Recognition, 47(11):3693–3708, 2014.

[11] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1440–1448,

2015.

[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

580–587, 2014.

[13] Pablo Guindos and Manuel Guaita. A three-dimensional

wood material model to simulate the behavior of wood with

any type of knot at the macro-scale. Wood Science and Tech-

nology, 47(3):585–599, 2013.

[14] Qi Jia, Xin Fan, Zhongxuan Luo, Lianbo Song, and Tie Qiu.

A fast ellipse detector using projective invariant pruning.

IEEE Transactions on Image Processing, 26(8):3665–3679,

2017.

[15] Ren Jin, Hafiz Muhammad Owais, Defu Lin, Tao Song, and

Yifang Yuan. Ellipse proposal and convolutional neural net-

work discriminant for autonomous landing marker detection.

Journal of Field Robotics, 36(1):6–16, 2019.

[16] Seong-Hwan Jun, Samuel WK Wong, James V Zidek,
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