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Abstract

Video action detectors are usually trained using datasets

with fully-supervised temporal annotations. Building such

datasets is an expensive task. To alleviate this problem, re-

cent methods have tried to leverage weak labeling, where

videos are untrimmed and only a video-level label is avail-

able. In this paper, we propose RefineLoc, a novel weakly-

supervised temporal action localization method. RefineLoc

uses an iterative refinement approach by estimating and

training on snippet-level pseudo ground truth at every it-

eration. We show the benefit of this iterative approach and

present an extensive analysis of five different pseudo ground

truth generators. We show the effectiveness of our model on

two standard action datasets, ActivityNet v1.2 and THU-

MOS14. RefineLoc shows competitive results with the state-

of-the-art in weakly-supervised temporal localization. Ad-

ditionally, our iterative refinement process is able to sig-

nificantly improve the performance of two state-of-the-art

methods, setting a new state-of-the-art on THUMOS14.

1. Introduction

Weak supervision has emerged as an effective way to

train computer vision models using labels that are easy and

cheap to acquire. This training strategy is particularly rel-

evant for video tasks, where data collection and annotation

costs are prohibitively expensive. In this paper, our goal

is to localize actions in time when no information about

the start and end times of these actions is available. The

lack of temporal supervision makes it challenging to train

models that discriminate between action and background

segments. Recent methods for weakly-supervised temporal

action localization focus on learning class activation maps

using soft-attention [62], regularizing attention with an L1

loss [41], or leveraging co-activity and multiple instance

learning losses [46]. Alternatively, other methods [36, 53]

have focus on generating temporal boundaries using priors
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Figure 1: Iterative Refinement for Weak Supervision. We sum-

marize the pseudo ground truth generation strategy used by Re-

fineLoc. Top: The input is an untrimmed video, where only a

video-level label (Surfing) is available; our goal is to correctly lo-

calize actions in time. Middle: RefineLoc aims to approximate

the background-foreground labels through iteratively generating

pseudo ground truth (dark green boxes) using information from

a weakly-supervised model. Our key idea is to use the pseudo

ground truth from iteration η− 1 to supervise the detection model

at iteration η. Bottom: The pseudo ground truth of iteration η (dark

green) closely approximates the actual ground truth (light green).

such as those encouraged by contrastive losses. All previ-

ous methods provide elegant strategies to localize actions in

a weakly-supervised manner; however, they are all trained

in a single shot and disregard all temporal cues. As a result,

their performance lags far behind that of fully-supervised

methods trained on temporal action annotations.

In the object detection domain, refining using pseudo

ground truth considerably reduces the performance gap be-

tween fully and weakly-supervised object detectors [59,
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71]. Such pseudo ground truth refers to a set of sampled

object predictions from a weakly-supervised model, which

are assumed as actual object locations in the next refinement

iteration. However, these methods are not directly applica-

ble to temporal action localization. We argue this is in part

due to the lack of reliable unsupervised region proposals as

in object detection.

In this paper, we propose RefineLoc, a weakly-

supervised temporal localization method, which incorpo-

rates an iterative refinement strategy by leveraging pseudo

ground truth. Figure 1 shows an example of the iterative

refinement process RefineLoc employs via pseudo ground

truth generation. Contrary to object detection methods, we

build our refinement strategy to operate over snippet-level

attention and classification modules, making it suitable for

temporal localization.

The intuition behind our iterative refinement is to lever-

age a weakly-supervised model, which captures decent tem-

poral cues about actions, to annotate snippets with pseudo

foreground (action) and background (no action). This

pseudo ground truth is then used to train a snippet-level

attention module in a supervised manner. Although such

pseudo labels are noisy, it has been shown that neural net-

works are reasonably robust against such label perturba-

tions [50]. To avoid bias towards learning from easy ex-

amples, we randomly sample a subset of snippets for which

we supervise with the pseudo labels. Our study of multi-

ple pseudo ground truth generators shows that our simple

model is competitive with the state-of-the-art. Furthermore,

our iterative refinement process is generic and can be ap-

plied on top of more sophisticated models to further im-

prove their performance.

Contributions: We summarize our contributions as 2-fold.

(1) We introduce RefineLoc, an iterative refinement model

for weakly-supervised temporal action localization. The

model is crafted to leverage snippet-level pseudo ground

truth to improve its performance over training iterations.

(2) We show that RefineLoc’s iterative refinement process

improves the performance of two state-of-the-art methods,

setting a new state-of-the-art on THUMOS14.1

2. Related Work

Action Recognition. The advent of action recognition

datasets such as UCF-101 [58], Sports-1M [27], and Ki-

netics [28] has fueled the development of accurate ac-

tion recognition models. Traditional approaches include

extracting hand-crafted representations aimed at capturing

spatiotemporal features [31, 61]; however, nowadays deep

learning based approaches are more attractive due to their

high capacity. For example, Simonyan and Zisserman [56]

1To enable reproducibility and promote future research, we have re-

leased our source code and pretrained models on our project website.

proposed to encode spatial and temporal information with

Convolutional Neural Networks. Their two-stream model

represents appearance with RGB frames and motion with

stacked optical flow vectors. However, the two-stream

model encodes each frame independently neglecting mid-

level temporal information. To overcome this drawback,

Wang et al. introduced the Temporal Segment Network

(TSN) [63], an end-to-end framework that captures long-

term temporal information. TSN along with other recent

architectures (e.g. I3D [10] and C3D [60]) have become the

defacto backbones for temporal action localization [47], ac-

tion segmentation [19], and event captioning [65].

Fully-supervised Temporal Action Localization. Multi-

ple strategies have been developed for temporal action lo-

calization with full-supervision available at training time [2,

14, 20, 22, 52, 68]. The first set of approaches used sliding

windows combined with complex activity classifiers to de-

tect actions [18, 43]. These methods paved the way for this

type of research and established baselines and a reference

for the difficulty of the problem. However, they manifested

limitations regarding their run-time complexity. The second

generation of methods used action proposals to speed up the

search process [5, 6, 21, 34, 54]. These temporal proposals

aim to narrow down the number of candidate segments the

action classifier examines. A third generation of approaches

learn action proposals and action classifiers jointly, while

back-propagating through the video representation back-

bone [12, 64, 72]. Finally, recent methods make use of

Graph Convolutional Networks by representing videos as

graphs [67, 70]. Despite their significant performance im-

provements, all of these methods still rely on strong super-

vision that is prohibitively expensive to acquire.

Weakly-supervised Temporal Action Localization. The

challenge in this task is to learn to discriminate between

background and action segments without having explicit

temporal training samples, but instead, only a coarse video-

level label. The first methods proposed solutions consist-

ing of hiding video regions to encourage their model to dis-

cover discriminative parts [30], and a soft-attention layer

to focus on snippets that boost the video classification per-

formance [62]. Similarly, [41] proposed an attention layer

regularized with an L1 loss. Other works explored different

alternatives such as co-activity loss combined with a mul-

tiple instance learning loss [46] and action proposal gener-

ation using contrast cues among action classification pre-

dictions [36, 53]. With the end goal of addressing the lack

of temporal information, other works have innovated strate-

gies such as incorporating temporal structure [69], model-

ing background [33, 42], using extra supervision (e.g. ac-

tion count [39]), or single-frame label [37]. More recent

methods have tried to reduce the supervision level by us-

ing self-supervised techniques [26]. Our work builds upon

these ideas and complements them with a key insight: lever-
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aging pseudo labels while iteratively training the model.

Weak Supervision and Pseudo-labelling in Vision Tasks.

Weak supervision has been widely studied in other vision

tasks such as object detection [3, 44, 51, 57], semantic seg-

mentation [45, 66], or other video tasks [17, 23, 24, 48].

For video tasks, a variety of weak supervision cues have

been used including movie scripts [16, 29, 32, 38], action

ordering priors [4, 11, 15, 49], and different levels of su-

pervision [13]. These video related solutions have pro-

posed innovative ways to reduce labelling expense; how-

ever, they still require laborious annotations (e.g. action

spots) or privileged information (e.g. transcripts) that is dif-

ficult to obtain beyond a controlled setting. Concerning

pseudo-labelling, it has been used to design state-of-the-art

methods for weakly-supervised object detection [59, 71],

train image classification backbones [8, 9], and build pose

detectors [40]. These works have inspired our model, which

addresses challenges unique to the weakly supervised tem-

poral action localization task, namely the presence of only a

sparse supervision signal (video-level action category) and

of highly similar context surrounding the action [1].

3. RefineLoc

In this section, we discuss our RefineLoc architecture,

the pseudo ground truth label generation, and the iterative

refinement process. The input to our model is an untrimmed

video and the expected output is a set of action segment

predictions. RefineLoc is supervised on weak labels (i.e.

video-level action labels) and does not use any temporal

annotations of action instances. RefineLoc has two main

components: a weakly-supervised temporal action local-

ization (WSTAL) base model (Subsection 3.1) and an it-

erative refinement process (Subsection 3.2). Based on a

trained WSTAL model, we generate pseudo background-

foreground ground truth labels. We use these pseudo labels

to supervise the training of a new WSTAL model. We re-

peat the process for η iterations to progressively improve

the pseudo ground truth and refine the final action predic-

tion segments. Figure 2 illustrates our approach.

3.1. WSTAL Base Model

The input to WSTAL is an untrimmed video, while

the output is temporal action segment predictions. First,

WSTAL extracts features form T non-overlapping snippets,

which are then fed into both a snippet-level action classi-

fier and a background-foreground attention module. Then,

WSTAL combines the class activation and attention maps

to produce a video label prediction ŷ. During training, we

supervise WSTAL with a cross-entropy loss between the

ground truth video label y and the predicted label ŷ. Finally,

we post-process the learned class activation and attention

maps to produce action segment predictions. In what fol-

lows, we discuss the details of each module in WSTAL.

Feature Extraction Module. To compare with other

works, we use two feature extractor backbones: TSN [63]

(pretrained by UntrimmedNets [62]) and I3D [10] (pre-

trained on Kinetics [28]). We split the input untrimmed

video into T non-overlapping H-frame-long clip snippets

(15 for TSN and 16 for I3D). We transform each snippet

into a 2048-dimensional feature vector by concatenating the

two 1024-dimensional activation vectors from the global

pooling layer of each stream. Thus, this module outputs

a T × 2048 feature map F.

Snippet-Level Classification Module. This module re-

ceives the feature map F and produces a T ×N class activa-

tion map C, where N is the number of action classes (100
classes in ActivityNet v1.2 [7] and 20 in THUMOS14 [25]).

It consists of a multi-layer perceptron (MLP) with L Fully-

Connected (FC) layers interleaved with ReLU activation

functions. We reduce the size of each hidden layer by 2,

which makes the last layer of size 2048

2L−1 ×N .

Background-Foreground Attention Module. The objec-

tive of this module is to learn attention weights for each

snippet to suppress the background snippets and to focus

on foreground snippets. It transforms F into a T × 2
background-foreground attention map A. Similar to the

Snippet-Level Classification Module, it consists of an MLP

with L FC layers interleaved with ReLUs. Each hidden

layer size is reduced by half, making the last FC layer of

size 2048

2L−1 × 2. Other weakly-supervised action localization

methods [36, 39, 41, 42, 53, 62] employ attention modules

in their models. While we share a similar motivation, our

attention module is different from theirs in one key aspect:

their attention modules are only supervised by the video-

level label for the purpose of improving the video classifi-

cation, while our attention is supervised by both the video-

level label and a set of pseudo background-foreground la-

bels with the goal of improving the action segment local-

ization. Subsection 3.2 details the pseudo ground truth label

generation process. Unlike previous methods with a scalar

attention, we model the attention explicitly with two values,

one for foreground and one for background. We chose to do

so because our method uses supervision directly on the at-

tention values. Thus, instead of learning the attention with a

logistic-regression loss, we learn it as a binary classification

problem. We compare learning a scalar attention via logistic

regression against our proposed two dimensional attention

in the supplementary material.

Video Label Prediction Module. This module combines

C and A to generate an N - dimensional probability vec-

tor ŷ for the video label. Specifically, we pass C through a

softmax layer across the class dimension to get C̄ and pass

A through two softmax layers. The first softmax layer op-

erates across the background-foreground dimension to pro-

duce Ā
bf

, while the second softmax layer operates across

the time dimension (across snippets) of the foreground at-
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Figure 2: Overview of RefineLoc Architecture. Given an untrimmed video with only a weak label y, we extract spatio-temporal feature

map F from T non-overlapping H-frame-long snippets (top left). We feed F to an iterative refinement process (right). At each iteration, F

passes through our WSTAL base model (bottom left) to compute a snippet-level activation map (C) and a background-foreground attention

map (A). Both A and C are used to predict the video label ŷ and later to produce action segment predictions P . At iteration 0, the pipeline

is supervised using only y. Subsequent iterations use both y and pseudo ground truth generated from the previous iteration. We stop the

refinement process after η iterations.

tentions in Ā
bf

to produce Ā
time

as follows:

Ā
bf

t,i =
exp(At,i)

exp(At,1) + exp(At,2)
, (1)

Ā
time

t,i =
exp(Ā

bf

t,i)
P T

t′=1
exp(Ā

bf

t′,i)
. (2)

Here, we use Ā
bf

as the network’s predictions for the

snippet-level background-foreground pseudo ground truth

supervision (Subsection 3.2). Note that in Equations 1 and

2, i = 1 refers to background while i = 2 refers to fore-

ground. Finally, this module computes the video-label pre-

diction as ŷ =
P T

t=1
(Ā

time

t · C̄t), where Ā
time

t and C̄t are

the foreground attention value and class activation vector

of the tth snippet. The video-label prediction uses a soft

attention mechanism to emphasize the class activations of

snippets with higher attention values.

Action Segment Prediction Module. This module post-

processes Ā
bf

and C̄ to produce a set of action segment

predictions P . First, we filter out snippets for which the

background attention value is greater than a threshold αA.

Then, we consider only the top-k classes in ŷ. For each

top class n, we filter out snippets that have classification

score lower than a threshold αC . Then, we generate con-

tiguous segments by grouping snippets that are separated

by at most one filtered-out (background) snippet. We do so

to overcome noise in the filtering process and connect seg-

ments that are close to each other. This process can be done

in other and more sophisticated ways, however we keep the

simplicity of the base model and rely mainly on our itera-

tive process. We assign to each predicted segment (t1, t2)

the label n and the score s,

s =
1

t2 − t1 + 1

t2X

t=t1

�
Ā

time

t + C̄t,n

�
+ ŷn. (3)

where ŷn is the video-level predictions score for the nth

class. Note that each prediction that comes from the nth top-

k labels, has a different score s. Finally, to encode temporal

context and deal with the ambiguity of action boundaries

[1, 55], we inflate segments by 2 snippets at both ends.

3.2. Iterative Refinement Process

Let M0 be the WSTAL base model trained using the

weak video labels only. We iteratively refine this base

model and its action predictions by introducing supervi-

sion on the background-foreground attention module us-

ing snippet-level pseudo ground truth labels. Let GM η be
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