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Abstract

Video action detectors are usually trained using datasets

with fully-supervised temporal annotations. Building such

datasets is an expensive task. To alleviate this problem, re-

cent methods have tried to leverage weak labeling, where

videos are untrimmed and only a video-level label is avail-

able. In this paper, we propose RefineLoc, a novel weakly-

supervised temporal action localization method. RefineLoc

uses an iterative refinement approach by estimating and

training on snippet-level pseudo ground truth at every it-

eration. We show the benefit of this iterative approach and

present an extensive analysis of five different pseudo ground

truth generators. We show the effectiveness of our model on

two standard action datasets, ActivityNet v1.2 and THU-

MOS14. RefineLoc shows competitive results with the state-

of-the-art in weakly-supervised temporal localization. Ad-

ditionally, our iterative refinement process is able to sig-

nificantly improve the performance of two state-of-the-art

methods, setting a new state-of-the-art on THUMOS14.

1. Introduction

Weak supervision has emerged as an effective way to

train computer vision models using labels that are easy and

cheap to acquire. This training strategy is particularly rel-

evant for video tasks, where data collection and annotation

costs are prohibitively expensive. In this paper, our goal

is to localize actions in time when no information about

the start and end times of these actions is available. The

lack of temporal supervision makes it challenging to train

models that discriminate between action and background

segments. Recent methods for weakly-supervised temporal

action localization focus on learning class activation maps

using soft-attention [62], regularizing attention with an L1

loss [41], or leveraging co-activity and multiple instance

learning losses [46]. Alternatively, other methods [36, 53]

have focus on generating temporal boundaries using priors

∗indicates equal contribution.
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Figure 1: Iterative Refinement for Weak Supervision. We sum-

marize the pseudo ground truth generation strategy used by Re-

fineLoc. Top: The input is an untrimmed video, where only a

video-level label (Surfing) is available; our goal is to correctly lo-

calize actions in time. Middle: RefineLoc aims to approximate

the background-foreground labels through iteratively generating

pseudo ground truth (dark green boxes) using information from

a weakly-supervised model. Our key idea is to use the pseudo

ground truth from iteration η− 1 to supervise the detection model

at iteration η. Bottom: The pseudo ground truth of iteration η (dark

green) closely approximates the actual ground truth (light green).

such as those encouraged by contrastive losses. All previ-

ous methods provide elegant strategies to localize actions in

a weakly-supervised manner; however, they are all trained

in a single shot and disregard all temporal cues. As a result,

their performance lags far behind that of fully-supervised

methods trained on temporal action annotations.

In the object detection domain, refining using pseudo

ground truth considerably reduces the performance gap be-

tween fully and weakly-supervised object detectors [59,
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71]. Such pseudo ground truth refers to a set of sampled

object predictions from a weakly-supervised model, which

are assumed as actual object locations in the next refinement

iteration. However, these methods are not directly applica-

ble to temporal action localization. We argue this is in part

due to the lack of reliable unsupervised region proposals as

in object detection.

In this paper, we propose RefineLoc, a weakly-

supervised temporal localization method, which incorpo-

rates an iterative refinement strategy by leveraging pseudo

ground truth. Figure 1 shows an example of the iterative

refinement process RefineLoc employs via pseudo ground

truth generation. Contrary to object detection methods, we

build our refinement strategy to operate over snippet-level

attention and classification modules, making it suitable for

temporal localization.

The intuition behind our iterative refinement is to lever-

age a weakly-supervised model, which captures decent tem-

poral cues about actions, to annotate snippets with pseudo

foreground (action) and background (no action). This

pseudo ground truth is then used to train a snippet-level

attention module in a supervised manner. Although such

pseudo labels are noisy, it has been shown that neural net-

works are reasonably robust against such label perturba-

tions [50]. To avoid bias towards learning from easy ex-

amples, we randomly sample a subset of snippets for which

we supervise with the pseudo labels. Our study of multi-

ple pseudo ground truth generators shows that our simple

model is competitive with the state-of-the-art. Furthermore,

our iterative refinement process is generic and can be ap-

plied on top of more sophisticated models to further im-

prove their performance.

Contributions: We summarize our contributions as 2-fold.

(1) We introduce RefineLoc, an iterative refinement model

for weakly-supervised temporal action localization. The

model is crafted to leverage snippet-level pseudo ground

truth to improve its performance over training iterations.

(2) We show that RefineLoc’s iterative refinement process

improves the performance of two state-of-the-art methods,

setting a new state-of-the-art on THUMOS14.1

2. Related Work

Action Recognition. The advent of action recognition

datasets such as UCF-101 [58], Sports-1M [27], and Ki-

netics [28] has fueled the development of accurate ac-

tion recognition models. Traditional approaches include

extracting hand-crafted representations aimed at capturing

spatiotemporal features [31, 61]; however, nowadays deep

learning based approaches are more attractive due to their

high capacity. For example, Simonyan and Zisserman [56]

1To enable reproducibility and promote future research, we have re-

leased our source code and pretrained models on our project website.

proposed to encode spatial and temporal information with

Convolutional Neural Networks. Their two-stream model

represents appearance with RGB frames and motion with

stacked optical flow vectors. However, the two-stream

model encodes each frame independently neglecting mid-

level temporal information. To overcome this drawback,

Wang et al. introduced the Temporal Segment Network

(TSN) [63], an end-to-end framework that captures long-

term temporal information. TSN along with other recent

architectures (e.g. I3D [10] and C3D [60]) have become the

defacto backbones for temporal action localization [47], ac-

tion segmentation [19], and event captioning [65].

Fully-supervised Temporal Action Localization. Multi-

ple strategies have been developed for temporal action lo-

calization with full-supervision available at training time [2,

14, 20, 22, 52, 68]. The first set of approaches used sliding

windows combined with complex activity classifiers to de-

tect actions [18, 43]. These methods paved the way for this

type of research and established baselines and a reference

for the difficulty of the problem. However, they manifested

limitations regarding their run-time complexity. The second

generation of methods used action proposals to speed up the

search process [5, 6, 21, 34, 54]. These temporal proposals

aim to narrow down the number of candidate segments the

action classifier examines. A third generation of approaches

learn action proposals and action classifiers jointly, while

back-propagating through the video representation back-

bone [12, 64, 72]. Finally, recent methods make use of

Graph Convolutional Networks by representing videos as

graphs [67, 70]. Despite their significant performance im-

provements, all of these methods still rely on strong super-

vision that is prohibitively expensive to acquire.

Weakly-supervised Temporal Action Localization. The

challenge in this task is to learn to discriminate between

background and action segments without having explicit

temporal training samples, but instead, only a coarse video-

level label. The first methods proposed solutions consist-

ing of hiding video regions to encourage their model to dis-

cover discriminative parts [30], and a soft-attention layer

to focus on snippets that boost the video classification per-

formance [62]. Similarly, [41] proposed an attention layer

regularized with an L1 loss. Other works explored different

alternatives such as co-activity loss combined with a mul-

tiple instance learning loss [46] and action proposal gener-

ation using contrast cues among action classification pre-

dictions [36, 53]. With the end goal of addressing the lack

of temporal information, other works have innovated strate-

gies such as incorporating temporal structure [69], model-

ing background [33, 42], using extra supervision (e.g. ac-

tion count [39]), or single-frame label [37]. More recent

methods have tried to reduce the supervision level by us-

ing self-supervised techniques [26]. Our work builds upon

these ideas and complements them with a key insight: lever-

3320



aging pseudo labels while iteratively training the model.

Weak Supervision and Pseudo-labelling in Vision Tasks.

Weak supervision has been widely studied in other vision

tasks such as object detection [3, 44, 51, 57], semantic seg-

mentation [45, 66], or other video tasks [17, 23, 24, 48].

For video tasks, a variety of weak supervision cues have

been used including movie scripts [16, 29, 32, 38], action

ordering priors [4, 11, 15, 49], and different levels of su-

pervision [13]. These video related solutions have pro-

posed innovative ways to reduce labelling expense; how-

ever, they still require laborious annotations (e.g. action

spots) or privileged information (e.g. transcripts) that is dif-

ficult to obtain beyond a controlled setting. Concerning

pseudo-labelling, it has been used to design state-of-the-art

methods for weakly-supervised object detection [59, 71],

train image classification backbones [8, 9], and build pose

detectors [40]. These works have inspired our model, which

addresses challenges unique to the weakly supervised tem-

poral action localization task, namely the presence of only a

sparse supervision signal (video-level action category) and

of highly similar context surrounding the action [1].

3. RefineLoc

In this section, we discuss our RefineLoc architecture,

the pseudo ground truth label generation, and the iterative

refinement process. The input to our model is an untrimmed

video and the expected output is a set of action segment

predictions. RefineLoc is supervised on weak labels (i.e.

video-level action labels) and does not use any temporal

annotations of action instances. RefineLoc has two main

components: a weakly-supervised temporal action local-

ization (WSTAL) base model (Subsection 3.1) and an it-

erative refinement process (Subsection 3.2). Based on a

trained WSTAL model, we generate pseudo background-

foreground ground truth labels. We use these pseudo labels

to supervise the training of a new WSTAL model. We re-

peat the process for η iterations to progressively improve

the pseudo ground truth and refine the final action predic-

tion segments. Figure 2 illustrates our approach.

3.1. WSTAL Base Model

The input to WSTAL is an untrimmed video, while

the output is temporal action segment predictions. First,

WSTAL extracts features form T non-overlapping snippets,

which are then fed into both a snippet-level action classi-

fier and a background-foreground attention module. Then,

WSTAL combines the class activation and attention maps

to produce a video label prediction ŷ. During training, we

supervise WSTAL with a cross-entropy loss between the

ground truth video label y and the predicted label ŷ. Finally,

we post-process the learned class activation and attention

maps to produce action segment predictions. In what fol-

lows, we discuss the details of each module in WSTAL.

Feature Extraction Module. To compare with other

works, we use two feature extractor backbones: TSN [63]

(pretrained by UntrimmedNets [62]) and I3D [10] (pre-

trained on Kinetics [28]). We split the input untrimmed

video into T non-overlapping H-frame-long clip snippets

(15 for TSN and 16 for I3D). We transform each snippet

into a 2048-dimensional feature vector by concatenating the

two 1024-dimensional activation vectors from the global

pooling layer of each stream. Thus, this module outputs

a T × 2048 feature map F.

Snippet-Level Classification Module. This module re-

ceives the feature map F and produces a T ×N class activa-

tion map C, where N is the number of action classes (100
classes in ActivityNet v1.2 [7] and 20 in THUMOS14 [25]).

It consists of a multi-layer perceptron (MLP) with L Fully-

Connected (FC) layers interleaved with ReLU activation

functions. We reduce the size of each hidden layer by 2,

which makes the last layer of size 2048

2L−1 ×N .

Background-Foreground Attention Module. The objec-

tive of this module is to learn attention weights for each

snippet to suppress the background snippets and to focus

on foreground snippets. It transforms F into a T × 2
background-foreground attention map A. Similar to the

Snippet-Level Classification Module, it consists of an MLP

with L FC layers interleaved with ReLUs. Each hidden

layer size is reduced by half, making the last FC layer of

size 2048

2L−1 × 2. Other weakly-supervised action localization

methods [36, 39, 41, 42, 53, 62] employ attention modules

in their models. While we share a similar motivation, our

attention module is different from theirs in one key aspect:

their attention modules are only supervised by the video-

level label for the purpose of improving the video classifi-

cation, while our attention is supervised by both the video-

level label and a set of pseudo background-foreground la-

bels with the goal of improving the action segment local-

ization. Subsection 3.2 details the pseudo ground truth label

generation process. Unlike previous methods with a scalar

attention, we model the attention explicitly with two values,

one for foreground and one for background. We chose to do

so because our method uses supervision directly on the at-

tention values. Thus, instead of learning the attention with a

logistic-regression loss, we learn it as a binary classification

problem. We compare learning a scalar attention via logistic

regression against our proposed two dimensional attention

in the supplementary material.

Video Label Prediction Module. This module combines

C and A to generate an N - dimensional probability vec-

tor ŷ for the video label. Specifically, we pass C through a

softmax layer across the class dimension to get C̄ and pass

A through two softmax layers. The first softmax layer op-

erates across the background-foreground dimension to pro-

duce Ā
bf

, while the second softmax layer operates across

the time dimension (across snippets) of the foreground at-
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Figure 2: Overview of RefineLoc Architecture. Given an untrimmed video with only a weak label y, we extract spatio-temporal feature

map F from T non-overlapping H-frame-long snippets (top left). We feed F to an iterative refinement process (right). At each iteration, F

passes through our WSTAL base model (bottom left) to compute a snippet-level activation map (C) and a background-foreground attention

map (A). Both A and C are used to predict the video label ŷ and later to produce action segment predictions P . At iteration 0, the pipeline

is supervised using only y. Subsequent iterations use both y and pseudo ground truth generated from the previous iteration. We stop the

refinement process after η iterations.

tentions in Ā
bf

to produce Ā
time

as follows:

Ā
bf

t,i =
exp(At,i)

exp(At,1) + exp(At,2)
, (1)

Ā
time

t,i =
exp(Ā

bf

t,i)
∑T

t′=1
exp(Ā

bf

t′,i)
. (2)

Here, we use Ā
bf

as the network’s predictions for the

snippet-level background-foreground pseudo ground truth

supervision (Subsection 3.2). Note that in Equations 1 and

2, i = 1 refers to background while i = 2 refers to fore-

ground. Finally, this module computes the video-label pre-

diction as ŷ =
∑T

t=1
(Ā

time

t · C̄t), where Ā
time

t and C̄t are

the foreground attention value and class activation vector

of the tth snippet. The video-label prediction uses a soft

attention mechanism to emphasize the class activations of

snippets with higher attention values.

Action Segment Prediction Module. This module post-

processes Ā
bf

and C̄ to produce a set of action segment

predictions P . First, we filter out snippets for which the

background attention value is greater than a threshold αA.

Then, we consider only the top-k classes in ŷ. For each

top class n, we filter out snippets that have classification

score lower than a threshold αC . Then, we generate con-

tiguous segments by grouping snippets that are separated

by at most one filtered-out (background) snippet. We do so

to overcome noise in the filtering process and connect seg-

ments that are close to each other. This process can be done

in other and more sophisticated ways, however we keep the

simplicity of the base model and rely mainly on our itera-

tive process. We assign to each predicted segment (t1, t2)

the label n and the score s,

s =
1

t2 − t1 + 1

t2
∑

t=t1

(

Ā
time

t + C̄t,n

)

+ ŷn. (3)

where ŷn is the video-level predictions score for the nth

class. Note that each prediction that comes from the nth top-

k labels, has a different score s. Finally, to encode temporal

context and deal with the ambiguity of action boundaries

[1, 55], we inflate segments by 2 snippets at both ends.

3.2. Iterative Refinement Process

Let M0 be the WSTAL base model trained using the

weak video labels only. We iteratively refine this base

model and its action predictions by introducing supervi-

sion on the background-foreground attention module us-

ing snippet-level pseudo ground truth labels. Let GMη be
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the pseudo ground truth generation function that uses in-

formation from Mη (the trained WSTAL base model after

iteration η) to map each snippet to a pseudo background-

foreground label. At iteration η+1, we train a new WSTAL

base model Mη+1 on the joint loss of the video-level la-

bel and the snippet-level pseudo ground truth labels from

GMη . Specifically, we compute the loss for Mη+1 on a

given video in the following way,

loss = L (ŷ, y) + β
1

T

T
∑

t=1

L

(

Ā
bf

t ,GMη (t)
)

, (4)

where L is the cross-entropy loss and β is a trade-off coef-

ficient to balance the loss signal of the pseudo ground truth

with that of the video label. Note that the second cross-

entropy loss is class-weighted to alleviate the imbalance in

background and foreground pseudo labels.

Pseudo Ground Truth Generation. Intuitively, to obtain

the maximum gain from the iterative refinement process,

we want a pseudo ground truth generator that provides the

closest approximation to the true snippet-level background-

foreground ground truth labels, i.e. it should minimize the

mislabeling rate. In order to overcome any possible bias

learned by the pseudo ground truth generator and inspired

by [30], we only fixate on a portion of the pseudo ground

truth in a process we call pseudo ground truth sampling: at

the start of each refinement iteration, we randomly sample

a percentage S of snippets for which we apply the pseudo

ground truth loss. We consider five different pseudo ground

truth generation strategies and study their effects on the lo-

calization performance (Subsection 4.3).

(1) Uniformly Random Generator: This generator assigns

a uniformly random pseudo label to each snippet.

(2) Distribution Aware Generator: This generator gives,

with a biased probability, a random pseudo ground truth

label to each snippet. The biased probability is equal to

the average ratio of actual foreground to background snip-

pets. This generator relies on information (namely the ratio)

that requires access to strong temporal annotations. Thus, it

does not align with the weakly-supervised setting, but we

include it as a baseline reference only.

(3) Class Activation-Based Generator: This generator se-

lects the pseudo ground truth label for a snippet t by thresh-

olding its maximum class score, max(C̄t).
(4) Attention-Based Generator: This generator produces

the pseudo ground truth label for a snippet t by thresholding

its foreground attention value, Ā
time

t .

(5) Segment Prediction-Based Generator: This generator

assigns pseudo labels based on the set of prediction seg-

ments P . A snippet is given a pseudo foreground label if

it is covered by a segment prediction and a pseudo back-

ground label otherwise. We use this generator in our final

model due to its attractive performance gain.

4. Experiments

4.1. Datasets and Evaluation Metric

We conduct our experiments on ActivityNet v1.2 [7]

and THUMOS14 [25]. Both datasets consist of untrimmed

videos with (weak) video-level action labels and have

(strong) temporal annotations of action instances. However,

we discard the strong annotations during training.

THUMOS14 [25]. This dataset has 1010 validation and

1574 testing videos annotated with 101 sport-related action

classes at the video-level. Among these videos, only 200
validation and 213 testing videos have temporal annotations

for 20 sport actions. As in prior work [20, 72], we only con-

sider these 20 classes, use the 200 validation videos to train,

and use the 213 testing videos to evaluate performance.

ActivityNet v1.2 [7]. This dataset has 9682 untrimmed

videos annotated with 100 activity classes. It is split into

training, validation, and testing subsets, where the testing

subset labels are withheld for an annual challenge. Follow-

ing other methods [46, 53], we use the training subset (4819
videos) to train and the validation subset (2383 videos) to

test the performance. ActivityNet is a challenging dataset

due to its large-scale nature and, unlike THUMOS14, its

diverse classes ranging from household activities to sports.

Evaluation Metric. We compare methods according to

mean Average Precision (mAP). We report mAP at multi-

ple temporal Intersection-over-Union (tIoU) thresholds. We

take the average mAP across tIoU thresholds 0.5:0.05:0.95
as the main metric for ActivityNet v1.2 and the mAP at tIoU

threshold 0.5 as the evaluation metric for THUMOS14.

4.2. Implementation Details

We extract features from two different architectures: an

I3D model [10], and the same pre-trained TSN [63] model

used in AutoLoc [53], with 16 and 15 number of frames

per snippet (H), respectively. We choose L = 2 layers for

the snippet-level classification and background-foreground

attention modules. In the action segment prediction mod-

ule, we set (αA, αC) to (0.5, 0.005) for ActivityNet and

(0.5, 0.35) for THUMOS14. We consider the top-2 la-

bels when generating segment predictions in both datasets.

At every iteration, we randomly sample S = 80% of the

pseudo labels. Finally, we use an initial learning rate of

10−4 for ActivityNet and 10−3 for THUMOS14, and decay

the learning rate by 0.9 when the validation loss saturates.

We train for 50 epochs per refinement iteration and pick the

best model with the lowest validation loss from Equation 4.

4.3. Ablation Study

In this subsection, we present multiple ablation studies

motivating the design choices for our RefineLoc approach.

First, we study the performance of several pseudo ground

truth generators and the influence of the loss trade-off coef-
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Pseudo Ground β

Truth Generator 0 1 2 4 8 16

Uniform Random

—
9

.6
6

—

9.66 9.66 9.66 9.66 9.66

Distribution Aware 17.39 19.10 20.00 17.73 18.30

Class Activation 23.09 23.02 22.93 22.86 22.85

Attention 23.15 23.13 22.97 23.00 22.94

Segment Prediction 23.04 23.15 23.24 23.11 23.09

Table 1: Effects of pseudo ground truth generator and loss

trade-off coefficient β on ActivityNet v1.2. The segment

prediction-based generator with β = 4 shows the highest per-

formance (underlined). Bold numbers mark the best performing

generator for each β.

Refinement Iteration 0 1 2 3 4 5

RefineLoc 9.66 19.14 22.66 23.24 22.94 22.95

Table 2: Effects of refinement. We show the gain from our itera-

tive refinement on ActivityNet v1.2. Note the significant improve-

ment over iterations: 13.58% in 3 iterations.

ficient β (Equation 4) on the performance of each genera-

tor. Afterwards, we analyze how our model’s performance

changes from one refinement iteration to the next. Finally,

we present a diagnosis study (using the DETAD [1] diag-

nostic tool) of the detection results before and after our iter-

ative refinement process. We present all the studies in this

subsection using ActivityNet v1.2 [7] dataset along with

I3D features. For all the experiments in this section we

report average mAP at tIoU thresholds 0.5:0.05:0.95. Re-

fer to the supplementary material for the study results on

ActivityNet v1.2 using TSN features as well as on THU-

MOS14 [25] using I3D and TSN features.

Effects of the Pseudo Ground Truth Generator and the

Loss Trade-off Coefficient β. Table 1 summarizes the best

average mAP performance using the five generators with

five β values. The baseline model M0 (β = 0) achieves

9.66% average mAP at tIoU=0.5:0.05:0.95. We observe

a performance improvement over M0 across all generator

types and β values. This shows the effectiveness of our it-

erative refinement process. Moreover, we observe that the

segment prediction-based generator is the best among the

five generators. We hypothesize that this generator is better,

since it has access to information from both the class acti-

vation and attention maps. Moreover, β = 4 strikes the best

balance between the video label loss and the background-

foreground pseudo ground truth loss. We observe similar

results on THUMOS14: the best generator is the segment

prediction-based one and the best β is 4.

Performance over Refinement Iterations. Table 2 shows

the evolution of RefineLoc’s performance across five refine-

ment iterations. We obtain the highest performance (aver-

age mAP of 23.24%) after η = 3 iterations. This is a sig-

nificant 13.64% increase over our baseline model M0 (iter-

(a) Methods using TSN features

Method 0.5 0.75 0.95 Avg.

UntrimmedNets [62] 7.4 3.2 0.7 3.6

AutoLoc [53] 27.3 15.1 3.3 16.0

TSM [69] 28.3 17.0 3.5 17.1

CMCS [35] 33.9 19.9 5.1 20.5

CleanNet [36] 37.1 20.3 5.0 21.6

RefineLoc (η = 0) 25.8 11.5 2.8 13.3

RefineLoc (η = 5) 38.8 22.2 5.3 23.2

(b) Methods using I3D features

Method 0.5 0.75 0.95 Avg.

W-TALC [46] 37.0 - - 18.0

3C-Net [39] 35.4 - - 21.1

3C-Net† [39] 37.2 - - 21.7

CMCS [35] 36.8 22.0 5.6 22.4

BaS-Net [33] 38.5 24.2 5.6 24.3

RefineLoc (η = 0) 19.2 8.0 2.3 9.7

RefineLoc (η = 3) 38.7 22.6 5.5 23.2

Table 3: State-of-the-art Weak Supervision on ActivityNet

v1.2. RefineLoc outperforms other methods using TSN features

(a) and is competitive using I3D features (b). 3C-Net† [39] uses

number of instances per video as extra supervision.

(a) Methods using TSN features

Method 0.3 0.4 0.5 0.6 0.7

UntrimmedNets [62] 28.2 21.1 13.7 - -

W-TALC [46] 32.0 26.0 18.8 - 6.2

CMCS [35] 37.5 29.1 19.9 12.3 6.0

AutoLoc [53] 35.8 29.0 19.9 12.3 6.0

CleanNet [36] 37.5 29.1 23.9 13.9 7.1

BaS-Net [33] 42.8 34.7 25.1 17.1 9.3

RefineLoc (η = 0) 7.0 4.2 2.9 1.3 0.6

RefineLoc (η = 4) 36.1 29.6 22.6 12.1 5.8

(b) Methods using I3D features

Method 0.3 0.4 0.5 0.6 0.7

W-TALC [46] 40.1 31.1 22.8 - 7.6

CMCS [35] 41.2 32.1 23.1 15.0 7.0

TSM [69] 39.5 - 24.5 - 7.1

3C-Net [46] 40.9 32.3 24.6 - 7.7

3C-Net† [46] 44.2 34.1 26.6 - 8.1

Nguyen et al. [42] 46.6 37.5 26.8 17.6 9.0

BaS-Net [33] 44.6 36.0 27.0 18.6 10.4

RefineLoc (η = 0) 34.8 27.7 19.5 10.7 4.60

RefineLoc (η = 14) 40.8 32.7 23.1 13.3 5.3

Table 4: State-of-the-art Weak Supervision on THUMOS14.

RefineLoc is competitive using both feature types (tables a and b).

† uses extra supervision from the number of instances per video.

ation 0 in the table). We also see that refining M0 for a sin-

gle iteration boosts the performance by 9.48%. This clearly

shows the effectiveness of leveraging the pseudo ground

truth labels during training. We observe similar results on

THUMOS14: the best performance is achieved after η = 3
refinement iterations.
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4.4. State­of­the­Art Comparison and Generaliz­
ability

On ActivityNet v1.2 [7] (Table 3). RefineLoc with TSN

features outperforms state-of-the-art, CleanNet [36], by

1.6% in average mAP (Table 3a), while RefineLoc with I3D

features shows competitive performance to BaS-Net [33]

(Table 3b). ActivityNet is large-scale and contains more di-

verse classes compared to THUMOS14. Thus, RefineLoc’s

strong performance on ActivityNet shows the effectiveness

of our iterative refinement approach. We observe that our

refinement process significantly enhances our base model,

i.e. RefineLoc (η = 0), by 9.9% (TSN) and 13.5% (I3D) in

average mAP.

On THUMOS14 [25] (Table 4). RefineLoc with TSN

features (Table 4a) and with I3D features (Table 4b) ex-

hibits competitive performance to state-of-the-art meth-

ods [33, 36, 42]. We observe that our refinement process

significantly enhances our base model, i.e. RefineLoc (η =
0), by 19.7% (TSN) and 3.6% (I3D) in mAP@tIoU= 0.5.

On Generalizability (Table 5). We chose our WSTAL-

base model to be simple, compared to other state-of-the-

art models, to highlight the main contribution of our work,

i.e. the iterative refinement process. This process can lift

the performance of such a simple model to compete and

even outperform state-of-the-art methods on both datasets.

Moreover, effectiveness of the refinement process is in-

dependent of the WSTAL-base model, which we demon-

strate by generalizing our framework to other base models,

namely W-TALC [46] and BaS-Net [33], on THUMOS14

using I3D features. These two methods employ attention-

based models, where we apply our pseudo-background-

foreground ground truth refinement process. Table 5 com-

pares the results from the released code of the two meth-

ods vs. their performance after adding our iterative re-

finement process. By doing this, we significantly improve

both base methods. In fact, BaS-Net is improved by 1.77%
in mAP@tIoU= 0.5, setting a new state-of-the-art perfor-

mance on THUMOS14 (28.03% mAP@tIoU= 0.5). Its im-

portant to note that the numbers obtained with the released

codes differ from the ones reported in [33, 46].

We show that our method is simple, yet effective. We

demonstrate that the key component of RefineLoc is the it-

erative process, showing its effectiveness regardless dataset,

features, or base model. Despite its simplicity, RefineLoc

outperforms all other methods using TSN features on Ac-

tivityNet, and beats the state-of-the-art when using BasNet

and W-TALC as base models on THUMOS14.

4.5. Error Analysis and Qualitative Results

Diagnosing Detection Results. To analyze the merits of

the proposed refinement strategy, we conduct a DETAD [1]

false-positive analysis of RefineLoc at refinement iterations

0 and 3. We present the results in Figure 3. The false-

(a) Generalizability of RefineLoc to other base models

Method 0.3 0.4 0.5 0.6 0.7

W-TALC Code [46] 42.98 34.59 26.99 17.74 9.42

W-TALC Code + RefineLoc 44.10 35.08 27.66 17.67 9.14

(b) Generalizability of RefineLoc to other base models

Method 0.3 0.4 0.5 0.6 0.7

BaS-Net Code [33] 43.40 35.16 26.26 18.59 10.16

BaS-Net Code + RefineLoc 45.10 36.50 28.03 18.95 10.36

Table 5: Generalizability of RefineLoc. Our iterative refinement

process generalizes to base models: (a) W-TALC [46] and (b) Bas-

Net [33]. We outperform W-TALC and BasNet baseline using 2

and 5 refinement iterations, respectively. By refining BasNet [33],

we set a new state-of-the-art performance on THUMOS14.

positive profile analysis provides a fine-grained categoriza-

tion of false-positive errors and summarizes the distribution

of these errors over the top 5G model predictions, where G

is the number of ground truth segments in the dataset. Af-

ter refinement (right plot), we observe that RefineLoc gen-

erates more high-scoring true positive predictions (towards

1G). Despite the reduction of background and localization

errors, there is an increase in confusion errors. We explain

this increase due to the simplicity of our initial classifica-

tion module. Besides, the extra supervision generated by

the pseudo-ground truth encourage the model to improve

the localization but not directly the label prediction.

Qualitative Results. Figure 4 shows some RefineLoc qual-
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Figure 3: Diagnosing Detection Results. We present DETAD [1]

false positive profiles of RefineLoc at refinement iterations 0 and

3. G represents the number of ground truth segments available

in the ActivityNet dataset. Our refinement strategy clearly pushes

more true positive predictions to the top 1G scoring predictions.

RefineLoc also reduces background and localization error at later

iterations, indicating temporally tighter predictions.

3325



Ironing!

R
e

fi
n

e
m

e
n

t!
  
It

e
ra

ti
o

n
! 0!

1!

3!

Time!

5!

Ground Truth! RefineLoc Predictions!

Ironing!Ground !
Truth!

Shoveling Snow!

R
e

fi
n

e
m

e
n

t!
  
It

e
ra

ti
o

n
! 0!

1!

3!

Time!

5!

Ground!
Truth!

R
e

fi
n

e
m

e
n

t!
  
It

e
ra

ti
o

n
! 0!

1!

3!

Time!

5!

Vacuuming! Vacuuming! Vacuuming! Vacuuming!Ground!
Truth!

Figure 4: Qualitative Results. Top: RefineLoc successfully enhances prediction coverage and detects missed instances as iterations

evolve. Middle: RefineLoc manages to merge disjoint predictions and remove wrong background predictions from one iteration to the

next. Bottom: In the presence of large context, iterative refinement can hurt RefineLoc predictions, as visual similarity between foreground

and background confuses our attention model.

itative detection results on ActivityNet. We present results

for three different videos across different refinement itera-

tions. The top video shows our method not only enhances

its coverage over iterations, but is also able to detect a new

instance at iteration 1 that was missed in the previous itera-

tion. In the middle video, we see how RefineLoc manages

to successfully merge different predictions over iterations.

We also see erroneous predictions being cut off from iter-

ation to iteration. The final example shows a failure case.

Despite starting with decent predictions at iteration 0, our

predictions diverge drastically in subsequent steps.

5. Conclusion

We have presented RefineLoc, a novel weakly-

supervised temporal action localization method. RefineLoc

uses an iterative refinement strategy, where snippet-level

pseudo labels are generated and used at every training iter-

ation. Our experiments have shown that RefineLoc is com-

petitive with the state-of-the-art and that our general itera-

tive refinement process boosts the results of other methods

outperforming the state-of-the-art, suggesting that it could

be used as an off-the-shelf strategy to refine results of future

weakly-supervised methods for temporal action localiza-

tion. As labelling videos for action localization is a massive

time and cost bottleneck, RefineLoc takes a step closer to

alleviating the need for these prohibitively expensive tasks.

Acknowledgments. This work is supported the King Ab-

dullah University of Science and Technology (KAUST) Of-

fice of Sponsored Research (OSR) under Award No. OSR-

CRG2017-3405.

3326



References

[1] Humam Alwassel, Fabian Caba Heilbron, Victor Escorcia,

and Bernard Ghanem. Diagnosing error in temporal action

detectors. In ECCV, 2018.
[2] Humam Alwassel, Fabian Caba Heilbron, and Bernard

Ghanem. Action search: Spotting targets in videos and its

application to temporal action localization. In ECCV, 2018.
[3] Hakan Bilen and Andrea Vedaldi. Weakly supervised deep

detection networks. In CVPR, 2016.
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