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Abstract

We propose a new approach to Human Activity Evalu-

ation (HAE) in long videos using graph-based multi-task

modeling. Previous works in activity evaluation either di-

rectly compute a metric using a detected skeleton or use

the scene information to regress the activity score. These

approaches are insufficient for accurate activity assess-

ment since they only compute an average score over a clip,

and do not consider the correlation between the joints and

body dynamics. Moreover, they are highly scene-dependent

which makes the generalizability of these methods question-

able. We propose a novel multi-task framework for HAE

that utilizes a Graph Convolutional Network backbone to

embed the interconnections between human joints in the

features. In this framework, we solve the Human Activity

Segmentation (HAS) problem as an auxiliary task to im-

prove activity assessment. The HAS head is powered by an

Encoder-Decoder Temporal Convolutional Network to se-

mantically segment long videos into distinct activity classes,

whereas, HAE uses a Long-Short-Term-Memory-based ar-

chitecture. We evaluate our method on the UW-IOM and

TUM Kitchen datasets and discuss the success and failure

cases in these two datasets.

1. Introduction

With the advancements in computer vision techniques, au-

tomated Human Activity Evaluation (HAE) has received

significant attention. The aim of this category of problems is

to design a computational model that captures the dynamic

changes in human movement and measures the quality of

human actions based on a predefined metric. HAE has been

studied in a variety of computer vision applications such as

sports activity scoring, athletes training [35, 48, 30], reha-

bilitation and healthcare [29, 2], interactive games [53, 25],

skill assessment [20, 8], and workers activity assessment in

industrial settings [33, 32]. Some of the earlier works on

HAE used traditional feature extraction methods for per-

formance analysis [38, 13]. Recently, with the popularity
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Figure 1. Multi-task activity segmentation and ergonomics risk as-

sessment pipeline.

of deep learning methods, a multitude of creative solutions

have emerged for solving HAE problems. Among the pro-

posed methods, some directly learn a mapping from images

to a quality score [50]. As the activity quality is highly

task-dependent a majority of research is focused on lever-

aging the available activity information in the learning pro-

cess [30, 32]. Another approach has been to measure the

deviation of a test sequence from a template sequence for

determining the activity quality [28]. This approach is valu-

able when the performance of humans is evaluated based

on how well they followed a fixed series of activities in a

certain way such as in sport competitions or manufacturing

operations.

There is another aspect of HAE that has received less at-

tention despite its importance and potential impact on the

safety and health of the society. Human Postural Assess-

ment (HPA) is studied in various fields such as biomechan-

ics, physiotherapy, neuroscience, and more recently in com-

puter vision [33, 32, 22]. HPA is a subcategory of HAE

that focuses on determining the quality of human posture

using a ergonomics-based (or biomechanics-based) criteria.

There are three major challenges in solving HPA problems:

(1) the type of task and the object involved in the activity

highly influence the risk level. (2) The repetition of cer-

tain movements can cause accumulated pressure on specific
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body parts. Therefore, it is important to analyze a video in

a frame-wise fashion to be able to capture repetition. (3)

Everyone does not necessarily perform a task in the same

way, hence, a successful algorithm should learn the relation

between human joints dynamics and the corresponding er-

gonomics risk score.

This work is inspired by the importance of HPA prob-

lems and their significant impact on the health and safety

of industrial workers. However, our approach is not limited

to this specific application and it is a novel design that can

benefit other aspects of HAE research. We leverage from

consistent representation of human 3D pose and propose

an end-to-end multi-task framework (Figure 1) that solves

Human Activity Segmentation (HAS) as an auxiliary task

to improve the HPA performance. Skeleton-based meth-

ods have been shown to provide the opportunity of develop-

ing more generalizable algorithms for various applications

in Human Action Recognition (HAR) and prediction prob-

lems [40]. However, they have not been leveraged enough

in HAE.

Contributions: This work brings together activity seg-

mentation and activity assessment using a novel multi-

task learning framework. Our proposed framework com-

prises a Graph Convolutional Network (GCN) backbone

and an Encoder-Decoder Temporal Convolutional Network

(ED-TCN) for the activity segmentation head and a Long-

Short-Term-Memory (LSTM)-based head for activity as-

sessment. The contribution of our work is threefold. (1)

We introduce a novel combination of GCN with ED-TCN

for activity segmentation in long videos that outperforms

state-of-the-art results on the UW-IOM dataset. (2) Our

Multi-Task Learning (MTL)-emb method initiates a line

of research for more informed activity assessment by fus-

ing activity embedding with spatial features for Ergonomics

Risk Assessment (ERA). (3) We present a way to use the

skeletal information for activity assessment in a Multi-Task

Learning (MTL) framework that may enable generalization

across a variety of environments and leverage anthropomet-

ric information.

2. Related Work

HAS is the task of semantically segmenting a video into

clips corresponding various activities and localizing their

start and end times. HPA considers the task of finding the

ergonomics risk score corresponding to the human posture

at every frame of a video. To the best of our knowledge, this

is the first work that combines the two separately studied

problems of HAS and HPA in a multi-task setting. More-

over, the combination of the GCN backbone with a power-

ful ED-TCN structure for Single-Task Learning-based HAS

(STL-AD) is a novel idea that can compete with methods

using image-based features (if the actions are not too sim-

ilar). The HPA branch also offers a new combination of

GCN along with a LSTM unit to learn the relation between

human joint dynamics and the corresponding ergonomics

risk score. In this section, we summarize the works re-

lated to HAE, GCN, and ERA methods to provide the back-

ground for our proposed solution.

2.1. Human Activity Evaluation

Also known as Action Quality Assessment, HAE focuses

on designing models that are able to learn a mapping be-

tween human body dynamics and the completion quality

of the performed actions based on an accepted metric or

a template sequence (refer to [17] for further literature on

early methods with handcrafted features). The majority of

deep learning approaches to HAE have focused on using

3D Convolutional Neural Networks (C3D) [47] and Pseudo-

3D Networks (P3D) [50] to extract spatio-temporal features

that are fed into a regression unit. One of the recent works

in applications for physical therapy, [21], proposed a frame-

work including performance metrics, scoring functions, and

different neural network architectures for mapping joint co-

ordinates to the activity score. Similarly, [31] used C3D to

extract spatio-temporal features and conducted performance

score regression using a LSTM unit for data from Olympic

events. Despite the value of all these works in initiating the

use of computer vision techniques for HAE in rehabilitation

and sports, the proposed methods are highly dependent on

the context of the video frames. Moreover, the learned map-

ping between the frames and the score does not incorporate

the effect of human body kinematics.

Recently, there have been efforts in leveraging human

body kinematics in designing deep architectures for eval-

uating surgical skills [9]. This work uses 75 dimensional

kinematic data (3D coordinates plus velocities) of two sur-

gical tools being manipulated by surgeons and classifies the

skill level into expert, intermediate, and novice. Joint re-

lation graph has been utilized to assess the performance of

athletes in Olympic events [27]. The proposed joint relation

graph is a spatial GCN with node features that are outputs

of I3D [3] on image patches containing the human joints.

Parmar and Morris’s work [27] is the most similar work

to our paper. They propose a multi-task framework utilizing

spatio-temporal features to solve action recognition, com-

mentary generation, and HAE score estimation for Olympic

events. However, the focus of their work is on short video

classification, where each clip includes only one activity,

namely, diving of one athlete. In contrasts, our focus is

on localizing actions in a long video while simultaneously

inferring the ergonomics risk of human posture at every

frame.

2.2. Graph Convolution Networks

GCNs was developed to process data belonging to non-

Euclidean spaces [49]. GCNs are the most intuitive choice
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for human body kinematics since the commonly-used in-

dependent and identically distributed random variable as-

sumption is not applicable. Spatio-Temporal Graph Convo-

lutional Networks (ST-GCN) introduced a powerful tool for

analyzing human motions in videos, and has been utilized in

several computer vision applications [52, 14, 19, 44]. How-

ever, most of these works focus on solving Human Action

Recognition (HAR) problems. Recently, [32] introduced

a Spatio-Temporal Pyramid Graph Network (ST-PGN) for

early action recognition. They also used the predicted ac-

tivity labels to enhance ERA that was computed using 3D

skeletal reconstruction. In this work, we leverage a GCN

backbone to learn the joint embedding and use that to di-

rectly predict the ergonomics risks rather than solving it as

a separate problem.

2.3. Ergonomics Risk Assessment

The United States alone has annually more than 150,000

workers suffering from back injuries due to repetitive lift-

ing of heavy objects with inappropriate postures. Hence,

many studies have recently looked at designing automated

ERA methods [37, 46, 6, 41, 39, 22, 33, 32]. The most

widely used methods in the industry are Rapid Entire Body

Assessment (REBA) [12] and European Assembly Work-

sheet (EAWS) [42]. REBA provides a risk score between 1-

15 by considering all the main body joint angles, magnitude

of the applied force, and ease of grasping an object. EAWS

is a similar method that focuses on the upper extremity pos-

tures in assembly tasks. In practice, the quantification of

risk values is mostly based on observations.

Automated ERA research can be broadly divided into

two main categories. One line of research focuses on re-

ducing ergonomics risk in a collaborative setting, where a

robot has to place the work platform in a configuration that

minimizes the ergonomics risk [24, 43]. Others have used

body mounted sensors to measure kinematics for real-time

ERA [18, 22]. Another line of research focuses on learn-

ing ergonomics risk for various individual actions. In [33],

the ERA problem is taken as an action localization prob-

lem and Temporal Convolutional Network (TCN) is used

to segment the videos into tasks with different risk labels.

The ergonomics risk is computed offline and the dataset is

labeled with high-, medium-, and low-risk labels. In addi-

tion, a dataset on common industry-related activities is in-

troduced in [33] that we use to evaluate the performance of

our proposed method. In [32] the problem is approached

as an action recognition problem on long videos, and the

predicted activity class is used to modify the computed er-

gonomics risk through a parallel algorithm. This work, on

the other hand, introduces a multi-task HPA framework that

predicts ergonomics risk directly from human pose with the

help of HAS as an auxiliary task.

∑

T

(T, N, 15, 3)

T: frames

N: batches

(T, N, 2048)

FC

Final Loss

AD Loss

PA Loss

ED-TCN

LSTM

Classifier

GCN

Figure 2. MTL network architecture.

3. Proposed Multi-Task Framework

In ERA, posture alone cannot accurately determine the risk

level. The activity class contains information that is key to

measure ergonomics risk. We, therefore, define HPA as a

MTL problem consisting of an HAS and an HPA task (Fig-

ure 2). In the following sections, each component of our

MTL model is described in details.

3.1. Spatial Features

The inputs to our multi-task model are 3D joints locations,

which is a form of structured data. Since GCNs are known

to be powerful in representing structured data [54], our

model uses a sequence of stacked GCNs as the backbone

for spatial feature extraction, similar to the proposed struc-

ture in [52] except for temporal convolution. Just like a 2D

convolutional layer, a stacked GCN allows better feature ex-

traction for unstructured data such as graphs.

Given the input x ∈ RD×N , where D is equal to 3 as

the joints are represented using (x, y, z) coordinates and N

is the number of joints, the adjacency matrix A ∈ RN×N ,

and the degree matrix D̂ with Dii =
∑

j Aij , a Graph Con-

volution (GC) can be written as,

f = D̂−
1

2 ÂD̂−
1

2x⊤W . (1)

Here, Â = A + I, I is the identity matrix. For a graph

with human skeletal structure, A is designed based on the
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anatomical connections among the joints. W ∈ RD×F

is the weight matrix that is to be learned. Hence, if the

input to a GCN layer is D × N , the output feature f is

N × F , where F is the chosen output feature size. In our

proposed backbone, each GCN is followed by a ReLU ac-

tivation. Moreover, the adjacency matrix is partitioned into

three sub-matrices as described in [52] to better capture the

spatial relations among the joints. Therefore, Equation (1)

is written in a summation form for each GCN layer as:

f =

3∑

a=1

D̂
−

1

2

a AaD̂
−

1

2

a x⊤Wa , (2)

where a indexes each partition.

3.2. EncoderDecoder Temporal Convolution for
Human Activity Segmentation

In HAS problems, the task is to identify the activities that

are happening in untrimmed videos and determine the cor-

responding initial and final frames [10, 16, 1, 33]. A pop-

ular approach that is inspired by works in audio generation

and speech recognition [26, 51] is to use feed-forward (i.e.,

non-recurrent) networks for modeling long sequences. The

main component of these methods is a 1D dilated causal

convolution that can model long-term dependencies.

A dilated convolution is a filter that applies to an area

larger than its length by skipping input values by a certain

length [26]. A causal convolution is a 1D convolution which

ensures the model does not violate the ordering of the input

sequence. The prediction emitted by a causal convolution

(that is p(xt|x1, ..., xt−1)) at time step t only depends on

the previous data. Combining these two properties, dilated

causal convolutions have large receptive fields and are faster

than Recurrent Neural Networks (RNNs). Moreover, they

are shallower than regular causal convolution due to dila-

tion.

For the HAS task, inspired by [26, 16, 33] we design

an ED-TCN-based on 1D dilated convolutions (Figure 2).

Our design consists of a hierarchy of four temporal convo-

lutions, pooling, and upsampling layers. The output of the

ED-TCN followed by a Fully Connected (FC) layer and a

RelU activation is fed to the classification layer.

In using ED-TCN for HAS [16, 33], the focus is on learn-

ing the temporal sequence and localizing activities. It is

common to extract spatial features prior to training from an

independent network like VGG16 [45] or ResNet [11]. Our

proposed framework learns the spatial and temporal proper-

ties of the data in an end-to-end fashion. To our knowledge,

this is the first attempt to use ED-TCN in an end-to-end ar-

chitecture with a spatial feature detector. In addition, the

combination of GCN with ED-TCN for solving HAS is a

novel approach and it shows promising results.

3.3. Regression Module for Human Postural Assess
ment

We define HPA as a sub-category of HAE where the ac-

tivity score is determined based on the safety of the pos-

ture. In HPA, the task is to find a mapping between the

spatio-temporal features and ergonomics risk score. Our

proposed regressor uses the shared spatial features coming

from the GCN backbone. The GCN features go through a

FC layer with tanh nonlinearity and are then fed into a

stacked LSTM structure to predict the REBA scores.

3.4. MultiTask Approach to ERA

MTL is a popular framework for end-to-end training of a

single network for solving multiple related tasks. In these

networks, a common backbone provides the data represen-

tation for branches responsible for learning a specific task.

Usually in MTL, there is a main task plus multiple auxiliary

tasks that complement the core task. For instance, in HAE,

the main task is to determine the action quality. However,

action quality is not independent of what action is carried

out, which makes the HAS choice of auxiliary tasks natural

for this kind of problems.

The supervision signals from the auxiliary tasks can be

viewed as inductive biases [4] that limit the hypothesis

search space and result in a more generalizable solution.

The multi-task approach to HAE has been recently intro-

duced by [30] for determining the quality of action in short

clips from Olympic games.

In our work, the main task is to predict the REBA scores.

However, the information about human action is closely re-

lated to its corresponding ergonomics risk. Therefore, the

auxiliary task in this case is the HAS. The long duration

videos pose an additional challenge, since, unlike most of

the HAE datasets, both the activities and their risk scores

vary over time. In a majority of sport HAE [30], a single

activity score is predicted for a clip. Here, the HAS task

consists of 17 and 20 actions for the UW-IOM and TUM

datasets, respectively (see Section 4 for more information

on the datasets). Therefore, in any video, activity localiza-

tion and ERA task involves predicting a smooth function

that shows how the risk is changing throughout the video.

We studied two different architectures for solving this

MTL problem. In the first architecture, the heads corre-

sponding to each task only share the GCN-driven features.

In the second architecture, the output of the Softmax layer

of the HAS head is fused to the feature going to the LSTM

regressor.

We consider a weighted average of the HAS loss and the

HPA loss as the overall multi-task HPA loss function,

LHPA =

T∑

t=1

α(xt − yt)
2 + β|xt − yt|, (3)
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Figure 3. Visualization of HAS and REBA prediction result for a sample test video of UW-IOM dataset. The first and third plots (colored

ribbons) are the segmentation results. In each ribbon the top-half is the ground truth and the bottom-half is the predictions by the network.

The second and fourth plots depicting the ground truth REBA score and the network prediction. The network prediction is color-coded

based on the activity class.

where yt is the frame-wise ground truth REBA score and

xt is the model prediction. | · | is the L1 norm. α and β are

weights to be learned. For HAS, we use cross-entropy loss

between ground truth and model prediction,

LHAS = −

T∑

t=1

Cl∑

c=1

yt,c log(xt,c), (4)

where Cl is the number of classes. The overall loss is the

sum of all the losses,

LMTL = LHPA + γLHAS , (5)

where γ is to be learned.

4. Experiments

4.1. Datasets

Despite the impact of automated ERA on industry, research

in this area has started gaining popularity only recently. As

a result, only a few datasets are available that capture repre-

sentative activities in industrial settings. In particular, two

such datasets have been used in recent publications in this

domain.

UW-IOM Dataset is a publicly available dataset of 20

videos by [33] that captures industry-relevant activities.

This dataset has 17 action classes and labels are of four-

tier hierarchy indicating the object, human motion, type of

object manipulation (if applicable), and the relative height

of the surface on which the activity is taking place. The

longest video in this dataset has 2, 384 frames. We use the

3D poses for UW-IOM dataset from our earlier work [32].

TUM Kitchen Dataset has 19 videos consisting of daily

activities in a kitchen. Learning with graph-based methods

has been shown to be challenging on this datasets due to the

similarity of human postures in multiple action classes [32].

We took labels provided by [33] so that we can compare

our results with theirs. We used [36] to extract the 3D poses

from the videos recorded by the second camera. The longest

video in this dataset has 2, 048 frames.

The input features to our model are 3-dimensional key-

points (x, y, z) of N =15 joints, concatenated over time T .

Hence, the resulting input tensor is of dimension 3×15×T .

The output ground truth labels are frame-wise labels that

have the dimension of 1× T .

4.2. Ergonomics Risk Preprocessing

REBA method [12] computes a score describing the total

body risk based on the joint angles and the properties of

an action. The REBA scores are discrete integers from 1

(the minimum risk level) to 15 (the maximum risk level).

In [33], the scores of all the subjects are averaged over

the classes and a single score is reported for each activity

class. We used the detected skeletons to compute the joint

angles and obtained a frame-wise REBA score. However,

the REBA profile then becomes a sequence of piece-wise

constants, which is hard to learn by a regressor. There-

fore, we smoothed the REBA sequence using the Python

UnivariateSpline function to make it easier for the

ERA regressor to learn the patterns. To help advance re-

search in this area, the smoothed REBA scores along with

the code are available on the project repository1.

1https://github.com/BehnooshParsa/MTL-ERA
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GCN(64, 64)

GCN(64, 128)

GCN(128, 128)

GCN(128, 256)

GCN(256, 256)

GCN(256, 256)

GCN(256, 256)

AdaptiveAvgPool1D(2048)

Backbone

ReLU()

ED-TCN(in=2048, H=50,

k=4, D=5e-3)

FC(2048, 1024)

ReLU()

FC(1024, n_class)

Action Segmentation

FC(2048+n_class, 256)

tanh()

LSTM(in=256, 1024, nL=3)

FC(1024, 1)

Postural Assessment

Figure 4. Detailed MTL-emb architecture. GCN(in, out) is a

GCN with edge-importance. ED-TCN has 4 hidden layers of size

H with kernel size k and dropout of D. FC(in, out) is a fully

connected layer. nclass is the number of classes. The LSTM has

nl layers.

4.3. Implementation Details

All the networks were implemented in PyTorch [34]. The

initial values of the loss function weight parameters α, β,

and γ were set to 1. All the networks were trained using

the Adam optimizer [15]. We implemented early-stopping

and trained the model with different learning rates to find

the best one (the best performing learning rate is shown in

Table 3). The 20 videos in the UW-IOM dataset were ran-

domly split into 15 and 5 for the training and validation set,

respectively. For the TUM dataset, the training and valida-

tion sets include 15 and 4 videos, respectively.

GCN Backbone: The details of the GCN network is

displayed in Figure 4. The output of the final GCN layer

is of size (N,T, 256, 15) that is flattened to (N,T, 3840)
and passed through an adaptive pool layer. Therefore, the

feature that is fed to the rest of the network is of size

(N,T, 2048).

Action Segmentation Head: ED-TCN requires input

batches to have the same temporal length. Hence, we de-

fined a maximum length in both the training and valida-

tion sets, and masked the rest of the inputs with a value of

−1 (thus, T corresponds to the maximum sequence length).

The predicted sequence was unmasked before calculating

the loss. The ED-TCN output goes through two fully con-

nected layers with RelU activation and is used to compute

the cross-entropy loss.

Postural Assessment Head: We evaluated the perfor-

mance of two architectures for HPA. In one design, we fuse

the Softmax output of the HAS head to the GCN features

and call this model, multi-task-emb. The base design does

not include fusion and we refer to that as multi-task-base.

The spatial features (from the GCN backbone) are followed

by a fully connected layer with tanh activation and sent to

three layers of LSTM. The LSTM output is followed by a

fully connected layer to predict the REBA scores and is sent

to the regression loss function.

4.4. Evaluation Metrics

To measure the performance of the HAS network we use

F1-overlap score, segmental edit score, and Mean Average

Precision (MAP). F1-overlap score is essentially the har-

monic mean of Precision and Recall and is computed using

the following well known formula:

F1 -Score = 2×
Precision × Recall

Precision + Recall
. (6)

Edit score measures the closeness of the predicted sequence

to the ground truth sequence. This metric penalizes if the

order of the sequence and the number of action segments

are not correct. The average precision is computed over all

the classes and its mean is reported.

5. Results and Discussion

To evaluate the strength of our proposed multi-task ap-

proach in solving the HAS and HPA problems, we carry

out two single-task experiments for the HPA task (STL-

PA) and the HAS task (STL-AS). Another reason behind

the STL-AS experiment is to investigate the power of our

GCN model as a spatial feature extractor in solving HAS

problems.

The STL-PA network has identical GCN backbone and

LSTM design as the MTL network. The average MSE result

is reported for the validation set in Table 1. It is clear from

the results that the network cannot learn the sophisticated

pattern of the REBA profile.

UW-IOM TUM

MSE Sp. Corr. (%) MSE Sp. Corr. (%)

1.68 ±0.28 11.79 ±12.32 2.75 ±0.40 62.92±4.89

Table 1. Average MSE and Spearman’s Coefficient of the activ-

ity score prediction over the validation videos using the STL-PA

model.

5.1. Action Segmentation with GCNEDTCN

As discussed in Section 2, ED-TCN along with the in-

put features derived from pre-trained networks, have been

widely used for HAS. The idea is that given the input spa-

tial features for every time-step of a sequence, this method

can segment it into semantically similar pieces. Nonethe-

less, an end-to-end approach for learning both the spatial

and temporal features in an HAS has not been explored

with ED-TCN. While GCN models have been used both

for activity classification [52, 14] and early action recog-

nition [32], its capability has not been evaluated for HAS.
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ED-TCN is used for HAS on the UW-IOM dataset in [33],

where the authors compare three spatial feature extractors,

namely, a pre-trained VGG16 on ImageNet [7], a fine-tuned

version of VGG16 model, and a P-CNN model [5]. Our

proposed GCN backbone extracts spatial features based on

human pose only, but its performance is comparable with

the state-of-the-art as shown in Table 2. Hence, we believe

that pose-based features are more suitable for designing a

generalizable algorithm. However, we should emphasize

that generalizability comes with a price of the model not

performing well when the pose information is poor or when

the activities require similar postures, which is the case for

the TUM dataset (Table 2).

5.2. Singletask vs. Multitask Approach

The substantial improvement in predicting the activity risk

scores is evident when comparing the results in Table 1 with

Table 3. We believe that the underlying reason behind this

observation is that the REBA score is highly dependent on

the type of activity, and learning an auxiliary HAS task can

enhance the performance of the HPA head. However, the

inverse dependency is not that strong. Our findings indicate

that the STL-AS performs better than the MTL approach for

HAS (comparing results in Table 2 and 3).

Method

UW-IOM

MSE
Sp. Corr.

(%)

mAP

(%)

Edit score 

(%)

F1 overlap

(%)

Learned

Weights

MTL-base
0.72

±0.14

66.68

±4.89

76.0

±8.51

88.36

± 4.67

89.56

±4.45

CrE: 0.70, MSE: 0.81, L1: 0.51

lr: 0.001

MTL-emb
0.61

±0.36

55.18

±6.57

74.45

±10.36

91.59

±1.23

92.03

±2.54

CrE: 0.72, MSE: 0.85, L1: 0.64

lr: 0.001

TUM

MTL-base
1.03

±0.48

80.44

±4.67

36.83

±16.63

64.75

±13.10

54.15

±19.01

CrE: 0.95, MSE: 0.97, L1: 0.95

lr: 1e-04

MTL-emb
1.01

±0.38

73.83

±8.00

39.23

±17.00

65.87±

9.13

58.24

±11.23

CrE: 0.86, MSE: 0.89, L1: 0. 86

lr: 0.0005

Table 3. Results for the MTL network. mAP, edit, and F1-overlap

scores are represented using mean and standard deviation values

over the validation splits in the UW-IOM and TUM datasets for

different activity segmentation methods and modalities. MSE and

Spearman’s coefficient show the model’s performance in predict-

ing the activity risk scores.

5.3. Fusion vs. No Fusion Approach

The main purpose of this experiment is to validate the idea

that action information can improve REBA score predic-

tions. Table 3 and Figure 3 show the MTL-base and MTL-

emb results, where improvements are observed when the

HPA head has access to the Softmax output of the HAS

head. In Figure 3, we see the highly nonlinear ground truth

REBA scoreline (in solid light blue-green) and the corre-

sponding predictions for each action by both the MTL net-

works. The figure suggests that the network with embed-

ding predicts the REBA scores more accurately. On the

contrary, the shared embedding model does not significantly

improve the performance of the HAS head. Figure 5 depicts

the difference in the confusion matrices of the two models.

For simplicity, the off-diagonal elements are ignored. While

there are small improvements in a few classes, the overall

improvement is not substantial.

5.4. Failure Cases

Although we show that our MTL-emb and STL-AS meth-

ods perform well on the UW-IOM dataset and even better

than using context heavy features such as VGG16, these

models are not particularly successful on the TUM dataset.

We present the confusion matrices for the UW-IOM and

TUM datasets in Figure 6. In the following, we describe

our insights on the performance of the models in detail.

The camera view in the TUM dataset is from the top. As

a result, arm pose estimation quality is poor for the activities

where the person’s back is facing the camera and the arm

is occluded such as for pickup-drawer and close-drawer.

Another source of confusion is between Pickup-hold-both-

hands and Pickup-hold-one-hands due to the fact that the

poses are very similar.

Since the segmentation head is not very successful on the

TUM dataset, the improvement in the REBA score predic-

tion between the MTL-emb and MTL-base models is also

not significant unlike in the case of the UW-IOM dataset.

For the TUM dataset, fusing image-based features with the

GCN can be potentially useful in decreasing the ambiguity

in the GCN spatial descriptors, thereby, improving both the

STL-AS and MTL results for REBA score prediction.

6. Conclusions and Future Work

We introduce a graph-based multi-task learning approach

for Human Postural Assessment and show that it outper-

forms the equivalent Single-Task Learning due to the im-

portance of the activity type in the risk associated with a

posture. Human Postural Assessment tasks, specifically Er-

gonomics Risk Assessment, are more challenging than reg-

ular Human Activity Evaluation problems since the assess-

ment has to happen in a frame-wise manner and is highly

dependent on joint kinematics. Despite the challenge of

tracking the intricacies of our risk assessment (REBA) pro-

file, the proposed method shows competence in predicting

the risk scores. More importantly, our work demonstrates

the effectiveness of the GCN model as a spatial feature ex-

traction backbone, compared to context-based features that

have been traditionally used with ED-TCN for Human Ac-

tivity Segmentation tasks. To showcase the weaknesses of

this framework, we implemented our method on a challeng-

ing dataset (TUM) and discussed the failure cases.

Although the focus of this work is on Ergonomics Risk

Assessment, we believe that our Multi-Task Learning ap-
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Method

UW-IOM TUM

mAP (%) Edit score (%) F1 overlap (%) mAP (%) Edit score (%) F1 overlap (%)

ED-TCN / Pre-trained VGG16 [33] - 88.52 ± 1.17 93.24 ± 0.58 - 86.34 ± 3.15 87.92 ± 2.16

ED-TCN / Fine-tuned VGG16 [33] - 82.96 ± 3.33 87.77 ± 2.51 - 84.96 ± 4.37 87.29 ± 2.78

ED-TCN / Simplified P-CNN [33] - 89.90 ± 1.16 93.99 ± 0.77 -

GCN-ED-TCN (STL-AS) 49.61 ± 0.17 92.08 ± 1.18 92.33 ± 0.78 24.17 ± 11.99 67.53 ± 5.16 52.20 ± 22.02

Table 2. mAP, edit, and F1-overlap score represented using mean and standard deviation values over the test videos in the UW-IOM and

TUM datasets for different methods and modalities solving the HAS task.
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Figure 5. The difference in confusion matrices. The top and bot-

tom matrices are for the UW-IOM and TUM dataset, respectively.

The diagonal elements show the differences between the diagonal

values of the MTL-emb and MTL-base confusion matrices and the

off-diagonal elements are shown as ”0.0” for simplicity.

proach can be applied to many other action and skill as-

sessment problems. The mapping of skeletal representa-

tion to the activity score using GCN is a new approach

for solving ERA, which can initiate a new direction by ex-

ploiting the natural connection between posture and activity

risk/quality.
Although we outperform state-of-the-art on HAS and

ERA on the UW-IOM dataset, some open issues remain.
First, generalization concerning other activities has not been

w
al

ki
ng

st
an

d/
re

ac
h/

to
p

bo
x/

st
an

d/
pi

ck
 u

p/
to

p

bo
x/

st
an

d/
pl

ac
e/

m
id

st
an

di
ng

ro
d/

st
an

d/
pi

ck
 u

p/
to

p

ro
d/

st
an

d/
pl

ac
e/

m
id

bo
x/

st
an

d/
pi

ck
 u

p/
m

id

ro
d/

st
an

d/
pi

ck
 u

p/
m

id
be

nd
in

g

ro
d/

be
nd

/p
ic

k 
up

/l
ow

bo
x/

be
nd

/p
la

ce
/l
ow

ro
d/

be
nd

/p
la

ce
/l
ow

bo
x/

st
an

d/
pl

ac
e/

to
p

ro
d/

st
an

d/
pl

ac
e/

to
p

bo
x/

be
nd

/p
ic

h 
up

/l
ow

bo
x/

w
al

k/
ho

ld

Predicted Labels

walking

stand/reach/top

box/stand/pick up/top

box/stand/place/mid

standing

rod/stand/pick up/top

rod/stand/place/mid

box/stand/pick up/mid

rod/stand/pick up/mid

bending

rod/bend/pick up/low

box/bend/place/low

rod/bend/place/low

box/stand/place/top

rod/stand/place/top

box/bend/pich up/low

box/walk/hold
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

close/ cabinet 

close/ drawer 

open/ cabinet

open drawer 

pick-up/ cabinet 

pick-up/ drawer 

pick-up/ hold-both-hand

pick-up/ hold-one-hand 

place/ hold-both-hand 

place/ hold-one-hand 

reach/ cabinet

reach/ drawer 

reach/ not-hold 

stand/ not-hold 

twist/ hold-both-hand 

twist/ hold-one-hand 

twist/ not-hold 

walk/ hold-both-hand 

walk/ hold-one-hand 

walk/ not-hold 

Predicted Labels

cl
os

e/
 c

ab
in

et
 

cl
os

e/
 d

ra
w

er
 

op
en

/ c
ab

in
et

op
en

 d
ra

w
er

 

pi
ck

-u
p/

 c
ab

in
et

 

pi
ck

-u
p/

 d
ra

w
er

 

pi
ck

-u
p/

 h
ol

d-
bo

th
-h

an
d

pi
ck

-u
p/

 h
ol

d-
on

e-
ha

nd
 

pl
ac

e/
 h

ol
d-

bo
th

-h
an

d 

pl
ac

e/
 h

ol
d-

on
e-

ha
nd

 

re
ac

h/
 c

ab
in

et

re
ac

h/
 d

ra
w

er
 

re
ac

h/
 n

ot
-h

ol
d 

st
an

d/
 n

ot
-h

ol
d 

tw
is

t/
 h

ol
d-

bo
th

-h
an

d 

tw
is

t/
 h

ol
d-

on
e-

ha
nd

 

tw
is

t/
 n

ot
-h

ol
d 

w
al

k/
 h

ol
d-

bo
th

-h
an

d 

w
al

k/
 h

ol
d-

on
e-

ha
nd

 

w
al

k/
 n

ot
-h

ol
d 

G
r
o

u
n

d
 T

r
u

th
 L

a
b

e
ls

G
r
o
u

n
d

 T
r
u

th
 L

a
b

e
ls

U
W

-I
O

M
T

U
M

Figure 6. Confusion matrices using MTL-base. The top and bot-

tom matrices are for the UW-IOM and TUM dataset, respectively.

addressed. Our method learns the ergonomics risk scores
in a supervised learning framework, which makes the per-
formance of the model limited to the labeled activities that
have been observed. Second, only joint positions are con-
sidered in the spatial representation, while other kinematic
information such as velocity and acceleration have been
shown to be important for many types of injury such as back
injuries [23]. In the future, we hope to address these issues
by developing a biomechanics-based human pose represen-
tation model that learns the causal relation between joint
kinematics and the resultant ergonomics risk.
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[22] Adrien Malaisé, Pauline Maurice, Francis Colas, and Ser-

ena Ivaldi. Activity recognition for ergonomics assessment

of industrial tasks with automatic feature selection. IEEE

Robotics and Automation Letters, 4(2):1132–1139, 2019.

[23] William S Marras, Gregory G Knapik, and Sue Ferguson.

Loading along the lumbar spine as influence by speed, con-

trol, load magnitude, and handle height during pushing. Clin-

ical biomechanics, 24(2):155–163, 2009.

[24] Pauline Maurice, Adrien Malaisé, Clélie Amiot, Nico-
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