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Abstract

Generative Adversarial Networks (GANs) coupled with

self-supervised tasks have shown promising results in un-

conditional and semi-supervised image generation. We pro-

pose a self-supervised approach (LT-GAN) to improve the

generation quality and diversity of images by estimating the

GAN-induced transformation (i.e. transformation induced

in the generated images by perturbing the latent space of

generator). Specifically, given two pairs of images where

each pair comprises of a generated image and its trans-

formed version, the self-supervision task aims to identify

whether the latent transformation applied in the given pair

is same as that of the other pair. Hence, this auxiliary loss

encourages the generator to produce images that are distin-

guishable by the auxiliary network, which in turn promotes

the synthesis of semantically consistent images with respect

to latent transformations. We show the efficacy of this pre-

text task by improving the image generation quality in terms

of FID on state-of-the-art models in conditional and uncon-

ditional settings on CIFAR-10, CelebA-HQ and ImageNet

datasets. Moreover, we empirically show that LT-GAN

helps in improving controlled image editing for CelebA-HQ,

and ImageNet over baseline models. We experimentally

demonstrate that our proposed LT self-supervision task can

be effectively combined with other state-of-the-art training

techniques for added benefits. Consequently, we show that

our approach achieves the new state-of-the-art FID score of

9.8 on conditional CIFAR-10 image generation.

1. Introduction

Generative Adversarial Networks (GANs) have become

a popular class of generative models as they have shown im-

pressive capacity in modelling complex data distributions,

such as images [2, 23] and audio [9, 10]. GANs consist

of a generator and a discriminator network with competing
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goals: the generator’s objective is to generate realistic sam-

ples to fool the discriminator and the discriminator’s objec-

tive is to distinguish between the real samples and the fake

ones synthesized by the generator. The generator learns

a mapping from a latent distribution to the data distribu-

tion via adversarial training with the discriminator. Despite

the significant progress of GANs, there lacks enough un-

derstanding of how different semantics are encoded in the

latent space of generator. It has been observed that in a

well trained GAN, semantics encoded in the latent space

are disentangled to some extent which makes it possible to

perform controlled image editing [20, 37, 42].

Another class of unsupervised learning called self-

supervision has demonstrated promising results on a diverse

set of computer vision tasks [11, 14, 28, 49, 52]. This train-

ing paradigm usually involves designing an auxiliary task

with pseudo-labels derived from the structural information

of the data for better feature representation learning. Self-

supervised learning has also been used in collaboration with

adversarial training in GANs [4, 19] to improve training sta-

bility and unconditional/semi-supervised image generation

quality [27]. Generally, the role of self-supervised methods

in GANs is to regularize the discriminator which in turn

guides the generator to produce images with more informed

geometric or global structure. For example, SS-GAN [4]

introduced an auxiliary task of predicting the degree of ro-

tation in the input image to the discriminator during GAN

training.

The authors of [51] propose to learn an unsupervised fea-

ture representation by encoding the input data transforma-

tion rather than data itself [48, 18]. Specifically, in AET

[51], image transformation operators are sampled, and the

objective is to estimate the transformation given the fea-

ture representation of the original and the transformed im-

ages. This framework of unsupervised feature learning en-

courages encoding of the essential visual structure of the

transformation so that the transformation can be predicted.

AET [51] has shown promising results on various standard

visual downstream tasks. Inspired by this approach [51],

in the domain of GAN, we propose a binary classification
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self-supervised task that aims to detect if the GAN-induced

transformation (as described in [51]) applied on two gen-

erated images is same. The key idea in this transformation

prediction task is to promote useful representation learning

as the features would have to encode sufficient information

about visual structures of both the original and transformed

images for successful training of the auxiliary task.

In this work, we propose a self-supervised task called La-

tent Transformation (LT) Detection for improving the qual-

ity of image synthesis and latent space semantics. Previ-

ous methods ([4], [50]) make use of limited predetermined

augmentation or transformations (such as rotation, transla-

tion) to define the self-supervised loss. However, we utilize

GAN-induced transformations (as described in [51]) to de-

fine our pretext task. In contrast to earlier works [44, 19]

that add a self-supervised loss to the discriminator, our aux-

iliary task promotes the generator to synthesize images such

that the GAN-induced transformations are distinguishable

at the feature representation level.

Our main contributions in this paper are the following :

• We propose a novel self-supervised task of distinguish-

ing between GAN-induced transformations to opti-

mize the generator in collaboration with the adversarial

training of GANs.

• We demonstrate the efficacy of our proposed LT-GAN

approach on several standard datasets and architectures

by improving the conditional and unconditional state-

of-the-art image generation performance measured us-

ing Fréchet Inception Distance (FID) [17] metric.

• We empirically show that our LT-GAN model im-

proves controlled image editing (using existing seman-

tic editing frameworks [42, 37]) over baseline models.

2. Background and Related Work

Self-supervised learning is an unsupervised learning

framework that seeks to leverage supervisory signals from

the structural information present in the data by defin-

ing pretext tasks. Self-supervision techniques have shown

a huge potential in diverse research areas, ranging from

robotics to computer vision [21, 41, 35, 28, 11]. In vi-

sual domain, a pretext task is designed with labels derived

from the images themselves that help in learning rich fea-

ture representation useful for downstream tasks [14]. Some

of the earliest efforts [8] in this area utilize relative posi-

tion prediction of image patches. Inspired by this task’s

relation to prediction of context in images, the authors of

[30, 31, 33] use a pretext task of predicting the permutation

in a image with shuffled patches. [11] used the surrogate

objective of predicting the angle of rotation for unlabelled

image. The task of in-painting [36] and image coloriza-

tion [52, 53] have also been used as auxiliary tasks in the

self-supervised learning framework. In contrast with utiliz-

ing the geometric and structural in-variances, [3] uses the

task of predicting the cluster assignment in feature space as

pseudo labels for unlabeled data. Also, [32] obtains super-

visory signal by counting the visual primitives present in the

patches of images. Along the lines of transformation predic-

tion task like [11], AET [51] introduces a surrogate task of

reconstruction of input data transformations to learn unsu-

pervised feature representations. Inspired by this work, our

approach LT-GAN proposes the auxiliary task of estimat-

ing GAN-induced transformations. We hypothesize that it

would encourage the generator to synthesize semantically

consistent image transformations with respect to similar la-

tent space perturbations.

GANs with self-supervised auxiliary tasks Recently,

self-supervised learning has been coupled with adversarial

training to improve the training stability and image qual-

ity of GANs [4, 19, 45]. The motivation behind adding

self-supervised loss to GAN training is to equip the feature

representations to recognize the global structures present in

real data through the pretext tasks. SS-GAN [4] uses the

auxiliary task of image rotation degree classification based

on the discriminator features. The authors of [19] propose

to use the pretext task of distinguishing between real im-

ages and corrupted real images with GAN training. These

corrupted images are created by randomly exchanging pairs

of patches in an image’s convolutional feature map.

Latent Space Manipulation for semantic editing in

GANs Conventional approaches of finding interpretable

manipulations in GAN latent space compute linear direc-

tions corresponding to attribute change by using annotated

attributes tags of the images [38, 23]. [47] showed this to

be true even for pre-trained classifiers where interpolation in

latent feature space of target and source images leads to in-

terpretable transfer of visual properties from a source image

to a target image. To assume control over the image genera-

tion process in GANs, works [34, 5] propose modifications

in architecture and training approach. [34] allows the gener-

ation of images belonging to a certain class and therefore re-

quires access to labels for training the model. [5] learns dis-

entangled representations by maximizing the mutual infor-

mation between a subset of the latent variables and the ob-

servation, which enables the process of finding a posteriori

semantic direction. However, work by [20, 37, 12] shows

that the latent space directions corresponding to transfor-

mations (such as zoom, scale, shift, brightness) can be com-

puted using the respective augmentation of images on pre-

trained GAN models. These approaches [20, 37] lighten the

requirement of attribute tagged images for some general im-

age editing tasks and can also serve as a measure of general-

ization capacity of generative models. The performance of
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these latent self-supervised trajectories are limited by biases

in the training dataset and the models’ generalization per-

formance [7, 20]. Recent advances in GANs [2, 23] in gen-

erating photo-realistic images have unlocked the potential

for content creation and fine-tuning modifications [46, 1].

[42] performs semantic face editing (for changing attributes

such as age, expression, etc.) on a fixed pre-trained GAN

model by using linear subspace projection techniques and

thus demonstrating disentanglement of the latent space of

pre-trained GANs. We show that our approach LT-GAN

improves controlled image editing over baseline models by

using existing semantic editing frameworks [42, 37].

3. Methodology

In this section, we first present the standard GAN for-

mulation and the terminologies used in the paper. We then

introduce our training methodology for LT-GAN that lever-

ages a self-supervised task defined on the latent space of

generator to better organize the semantics encoded in the

latent space and promote diverse image generation.

3.1. Generative Adversarial Networks

Generative adversarial network (GAN) consists of a gen-

erator G : z → x and a discriminator D : x → R. G learns

a mapping from the latent code z ∈ R
d, sampled from a

prior distribution p(z), to an observation x ∈ R
n (e.g. a

natural image manifold). The role of discriminator D is

to differentiate between samples from real data distribution

p(x) and the ones generated from G. The standard training

of GAN involves minimizing the following loss function in

an alternating fashion:

LD : −Ex∼p(x)[log(D(x))]− Ex∼p(z)[1− log(D(G(z)))]

LG : −Ez∼p(z)[log(D(G(z)))]
(1)

The above loss is commonly known as non-saturating loss

and was originally proposed in [13]. A notable modification

of the loss for improved training is the hinge loss [43]:

LD : Ex∼p(x)[1−D(x)]+ + Ex∼p(z)[1 +D(G(z))]+

LG : −Ez∼p(z)[D(G(z))]

where [y]+ = max(0, y)
(2)

The latent code z is usually sampled from a normal dis-

tribution. For each step of generator update, discriminator

is updated for dstep times. A common issue with GANs is

its instability during training that generally requires stabi-

lization techniques [40, 15, 29]. In this work, we use the

widely accepted practice of spectral normalization [29, 2]

for stable training.

3.2. Latent Transformation GAN (LTGAN)

One of the attractive use-cases of GANs which has re-

cently received significant attention is controlled image

synthesis by latent space manipulation. Inspired by this,

we introduce a self-supervision task on the generator for

improved steerability in latent space by leveraging GAN-

induced transformations.

GAN-induced Transformation Give a latent code z

sampled from a prior distribution p(z) and the correspond-

ing generated image I = G(z), we define GAN-induced

transformation as:

Tǫ(G(z)) = G(z + ǫ) : ǫ ∼ p(ǫ) (3)

For a fixed generator, the transformation T is parameter-

ized by ǫ ∈ R
d, a perturbation of small magnitude, sampled

from a distribution p(ǫ). Applying Tǫ to the image I gener-

ated from latent code z generates a transformed version of

the image Tǫ(I).

LT Self Supervision In our self-supervision task, we aim

to enforce that when a transformation T parameterized by

a particular ǫ is applied to different latent codes, the change

in (i.e. difference between) original and transformed im-

ages is semantically consistent across all generated images

(examples of change can be translation, scaling, etc.). Let

E : x → E(x) be an encoder network to extract the features

of an image. Given a transformation Tǫ, the feature repre-

sentation corresponding to the change between original and

transformed images can be written as:

f(z, z + ǫ) = E(G(z))− E((Tǫ(G(z)) (4)

where f captures the change in the original image fea-

tures and features of its GAN-induced transformation. We

choose to implement f simply as the subtraction of en-

coder features, though other operations like concatenation

are valid choices to explore. In LT self supervision, given

f1 = f(z1, z1 + ǫ1) and f2 = f(z2, z2 + ǫ2) where

z1, z2 ∼ p(z), we introduce an auxiliary network A to clas-

sify whether the above pair of features {f1, f2} are corre-

sponding to transformations parameterized by same ǫ or dif-

ferent. Specifically, the self-supervision loss is defined as:

LA = E
z1,z2∼p(z)
ǫ1,ǫ2∼p(ǫ)

L
(

A
(

[f(z1, z1 + ǫ1), f(z2, z2 + ǫ2)]
)

, yss

)

yss = (ǫ1 == ǫ2)
(5)

where L is standard binary cross entropy loss and label yss
is 1 if ǫ1 is equal to ǫ2 else 0. During training with out self-

supervision loss, generator G and the auxiliary network A
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Figure 1: Overview of our proposed LT-GAN self-supervision task for generator training with an example batch size of 2b = 4. Generated images G(z)
and it’s GAN-induced transformations G(z + ǫ) are used for defining the self-supervision loss (bce loss). Given intermediate discriminator features of

above generated images i.e. E(G(z)) and E(G(z + ǫ)), the feature representation of the GAN-induced transformation is f(z, z + ǫ). Auxiliary network

A and generator G are trained simultaneously on the pretext task of predicting if f(zi, zi + ǫl) and f(zj , zj + ǫk) features are generated from same ǫ

perturbation in the latent space (where i, j ∈ {1, .., 2b} and l, k ∈ {1, 2}).

are updated simultaneously alternating with discriminator

updates. Thus, the training objective of LT-GAN is:

LG :− Ez∼p(z)
ǫ∼p(ǫ)

[D(G(z)) +D(Tǫ(G(z)))] + λ.LA

LD : Ex∼p(x)[1−D(x)]+ +

Ez∼p(z)
ǫ∼p(ǫ)

([1 +D(G(z))]+ + [1 +D(Tǫ(G(z)))]+)

(6)

Here, λ denotes the weightage of self-supervision loss in

generator. We choose p(z) and p(ǫ) both to be a normal

distribution with standard deviation σz and σǫ respectively,

where σǫ < σz . The function f in Eq. 4 is implemented as

difference of encoded features. E(G(z)) features are cho-

sen as the intermediate layer activations of the discrimina-

tor. Furthermore, in order to balance the min-max training

between the generator and the discriminator, we also train

the discriminator to predict fake on GAN-induced transfor-

mations. An overview of the generator training in LT-GAN

is shown in Fig. 1 and pseudo-code of LT-GAN training is

explained in Algorithm 1.

4. Experiments and Results

Datasets We validate our proposed self-supervised task

on CIFAR-10 [24], STL-10 [6], CelebA-HQ-128 [22] and

ImageNet-2012 [25] datasets. CIFAR-10 consists of 60K

32×32 images, belonging to 10 different classes: 50K im-

ages for training and 10K for testing. In STL-10, we use

100K unlabelled images for training (resized to 48 × 48)

and 8K images for testing. CelebA-HQ consists of 30K

128×128 face images. We randomly sample 3K images for

testing and the rest for training. ImageNet-2012 consists of

approximately 1.2 million images which we downsample to

128-128 resolution for our experiments. We use the 50K

Algorithm 1 Latent Transformation GAN (LT-GAN)

begin
Input: G, D and A network parameters θG, θD and θA. Batch size

2b, weight of self-supervision loss λ, standard deviation σǫ of normal

distribution p(ǫ), discriminator update steps dstep for each generator

update, Adam hyperparemters α, β1, β2.

for number of training iterations do

for t : 1...dstep do

Sample batch x ∼ pdata(x)

Sample {z(i), ǫ(i)}bi=1 ∼ p(z), p(ǫ)

z = {z(i)}bi=1 ∪ {z
(i) + ǫ(i)}bi=1

LD = [1−D(x)]+ + [1 +D(G(z))]+
Update θD ← Adam(LD, α, β1, β2)

end

Sample z = {z(i)}2bi=1 ∼ p(z) , ǫ1, ǫ2 ∼ p(ǫ)

ǫ = [ǫ1, ǫ2].repeat(b) ⊲ repeat along batch dimension

Generate images G(z)

Generate GAN-induced transformation G(z + ǫ)

f(z, z + ǫ) = E(G(z))− E(G(z + ǫ))

shuffle() = permutation(2b)

LA = L
(

A([f(z, z + ǫ), f(z, z + ǫ).shuffle()]), yss
)

yss = (ǫ == ǫ.shuffle())

LG = −D(G(z))−D(G(z + ǫ))

Update θA ← Adam(LA, α, β1, β2)

Update θG ← Adam((LG + λ.LA), α, β1, β2)

end

end

validation set images of ImageNet for testing.

GAN Architectures and Evaluation We use the GAN

architecture of BigGAN [2], StyleGAN [23], SNDC-

GAN [29] with their proposed training techniques as the

baseline. We also compare against state-of-the-art training

technique CR-GAN [50]. In the conditional setting, we per-

form experiments on CIFAR-10 and ImageNet-2012 with
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BigGAN architecture. In the unconditional setting, we per-

form experiments on CelebA-HQ-128 with StyleGAN and

SNDCGAN, on CIFAR-10 with SNDCGAN and STL-10

with ResNet architecture [29].

We use Fréchet Inception Distance (FID) [17] as the pri-

mary metric for evaluating image quality and diversity. FID

has been shown to be more consistent with human evalua-

tion of image quality and also helps in detecting intra-class

mode collapse [17]. We calculate FID between test set im-

ages and equal number of generated images for all datasets

and report the best FID obtained across 3 runs. We found

our methodology to be stable and we show the variance

analysis of FID in the supplementary section.

4.1. Training and Implementation Details

The architecture of the auxiliary network A used for the

self supervision task consists of a two-layer fully connected

network with ReLU activation at the hidden layer and sig-

moid activation at the output. Let the features E(G(z)) ex-

tracted from the discriminator network be of shape C×H×
W . The input layer of A is of 2 × C × H × W dimen-

sion (since we flatten and concatenate the features E(G(z))
and E(Tǫ(G(z)))) and the hidden layer is of C dimension.

The self-supervised task is introduced after n warmup it-

erations of training using the standard GAN loss to ensure

that the generated images and its transformations are closer

to natural image manifold. Furthermore, we only experi-

mented with sampling two distinct ǫ and repeating along

the batch dimension for calculating GAN-induced transfor-

mation. We leave exploring the effect of varying the above

number and relaxing the strict equality between ǫ while cal-

culating self-supervision loss in Eq. 5 for the future work.

Across all model architectures and datasets, we observe

the optimal value of σǫ to lie in the range of [0.4, 0.6].
For hyper-parameter λ, we found the value of 1.0 to work

well except for BigGAN on ImageNet and StyleGAN on

CelebA-HQ where we use the value of 0.5. More details

about training hyper-parameters for each dataset and archi-

tecture are mentioned in the supplementary.

We use Adam optimizer in all our experiments and spec-

tral normalization (SN) [29] in the discriminator (except

in the case of StyleGAN). Hinge loss is used by default

for training (except in case of StyleGAN, which uses non-

saturating loss with R1 regularization [26]). We follow the

default configuration for all architectures and hence we train

till 200K generator steps for CIFAR-10 and STL-10, 100K

generator steps for CelebA-HQ on SNDCGAN and 525K

generator steps on StyleGAN. For ImageNet, we train the

model for 250K steps unless the training collapses.

In the following sections, we show that our proposed

self-supervision task helps in improving FID scores over the

baseline models and can be effectively combined with other

regularization techniques in GANs, e.g. CR-GAN [50],

DATASET METHOD FID

BigGAN 14.73

CIFAR-10 LT-BigGAN (ours) 11.01

(cond.) CR-BigGAN 11.48

CR+LT-BigGAN (ours) 9.80

SNDCGAN 25.39

CIFAR-10 LT-SNDCGAN (ours) 22.10

(uncond.) CR-SNDCGAN 18.72

CR+LT-SNDCGAN (ours) 17.56

SNDCGAN 25.95

LT-SNDCGAN (ours) 19.63

CR-SNDCGAN 16.97 (18.44∗)

CelebA-HQ CR+LT-SNDCGAN (ours) 16.84

(uncond.) StyleGAN 11.43

LT-StyleGAN (ours) 11.15

ImageNet BigGAN 10.34
#

(cond.) LT-BigGAN (ours) 9.94
#

Table 1: Comparison of self-supervised LT-GAN training approach with

state-of-the-art GANs based on FID. * denotes our best reproduced result

using the implementation of 1, which is different from the score reported

in [50]. # denotes BigGAN Imagenet implementation of 2

across datasets and model architectures. We empirically

show that LT-GAN results in a more steerable and disentan-

gled latent space by performing latent space manipulation

on CelebA-HQ and ImageNet datasets. We also compare

our approach with the recently proposed self-supervised

SS-GAN, which uses a rotation-based auxiliary task [4].

4.2. Results

Unconditional GANs In the unconditional setting, we

perform experiments on CIFAR-10 with SNDCGAN [29]

architecture and CelebA-HQ with SNDCGAN and Style-

GAN [23] architectures 1.

From Table 1, we can see that LT-GAN results in im-

proved FID scores compared to the baseline models. More-

over, we also combine our self-supervision task with the

current state of the art training methodology CR-GAN [50].

Using CR+LT-GAN results in further improvement of FID

score on both datasets.

Conditional GANs In the conditional setting, both the

generator and the discriminator are provided with the under-

lying class label information. We perform experiments on

CIFAR-10 and ImageNet datasets 2 using the recent state-

of-the-art BigGAN [2] model. We observe that for both

1We use the open source implementation of https://github.

com/google/compare_gan for SNDCGAN and https:

//github.com/rosinality/style-based-gan-pytorch

for StyleGAN
2Experiments on BigGAN use the implementation of https://

github.com/ajbrock/BigGAN-PyTorch. For ImageNet, dstep is

1 instead of the more optimal setting of 2 as in [2] because of less compu-

tation requirements of the former.
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Figure 2: Qualitative comparison of Brightness (left) and Vertical shift (right) using latent space manipulation on randomly generated images for baseline

BigGAN and LT-BigGAN models.

datasets our self-supervision task improves the FID score

as shown in Table 1. We also present experimental results

of combining our self-supervision technique with the cur-

rent state-of-the-art CR-GAN [50] on CIFAR-10 that fur-

ther improves the FID score over CR-GAN.

4.3. Steerability in Latent Space

In this section, we empirically demonstrate that our pro-

posed self-supervision task helps to learn a more steer-

able latent space. We analyse models trained on CelebA-

HQ dataset using the framework of InterfaceGAN [42].

On ImageNet dataset, we use the methodology proposed

in [37] to show that BigGAN [2] model trained with our

approach helps in finding better edit directions in the latent

space corresponding to image transformations like transla-

tion, brightness and scale.

ImageNet Dataset We analyze the latent space of gen-

erator trained on ImageNet by finding interpretable direc-

tions corresponding to parametrizable continuous factors of

variation like translation, zoom and brightness using the

framework of [37]. To this end, authors in [37] propose a

novel reconstruction loss between randomly generated im-

ages and the transformed version of these images with vary-

ing intensity level (e.g. zoom at various scales) to first deter-

mine the latent code corresponding to transformed images.

Using this training set of pairs of latent codes of original

and transformed images, the direction in latent space cor-

responding to that particular transformation is learnt as ex-

plained in [37]. We use this methodology to discover latent

space trajectories corresponding to the image transforma-

tions: brightness, scale, horizontal shift and vertical shift,

for BigGAN [2] model trained on ImageNet dataset.

Fig. 2 shows the qualitative comparison of brightness

and vertical shift direction vectors between baseline Big-

GAN and LT-BigGAN. We can see in the figure that our

approach results in smoother and more meaningful trans-

formations in the image space while preserving the content

of the image and avoiding distortions at the extremes. More

qualitative comparison on latent space steerability including

horizontal shift and zoom is shown in the supplementary.

CelebA-HQ Dataset InterfaceGAN [42] provides a

framework to find interpretable semantics encoded in the

latent space of face synthesis GAN models. Using it, we

discover directions in the latent space to smoothly vary fa-

cial attributes, namely age, gender, smile expression and

eyeglasses. We use the following procedure as proposed

in [42] to discover facial attribute boundaries for StyleGAN

and SNDCGAN architectures:

• Randomly generate 500K images. Use a ResNet50 fa-

cial attribute detector to predict the value of each bi-

nary facial attribute for the generated images. For each

binary attribute, sort the list of 500K images based on

the predicted value of the attribute and collect top 10K

and bottom 10K images. Out of these 20K images, ran-

domly sample 14K images to use as the training set.

• For each attribute, train a linear SVM using the above

collected 14K images to predict the value of the at-

tribute (i.e. 0/1) given the latent code used to generate

the image. The trained SVM represents a hyperplane

that serves as a boundary in the latent space separating

the two (-ve/+ve) classes of the binary attribute.

We report the accuracy of each of the trained SVMs on

remaining set of images (i.e. 480K images). A higher SVM
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Figure 3: Manipulation of Age (top left), Gender (top right), Smile expression (bottom left)and Eyeglasses (bottom right) attributes by navigating in the

latent space of LT-StyleGAN using InterfaceGAN [42] framework. Original images are in the centre and the left and right images are generated by moving

the latent code in negative and positive directions respectively.

SNDCGAN StyleGAN

Baseline SS-GAN LT-GAN Baseline LT-GAN

A 63.89 67.28 71.01 68.66 70.57

E 77.36 82.85 88.53 70.95 76.91

G 64.64 68.34 72.06 73.78 78.49

S 86.10 85.76 88.55 64.75 65.30

Table 2: Classification accuracy (%) of separation boundaries in latent

space with respect to different attributes of CelebA-HQ. Attributes are A:

Age, E: Eyeglasses, G: Gender, and S: Smile expression.

accuracy indicates a more steerable latent space. As shown

in Table 2, our self-supervision task improves upon the

baseline accuracy on all four facial attributes (i.e. age, eye-

glasses, gender and expression) for both SNDCGAN and

StyleGAN architectures. We also compare LT-GAN against

SSGAN [4], which is another self-supervision based GAN.

LT-GAN achieves better accuracy on all four attributes com-

pared to SSGAN. Fig. 3 shows some example images of

attribute manipulation by moving the latent code in the di-

rection normal to attribute boundary. We show more quali-

tative samples in the supplementary section.

5. Discussion and Ablation Studies

StyleGAN Latent Space Disentanglement To demon-

strate that our proposed self-supervision task helps in

achieving a more disentangled latent space, we adopt the

InterFaceGAN framework [42] to measure the correlation

between synthesized facial attributes distributions of Style-

GAN trained on CelebA-HQ dataset. We synthesize 500K

images by randomly sampling the latent space. Using a

pre-trained ResNet50 facial attribute detector, we assign

attribute scores to all 500K images for all four facial at-

tributes (age, eyeglasses, gender, and smile). Treating each

attribute score as a random variable, we can compute the

correlation between two attributes using their distribution

observed over the 500K generated images. The formula

to compute correlation between two attributes X and Y is

ρXY =
Cov(X,Y )

σXσY

, where Cov(·, ·) denotes covariance

and σ denotes standard deviation. Correlation values closer

A E G S

A 1./1. 0.373/0.326 0.466/0.462 -0.128/-0.111

E - 1./1. 0.292/0.262 -0.096/-0.088

G - - 1./1. -0.297/-0.293

S - - - 1./1.

Table 3: Correlation matrix of synthesized attribute distributions of

StyleGAN on CelebA-HQ. In each cell, the first value corresponds to

baseline StyleGAN and the second value (following /) corresponds to LT-

StyleGAN. Attributes are A: Age, E: Eyeglasses, G: Gender, and S: Smile

expression.

to zero indicate a more disentangled latent space. Table

3 shows the correlation values between attributes for both

baseline StyleGAN and LT-StyleGAN. It can be observed

that the correlation between attributes is more closer to 0
for LT-StyleGAN as compared to baseline StyleGAN.

Similar to [23], we also compute the perceptual path

length for both latent spaces Z and W of StyleGAN. The

idea is that a more disentangled latent space will result

in perceptually smoother transitions in the image space

as we interpolate in the latent space, and thus give lower

perceptual path length. For the Z space, perceptual path

length is 242.33 for baseline StyleGAN and 133.11 for LT-

StyleGAN. For the W space, perceptual path length is 77.48

for baseline StyleGAN and 72.71 for LT-StyleGAN.

Choice of hyper-parameters σǫ and λ. Hyper-parameter

σǫ controls the difficulty of self-supervision task. A large

value of σǫ makes the self-supervision task trivial (since it is

easier to distinguish between latent space perturbations that

are far apart). In contrast, a smaller value of σǫ makes the

pretext task too difficult and may cripple training. Hyper-

parameter λ controls the ratio of weight assigned to self-

supervision loss and adversarial loss in generator objective

function. To study the effect of these hyper-parameters on

model performance (i.e. FID), we perform ablation experi-

ments by varying one hyper-parameter and fixing the other

to its optimal value. We conduct this experiment on SNDC-

GAN architecture with CelebA-HQ dataset and the results

are as shown in Fig. 4. It can be observed that minimum
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Figure 4: FID on varying σǫ and λ for LT-SNDCGAN on CelebA-HQ

Methods CelebA-HQ CIFAR-10 STL-10

Baseline 25.95 25.39 35.74

SS-GAN 26.85 22.88 33.63

LT-GAN (ours) 19.63 22.10 31.35

Table 4: FID comparison of LT-GAN with SS-GAN on different datasets

FID is achieved at the optimal values of σǫ = 0.5 and

λ = 1.0. FID increases as we move away from the opti-

mal values and the graphs show a U-shaped trend.

Auxiliary network accuracy on generative transforma-

tions We validate the efficacy of our learned auxiliary net-

work A in SNDCGAN CelebA-HQ setting with σǫ = 0.5.

We vary the σǫ of p(ǫ) and test the ability of the auxiliary

network to distinguish between GAN-induced transforma-

tions. In Fig. 5, we report the binary classification accuracy

on randomly generated 25K samples and their transforma-

tions from the trained generator. It can be observed that

the auxiliary network classifies relatively well for transfor-

mations with σǫ in neighbourhood of 0.5, on which it was

trained, but performance decreases as σǫ diverges from 0.5.

Comparison with SS-GAN We also compare LT-GAN

with SS-GAN [4], which is a recently proposed technique

to train GANs with rotation-based self-supervision. In con-

trast to SS-GAN, our self-supervision task is only defined

wrt the generator and considers generative transformations

instead of rotation transformations. We compare across 3

datasets: CIFAR-10 and CelebA-HQ on SNDCGAN archi-

tecture and STL-10 on ResNet architecture [29]. The re-

sults are shown in Table 4. We observe that LT-GAN per-

forms better on CelebA-HQ and STL-10 and is comparable

to SS-GAN on CIFAR-10. Since rotation transformation is

less informative for datasets with single domain images like

faces, SS-GAN performs worse than baseline on CelebA-

HQ dataset. However, in comparison to SS-GAN, LT-GAN

improves the FID score for all datasets.

Classification Accuracy Score (CAS) CAS [39] was re-

cently proposed as an additional metric for evaluating con-

Figure 5: Accuracy (%) of our binary classification self-supervision task

on varying σǫ for LT-SNDCGAN on CelebA-HQ

ditional generative models on the downstream task of im-

age classification. A standard image classification network

is trained using images generated from the model as a train-

ing set. The trained model is used to predict labels on the

test set of real images and the obtained test accuracy is the

CAS metric (higher the better). It was shown that neither

FID [17] nor IS[40] scores are predictive of CAS, and thus

it serves as another independent evaluation metric. We com-

pare the CAS score of LT-BigGAN and baseline BigGAN

trained on Imagenet and CIFAR-10 datasets. For ImageNet

dataset, we trained a ResNet-50 [16] classifier, similar to

[39], using the generated samples and evaluated its perfor-

mance on its validation set. LT-GAN achieves the top-5 ac-

curacy of 49.24 as compared to 44.15 of the baseline model,

outperforming it by over 5%. Furthermore, on closer exam-

ination of class level classification accuracy, we found that

many classes in the baseline model suffer from severe mode

collapse, which is alleviated to a large extent in LT-GAN.

Sample images from those classes for both baseline and LT-

GAN are shown in supplementary section. On CIFAR-10

dataset, a ResNet-56 model (as used in [39]) trained via

samples generated from LT-BigGAN achieved a test ac-

curacy of 79.93%, whereas the baseline model achieved

70.57%.

6. Conclusion

In this work, we present LT-GAN, a novel self-

supervised technique for improving the image generation

quality and diversity of GANs. The pretext task of distin-

guishing GAN-induced transformation helps the generator

blocks of GANs to learn steerable latent feature representa-

tion and synthesise high-fidelity images. The experimental

results demonstrate that when combined with strong GAN

baselines [2, 23], our model LT-GAN improves the qual-

ity and diversity of generated images on several standard

datasets. The performance on FID metric and controlled im-

age editing highlights the effectiveness of LT-GAN in both

unconditional and class-conditional GAN settings. We hope

that this approach of leveraging latent transformation as a

pretext task can be extended to other generative models.
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