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Abstract

This paper proposes a new end-to-end trainable model

for lossy image compression, which includes several novel

components. The method incorporates 1) an adequate per-

ceptual similarity metric; 2) saliency in the images; 3)

a hierarchical auto-regressive model. This paper demon-

strates that the popularly used evaluations metrics such as

MS-SSIM and PSNR are inadequate for judging the per-

formance of image compression techniques as they do not

align with the human perception of similarity. Alternatively,

a new metric is proposed, which is learned on perceptual

similarity data specific to image compression. The proposed

compression model incorporates the salient regions and op-

timizes on the proposed perceptual similarity metric. The

model not only generates images which are visually better

but also gives superior performance for subsequent com-

puter vision tasks such as object detection and segmentation

when compared to existing engineered or learned compres-

sion techniques.

1. Introduction

In the last two decades, the number of images captured

and transmitted via the internet has grown exponentially

[11]. This surge has increased both data storage and trans-

mission requirements. Compression of images can be loss-

less [8, 37], that is, the original image can be perfectly re-

constructed. A better compression rate can be obtained by

using lossy methods such as JPEG [41], JPEG-2000 [37]

and BPG [5]. The objective of these lossy methods is to ob-

tain higher compression by removing the information which

is least noticeable to humans. Note that these traditional

codecs are hand-crafted and are not learned from the data.

More recent methods focus on learning to compress im-

ages. While learned image compression from data using

neural networks is not new [28, 17, 24], there has recently

been a resurgence of deep learning-based techniques for

∗The reserch was conduceted during Y. Patel’s internship at AWS.

solving this problem [3, 4, 26, 32, 22, 29, 39]. These models

are trained by jointly minimizing rate (storage or transmis-

sion requirement) and distortion (reconstruction quality),

leading to a Rate-Distortion trade-off [35].

The contributions of this paper are three-fold:

1. A novel hierarchical auto-regressive architecture for

image compression is proposed, which is based on an

encoder-decoder setup.

2. A learned perceptual similarity metric is proposed.

The metric is realized by a fully convolutional network

(FCN) which is trained on compression specific arte-

facts. Note that the metric is differentiable and it is

used as a for training the image compression model.

3. The proposed model accounts for salient regions. This

is achieved in two ways: (a) more bits are allocated

to the salient regions and (b) higher weight is given to

their reconstruction.

The motivations and background for these contributions

are subsequently discussed, along with the related work.

Taxonomy of image compression models. Deep learn-

ing models for image compression can be broadly cate-

gorized into three generative models: a) Variational Auto-

Encoders [19, 4, 3, 22]; b) Generative Adversarial Networks

[32, 2] (GAN) [13]; c) Auto-Regressive (AR) [40, 26]. Vari-

ational auto-encoders (VAEs) and auto-regressive models

operate by estimating the probability density explicitly. On

the other hand, GANs have an implicit measure of the den-

sity [13]. GANs are useful in very low bit-rate settings as

they can learn to synthesize the images [2]. However, their

superiority over AR and VAE is unclear for higher bit-rates.

A key difference between VAE and AR is that the former

approximates the density, whereas auto-regressive models

such as Pixel-CNNs, Pixel-RNNs [40] have an explicit and

tractable measure of density either in the pixel space or in

the learned quantized space.

Proposed hierarchical auto-regressive model. A hierar-

chical auto-regressive model with two-stages is designed,
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Figure 1: An example from the Kodak dataset [12]. In order of MS-SSIM values: Mentzer et al. [26] > Ballé et al. [3] >

BPG [5] > JPEG-2000 [37]. However, the order of performance based on 5 human evaluations is: BPG [5] > Mentzer et al.

[26] > JPEG-2000 [37] > Ballé et al. [3]. Visually the foreground and text in BPG is clearly better in quality.

which is realized by two 3D Pixel-CNN [40]. The Pixel-

CNNs operate on the learned quantized representations.

During training, the 3D Pixel-CNNs give an explicit mea-

sure of the entropy of the quantized representations, which

via information theory directly relates to the bits required

to store them after arithmetic coding [25]. Minimizing the

estimated entropy leads to compression, while the recon-

structed image should be as close to the original as possi-

ble. Note that auto-regressive models have been used be-

fore for compression [26], but, this is the first hierarchical

auto-regressive model designed for the task.

Existing evaluation metrics. Lossy image compression

models are compared by plotting the rate-distortion curve,

where the rate is in bits-per-pixel vs the value of the dis-

tortion function. Common choices of the distortion func-

tion for compression models are MS-SSIM and PSNR

[3, 4, 26, 22]. Both of these metrics do not align well

with human perception of similarity [30]. As deep learned

models directly optimize on these evaluation metrics, it is

natural for them to have high MS-SSIM or PSNR scores

when compared to the engineered methods such as JPEG-

2000 [37], BPG [5]. However, the resulting images often

look worse to a human, i.e., the distortion in the images

is higher although the metrics report otherwise. Figure 1

shows four different techniques ranked in descending order

of MS-SSIM values. The 2nd and 3rd images have many

more artefacts than the last two images which imply that

MS-SSIM is arguably not a good evaluation measure for

compression. In Figure 1 notice that the text is not as clear

in the first two approaches.

The limitations of MS-SSIM and PSNR have been inves-

tigated in the past [43]. The super-resolution methods have

started using a more sophisticated learned perceptual simi-

larity metric [7, 6] for evaluation, exactly for the mentioned

reasons. Despite of the short comings, recent image com-

pression literature continues to evaluate models using MS-

SSIM and PSNR [3, 4, 26, 22, 29, 32, 38, 39]. Further, it

has been observed that techniques trained on PSNR perform

well when evaluated on PSNR, but poorly when evaluated

using MS-SSIM (and vice-versa). This makes developing

practical compression systems difficult.

Proposed evaluation metric. This paper proposes a

learned perceptual similarity metric for evaluating and

training image compression models. This paper also studies

the compression techniques using human evaluations. The

study shows that human evaluation results correlate well

with the proposed evaluation metric. Furthermore, the rank-

ing of different compression methods, as judged by humans,

correlates with the performance of off-the-shelf object de-

tection and segmentation methods, which are trained on un-

compressed images.

The analysis in this paper starts by evaluating the model

proposed by Zhang et al. [43]. The model is trained on im-

ages with several different artefacts but the only compres-

sion artefacts are from JPEG. As Patel et al. [29] found, us-

ing the model [43] has limitations for compression. There-

fore, we create a compression specific perceptual similarity

dataset. The data include images generated from popular

engineered [37, 41, 5] and learned compression methods

[26, 3, 4, 29]. The data consists of 6 two alternative forced

choices (2AFC) per comparison (see Section 2 for details).

Saliency matters for image compression. While JPEG

[41] divides an image into uniform 8× 8 blocks, BPG uses

a hand-crafted metric to determine homogeneity and divides

the more homogeneous regions into larger 64 × 64 blocks.

In BPG, fewer bits are allocated to homogeneous regions

and more bits are allocated to non-homogeneous regions.

BPG builds on the hypothesis that humans are more prone

to notice artefacts in complex regions of the image. Fol-

lowing this hypothesis of BPG, the proposed method makes

use of object saliency in two ways: 1) rate optimization:

more bits are allocated to the salient regions; 2) distortion

optimization: artefacts in salient regions are more heavily

penalized. To the best of our knowledge, we are the first to

incorporate saliency in learned compression.
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The rest of the paper is structured as follows. In Section

2, the compression specific perceptual similarity dataset

is presented and various metrics are compared against the

human judgements. Section 3 describes the proposed ap-

proach which is evaluated in Section 4. Section 5 concludes

the paper.

2. Perceptual Similarity Metrics

This section investigates various perceptual similarity

metrics for both engineered and learned compression meth-

ods. We collect a compression specific perceptual similar-

ity dataset and benchmark the existing hand-crafted eval-

uation metrics PSNR and MS-SSIM, along with a learned

metric LPIPS [43]. Following the recent evaluation setup in

super-resolution literature [7, 6], we investigate linear com-

binations of learned and hand-crafted perceptual similarity

metrics.

2.1. Setup for Human Evaluations

The setup for collecting this dataset aligns with that of

[43] and adapts two alternatives forced choices (2AFC).

Annotators are presented with two reconstructed versions of

the same image from different compression methods, along

with the original image in the middle. They are asked to

pick the image which is closer to the original. At high bit

rates, the images may be very similar, thus the annotators

are provided with a synchronous magnifying glass. They

are instructed to scan the images as a whole in cases of

uncertainty. The evaluations were hosted on Amazon Me-

chanical Turk, on average, the annotators spent 56 seconds

on one sample.

The images are obtained using the following image com-

pression methods: Mentzer et al. [26], Patel et al. [29],

BPG [5] and JPEG-2000 [37]. A total of 200 original im-

ages are used, comparisons are made at 4 different bit-rates

and all possible combinations of methods are considered,

i.e., 6 combinations for 4 methods. This results in 4, 800 to-

tal samples for perceptual similarity studies. We use 3, 840
samples for training and 960 held out samples for testing.

For each such sample, we obtain 6 evaluations resulting in

a total of 28, 800 annotations.

2.2. Deep Perceptual Metric

The utility of using deep networks as a deep perceptual

similarity metric has been studied by Zhang et al. [43]. It

was observed that comparing activations from deep CNNS

such as VGG-16 [36] or AlexNet [21] acts as a better per-

ceptual similarity metric when compared to MS-SSIM and

PSNR. We follow Zhang’s approach and make use of acti-

vations from five ReLU layers after each conv block in the

VGG-16 [36] architecture, with batch normalization.

Feed-forward is performed on VGG-16 for both the orig-

inal (x) and the reconstructed image (x̂). Let L be the set of

Figure 2: Deep Perceptual Loss: To compute perceptual

similarity distance between the original x and the recon-

structed x̂ images - first compute the deep embeddings F (x)
and F (x̂), normalize along the channel dimensions, scale

each channel vector w (learned on perceptual similarity

dataset) and take the ℓ2 norm. Finally average across spatial

dimensions and sum across channels.

layers used for loss calculation (five for our setup), a func-

tion F (x) denoting feed-forward on an input image x. F (x)
and F (x̂) return two stacks of feature activation’s for all L

layers. The Deep perceptual loss is then computed as:

• F (x) and F (x̂) are unit-normalized in the channel di-

mension. Let us call these, zlx, z
l
x̂ ∈ R

Hl×Wl×Cl

where l ∈ L. (Hl,Wl are the spatial dimensions).

• zlx, z
l
x̂ are scaled channel wise by multiplying with the

vector wl ∈ R
Cl .

• The L2 distance is then computed and an average over

spatial dimension is taken. Finally, a channel-wise sum

is taken which outputs the deep perceptual loss.

Equation 1 and Figure 2 summarize the Deep perceptual

loss computation. Note that the weights in F are learned

for image classification on the ImageNet dataset [34] and

are kept fixed. w are the linear weights learned on top of

F on the perceptual similarity dataset using a ranking loss

function [43]. In the next subsection, the LPIPS metric is

referred to learning w on Berkeley-Adobe Perceptual Patch

Similarity Dataset [43] and LPIPS-Comp (Ours) is referred

to the setup when w is learned on the compression specific

similarity data (Section 2.1). Note that LPIPS-Comp is used

as the Deep perceptual loss (DPL).

DPL(x, x̂) =
∑

l

1

HlWl

∑

h,w

||wl ⊙ (zlx̂,h,w − z
l

x,h,w)||22 (1)

2.3. Analysing Metrics for Image Compression

A comparison of various metrics is provided in Figure 3.

The analysis starts by computing the 2AFC score of a hu-

man annotator. Then, the performance of two hand-crafted
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Figure 3: Comparison of various hand-crafted and learnt

perceptual similarity metrics on the test set.

metrics PSNR and MS-SSIM are reported. Note that these

are the most popular metrics used in the compression lit-

erature to report the state-of-the-art [26, 22, 4, 3, 32, 27].

However, as shown in the figure, the 2AFC scores for them

(MS-SSIM and PSNR) are fairly low and do not align well

with the human perception of similarity.

A naive similarity metric can be obtained by using

AlexNet [21] or VGG-16 [36] trained on ImageNet. These

features act as a better similarity metric [43] compared to

PSNR or MS-SSIM. The features can be adapted better for

perceptual similarity by following the framework presented

in Section 2.2, i.e., linearly re-weighting the channels with

the weight vector on a perceptual similarity dataset. When

these weights are learned on a generic dataset with a large

collection of distortions (LPIPS in Figure 3) such as the

Berkely-Adobe dataset [43], the performance is slightly

worse compared to directly using the ImageNet model. This

indicates a domain gap and establishes that using the sim-

ilarity data of a different nature can have adverse effects.

When the weights are trained on compression specific data

(LPIPS-Comp (Ours) in 3), the learned metric aligns much

better with the human judgements as can be clearly seen in

Figure 3.

Finally, the linear combination of hand-crafted metrics

PSNR and MS-SSIM with a learned metric is investigated.

Unlike [7, 6], the weights given to each metric are learned

on the compression specific similarity dataset. This is

achieved by solving a linear optimization problem and em-

ploying RANSAC. We refer to the supplementary material

for a detailed explanation of learning these weights. It is

observed that LPIPS-Comp (Ours), when combined with

PSNR almost achieves close to human 2AFC score.

3. Proposed Method

The objective function of any lossy image compression

technique is defined by a rate-distortion trade-off:

min
∑

x∼χ

(αRate(x) + βDistortion(x, x̂)) (2)

where x is the image to be compressed drawn from a

collection of images χ, x̂ is the reconstructed image,

Rate(x) is the storage requirement for the image and

Distortion(x, x̂) is a measure of distortion between the

original and the reconstructed images.

As shown in Figure 4a, our method consists of two en-

coders, two decoders, two quantization stages and two auto-

regressive models for entropy estimation. All models are

trained jointly and in an end-to-end fashion. The first en-

coder takes the image as input and outputs latent represen-

tation y = E1(x) : R
W×H×3 −→ R

W

8
×H

8
×C1+1 (Sec-

tion 3.1). Note that the number of channels in the bottle-

neck, C1, is one of the hyper-parameters to train the mod-

els to obtain different bits-per-pixel values. A pre-trained

network outputs the object saliency for the input image

s = S(x) : R
W×H×3 −→ Z

W

8
×H

8
×1

2 (Section 3.4). The

latent representations are first masked by saliency driven

priors ym = m1(y, s) (Section 3.4) and then quantized

ỹ = Q1(ym) : R −→ {c(1,1), ..., c(1,L)} (Section 3.2) and

fed to stage-two. Within stage two, the second encoder out-

puts the latent representations z = E2(ỹ) : R
W

8
×H

8
×C1 −→

R
W

32
× H

32
×C2+1 which are also masked zm = m2(z) (in-

dependent of saliency) and quantized with different centers

z̃ = Q2(zm) : R −→ {c(2,1), ..., c(2,L)}.

An auto-regressive image compression model operating

on a quantized latent representation [26] factorizes the dis-

crete representation using a basic chain rule [20]:

P (ỹ) =

N∏

i=1

p(ỹi|ỹi−1, ..., ỹ1) (3)

Our idea is to jointly learn an extra set of auxiliary rep-

resentations z̃ to factorize joint distribution using:

P (ỹ, z̃) = PΘ(ỹ|z̃)PΦ(z̃) (4)

Here Θ and Φ are the parameters of two 3D Pixel-CNN

models where P (z̃) is the second stage which is decoded

first during the decompression stage. Thus for the first

stage, quantized representations ỹ are encoded and decoded

by assuming that the z̃ is available. In the subsequent sec-

tions, each component of the proposed method is described.

3.1. Encoder­Decoder

The method consists of two encoders and two decoders.

The first encoder is a fifteen residual blocks [15] fully-

convolutional network with three non-local/self-attention
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(a) Overall Method: In the first stage, the input image is fed to the first encoder

and the saliency model, the features are masked using an importance mask and the

saliency mask. The masked features are then quantized and fed to the second-stage.

Within the second stage the features are fed through another encoder, quantized and

compressed independently in a lossless manner using adaptive arithmetic coding.

A transformed version of these compressed representations is used to condition the

compression (entropy estimation) of the first stage’s representation (standard adap-

tive arithmetic coding is used). Finally the compressed quantized representation are

fed to the decoder to generate the reconstructed image.
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(b) Salient Masking: The last channel of the

bottleneck E1(x)[C1] from the first stage

is used as an importance map i. This im-

portance map is linearly combined with the

saliency mask s and is expanded to match

the dimensions of the bottleneck. Finally the

bottleneck is masked using point-wise mul-

tiplication.

Figure 4: 4a provides an overview of our method while 4b illustrates the proposed saliency driven masking.

layers [42]. The first encoder involves down-sampling of

the input image x by a factor of 8. The second encoder

takes the quantized representations from the first stage ỹ

as input, feed-forwards through five residual blocks [15], a

non-local layer [42] and involves a further down-sampling

by a factor of 4. z̃ is W
32 × H

32 and fairly small compared to

the input x of W ×H . Thus, the number of bits required to

store the second stage bit-string is very low (roughly 5% of

the total storage). The decoders corresponding to these two

encoders are their mirror.

The number of channels in the bottlenecks ỹ or z̃ is a

hyper-parameter used to control the bits-per-pixel. In prac-

tice, the number of channels is kept the same, for both of

these bottlenecks, i.e., C1 = C2. Both bottlenecks have an

extra channel for a hybrid of saliency mask and an impor-

tance map (Section 3.4).

3.2. Quantization

Quantization is a non-differentiable function, with gra-

dients being either zero or infinite, thus any deep learning

model with quantization cannot be trained using backprop-

agation [33]. Thus, soft vector quantization [1] is adapted in

our model. More specifically, given a set of cluster centers

C1 = {c1, ..., cL1
} the feed-forward is determined by:

ỹi = QC1
(y) = argminj ||yi − cj || (5)

during backpropagation, a soft cluster assignment is

used:

ŷi =

L1∑

j=1

exp(−σ||yi − cj ||)∑l=L1

l=1 exp(−σ||yi − cj ||)
(6)

Note that the quantization process is the same for both

stages, but with different sets of centres.

3.3. Hierarchical Auto­Regressive Model

First Stage. The representations of the first stage are en-

coded and decoded by conditioning on the second stage and

may be fully factorized as:

P (ỹ|z̃) =

i=N∏

i=1

P (yi|yi−1, ..., y1, D2(z̃)) (7)

The quantized representations of the first stage are loss-

lessly compressed using standard arithmetic coding where

the conditional probabilities are estimated by a 3D pixel-

CNN [20] which is conditioned on extra auxiliary represen-

tations D2(z̃). The 3D pixel-CNN is trained with cross-

entropy minimization for a correct quantized centre assign-

ment:

Pi,l(ỹ) = pΘ(ỹi = cl|ỹi−1, ..., ỹ1, D2(z̃)) (8)

Thus the total entropy for the bottleneck is estimated using
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cross-entropy as:

CE = H1(ỹ|z̃) = Eỹ∼P (ỹ|z̃)[

i=N∑

i=1

−log(Pi,l(ỹi))] (9)

Second Stage. The representations of the second stage are

encoded independently and the distribution is factorized as

a product of conditionals:

P (z̃) =
i=M∏

i=1

P (z̃i|z̃i−1, ..., z̃1) (10)

The second stage uses a separate 3D pixel-CNN [20],

which is trained by minimizing:

CE = H2(z̃) = Ez̃∼P (z̃)[

j=M∑

j=1

−log(Pj,l(z̃j)] (11)

The objective of the second stage is to learn the auxiliary

features which help in compressing the first stage represen-

tations. Thus the gradients from Equation 9 are propagated

to the second stage along with additional gradients from a

reconstruction loss mse(ỹ, D2(z̃)).

Joint Optimization. The overall rate of optimization

Rate(x) incorporates the masks from both stages, that is

m1 and m2 as the weights to the cross-entropy computa-

tion for a given index in the bottleneck. The overall entropy

is thus given by:

Rate(x) = H = m1H1(ỹ|z̃) +m2H2(z̃) (12)

3.4. Incorporating Object Saliency

The saliency mask s such that si ∈ {0, 1} is predicted

by an off-the-shelf object saliency model [16], which was

trained on MSRA10K data [9]. It is used in our compres-

sion model in two ways. Firstly, to mask quantized repre-

sentations of the first stage, that is, more bits are allocated

to the salient regions. Secondly, during the computation of

distortion loss, to give higher weight to the reconstruction

of the salient regions.

Salient Masking. The generated saliency mask is com-

bined with an importance mask which helps in navigating

the bit-rate convergence to a certain target value [26]. Sim-

ilar to [26], the last channel of the bottleneck is treated as

the importance mask i = E1(x)[C1]. This importance mask

is linearly combined with the saliency mask s to make the

compression driven by saliency. As illustrated in Figure 4b,

the final mask used is given by m1 = λ1s + λ2i. In prac-

tice, λ1 = λ2 = 1, this way the model is able to incorporate

saliency while at the same time it is able to converge to a

specified target bit-rate value.

This two-dimensional mask is expanded to match the di-

mensionality of the bottleneck [26]. Finally, the bottleneck

is masked by a pointwise multiplication with the binariza-

tion of m1 as ym = y ⊙ ⌈m1⌉.

Weighted Distortion Losses. We hypothesise that hu-

mans, in general, pay more attention to salient regions in

the image. Thus, during training, a higher priority is given

to the reconstruction of salient regions. This is achieved

by decomposing the original and reconstructed images into

salient and non-salient parts. Here distortion loss is com-

puted on both separately and then linearly combined as:

w1D(x⊙s, x̂⊙s)+w2D(x⊙ (1− s), x̂⊙ (1− s)) (13)

Where w1 > w2, in practice, w1 = 0.75 and w2 = 0.25.

Refer to the supplementary material for an illustration.

3.5. Model Optimization

The overall optimization is a rate-distortion trade-off

(Equation 2). The rate is determined by Equation 12, the

distortion is saliency driven and is governed by Equation 13

where the distortion function D is a linear combination of

the Deep perceptual loss DPL (Equation 1) (LPIPS-Comp)

and the mean-squared error between the original and the re-

constructed images.

Training Details. Adam optimizer [18] is used, with an

initial learning rate of 4 × 10−3 and a batch-size of 30.

The learning rate is decayed by a factor of 10 in every two

epochs (step-decay). Further, similar to [26], the rate term

is clipped as max(t, βR), to make the model converge to a

certain bit-rate t. The training is done on the training set of

ImageNet dataset the from Large Scale Visual Recognition

Challenge 2012 (ILSVRC2012) [34], with the mentioned

setup, convergence was observed in six epochs.

By varying the model hyper-parameters such as the num-

ber of channels in the bottlenecks (that is C1 and C2), the

weight for distortion loss (α), the target bit-rate (t), multi-

ple models were obtained in the bit-per-pixel range of 0.15
to 1.0. Similarly, the models for [26, 3] were reproduced at

different bits-per-pixel values. Note that, in the case of [3],

we used an MS-SSIM loss instead of MSE loss as was done

in the original paper but this does not change the general

conclusions of the paper. For Lee et al. [22], the authors

provided us with the images from the Kodak dataset for hu-

man evaluations.

4. Results

The results of image compression are shown using hu-

man evaluations. Another way to compare compression

methods is to judge how well the reconstructed images do

on a computer vision task. The model for this task is pre-

trained on uncompressed images, specifically, object detec-
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Figure 5: Human evaluations on the Kodak dataset. The y-

axis shows the number of images for which a given method

performs best. The x-axis shows the BPP values at which

the comparisons were performed.

tion and segmentation are investigated. Each lossy com-

pression method creates a certain kind of artefacts that im-

pact the task. For example, Dwibedi et al. [10] show that

for object detectors such as Faster-RCNN [31] region-based

consistency is important and pixel-level artefacts can af-

fect the performance. Thus a compression method which

distorts the region based consistency will perform poorly

for object detection. We view this as another evaluation

of a compression technique. We demonstrate that on all

three metrics our approach outperforms competing meth-

ods. Section 2 shows that the widely used metrics PSNR

and MS-SSIM are inadequate for judging different com-

pression methods. However, for completeness, results on

PSNR and MS-SSIM are also reported.

Comparison with other compression methods. We

compare the proposed method with the state-of-the-art im-

age compression models from Lee et al. [22] based on varia-

tional autoencoders. We also compare to a single-level auto-

regressive compression method Mentzer et al [26] and two

engineered methods BPG [5] and JPEG-2000 [37]. We use

the Kakadu1 implementation for JPEG-2000 and use BPG

in the 4:4:4 chroma format following [26, 32].

Quantitative Human Evaluations. An extensive human

evaluation study is performed using five compression ap-

proaches, across four different bits-per-pixel values (0.23,

0.37. 0.67, 1.0) on the Kodak dataset [12]. For the hu-

man evaluation, we follow the setup described in Section

2.1. The comparison is made in a pair-wise manner for all

15 possible combinations of the six methods (6C2). For

each such pair-wise comparison, we obtain five evaluations

1http://kakadusoftware.com/

Method 0.23 0.37 0.67 1.0

JPEG-2000 [37] 23.2 29.1 34.4 36.8

BPG [5] 25.2 32.5 35.4 37.7

Mentzer et al. [26] 25.5 30.2 34.5 36.6

Lee et al. [22] (MSE) 28.3 - 36.2 37.6

Lee et al. [22] (MS-SSIM) 27.2 32.5 - 37.6

Ours (MSE + DPL) 29.3 33.7 36.6 37.9

Table 1: Object Detection on MS-COCO 2017 [23] valida-

tion set using Faster-RCNN [31]. The performance is re-

ported using AP@[.5:.95], that is an average over different

scales of IoU. Note that the performance on the original (un-

compressed) images is 40.1%.

Method 0.23 0.37 0.67 1.0

JPEG-2000 [37] 20.2 25.4 30.1 32.2

BPG [5] 22.0 28.5 30.8 32.2

Mentzer et al. [26] 9.3 10.5 11.9 22.0

Lee et al. [22] (MSE) 25.4 - 32.2 33.2

Lee et al. [22] (MS-SSIM) 25.1 28.9 - 33.2

Ours (MSE + DPL) 26.1 30.0 32.3 33.2

Table 2: Instance segmentation on MS-COCO 2017 [23]

validation set using Mask-RCNN [14]. The performance

is reported using an average over multiple IoU values. Note

that the performance on the original (uncompressed) images

is 35.2%.

and determine the better performing method. Across dif-

ferent pair-wise comparisons, the method which wins the

most number of times performs best for the given image at

a bit-rate. Thus, at each bit-rate, we count the number of

images for which a method performs best among the set of

competing methods. Figure 5 shows that our method is best

according to the human evaluation across three bit-rate val-

ues (0.23, 0.37. 0.67). At a relatively higher BPP of 1.0

BPG out-performs all the other methods.

Qualitative Comparison. Please see Figure 6 where a

comparison from Kodak dataset is shown. Notice that, our

method preserves the fine-grained details of the face bet-

ter than the other methods (see above the lip, paint pat-

terns around the eye). For more such examples we refer

the reader to the supplementary material.

Object Detection. A pre-trained Faster-RCNN [31]

model with a ResNet − 101[15] based backbone is used.

With the original MS-COCO images, this model attains a

performance of 40.1% AP. For each compression method,

we compress and reconstruct the image at four different bit-

rate values: 0.23, 0.37, 0.67, 1.0 (same values as used for

human evaluation) and the reconstructed images are eval-

uated for object detection. The performance of competing

compression methods are reported in Table 1. It can be seen
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Figure 6: A qualitative example from the Kodak dataset [12] at 0.23 BPP. Notice our method better captures the fine-grained

details (lines above the lip, yellow circle around the eye) better than other approaches.

Figure 7: Different metrics on the Kodak dataset [12]. Left: (Perceptual Similarity) LPIPS-Comp (VGG-16) (Section 2.2)

vs bits-per-pixel (BPP) (Lower is better). Middle: MS-SSIM vs bits-per-pixel (BPP). (Higher is better). Right: PSNR vs

bits-per-pixel (BPP). (Higher is better). Best viewed in color.

that the proposed method outperforms the competing meth-

ods at all bit-rates.

Instance segmentation. Mask-RCNN [14] with a

ResNet-101 backbone is used for the task. The performance

of different compression techniques is reported in Table

2. It is observed that while Mentzer et al. [26] perform

comparable to engineered methods on object detection, it

performs far worse on Instance segmentation. It can be

seen in Table 2, that our method outperforms the competing

methods at lower bit-rates while [22] performs identically

at 1.0 bits-per-pixel.

PSNR / MS-SSIM / LPIPS-Comp. For completeness,

the performance of these models are shown on standard

PSNR and MS-SSIM metrics. Figure 7 (right) for PSNR,

Figure 7 (middle) for MS-SSIM and Figure 7 (left) for

LPIPS-Comp (Section 2.2).

5. Conclusions

An approach is proposed for deep image compression.

The method trains and evaluates using a deep perceptual

metric. It uses a hierarchical auto-regressive framework and

takes object saliency into account. On human evaluations,

the model performs better than the state-of-the-art on low

bit rates. Images obtained from our model provide the best

object detector and image segmentation results when com-

pared to the other image compression schemes.
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