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Abstract

Moving object segmentation (MOS) in different practi-

cal scenarios like weather degraded, dynamic background,

etc. videos is a challenging and high demanding task for

various computer vision applications. Existing supervised

approaches achieve remarkable performance with compli-

cated training or extensive fine-tuning or inappropriate

training-testing data distribution. Also, the generalized ef-

fect of existing works with completely unseen data is diffi-

cult to identify. In this work, the recurrent feature sharing

based generative adversarial network is proposed with un-

seen video analysis. The proposed network comprises of

dilated convolution to extract the spatial features at mul-

tiple scales. Along with the temporally sampled multiple

frames, previous frame output is considered as input to the

network. As the motion is very minute between the two con-

secutive frames, the previous frame decoder features are

shared with encoder features recurrently for current frame

foreground segmentation. This recurrent feature sharing of

different layers helps the encoder network to learn the hier-

archical interactions between the motion and appearance-

based features. Also, the learning of the proposed network

is concentrated in different ways, like disjoint and global

training-testing for MOS. An extensive experimental analy-

sis of the proposed network is carried out on two benchmark

video datasets with seen and unseen MOS video. Qualita-

tive and quantitative experimental study shows that the pro-

posed network outperforms the existing methods.

1. Introduction

Computer vision applications are gaining more demand

in day-to-day life. This necessitates an ample amount of

data for various intelligent video processing applications.

The video data of automatic traffic and surveillance sys-

tem has high temporal redundancy. More than 70% pixel

information from each video frame is irrelevant for a dif-

ferent high-level processing task. Also, the visibility of

foreground objects decreases drastically in the outdoor seen

like bad weather, dynamic background, etc. Due to the re-

Figure 1. Foreground localization results comparison of proposed

method with respective ground-truth.

dundant information and poor visibility, the performance of

various video processing applications with artificial intelli-

gence is degraded. By eliminating these issues, the effective

and reliable solutions for foreground localization are pro-

posed by many researchers [22], [6], [21], [16], [14], [19],

[29], [25], [12], [27], [32], [47] to improve the performance

for automated video analysis applications. Thus, moving

object segmentation (MOS) is an active research area in the

field of video analysis.

Hand-crafted feature-based methods are widely used

methods for MOS task [22], [6], [21], [16]. In hand-crafted

methods, frame difference with appropriate threshold, re-

gion (local as well as global) level, background subtraction

and saliency based methods are most widely used.

Deep learning-based methods are gaining more de-

mand in recent time for MOS task [19], [29], [12], [47]. The

learning-based techniques are more powerful for extracting

low-level, mid-level and high-level features from images or

video frames. However, from literature, it is observed that

all CNN based methods are not able to give good perfor-

mance in the presence of different outdoor environments.

Also, there is a need for fine-tuning of a pre-trained model
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to achieve good performance.

Generative adversarial learning (GAN) based meth-

ods give significant improved results in many computer vi-

sion applications like varicolored image dehazing [10], un-

derwater image enhancement [11], single image depth esti-

mation [13], image de-raining [49], foreground-background

segmentation [30], video super-resolution [39], underwater

[34], etc.

In this work, a novel end-to-end recurrent feature sharing

based generative adversarial network is proposed with seen

and unseen video analysis for MOS. The literature of the

existing methods is discussed in the next section.

2. Literature Survey

The main objective of any MOS approach is to detect

moving objects, for which motion is a prominent character-

istic. Also, handling of diverse practical scenarios like dy-

namic backgrounds, degraded weather and unbalanced ob-

ject motion in video frames is not possible with the help

of spatial information. Thus, both spatial and temporal fea-

tures are necessary for any foreground-background segmen-

tation algorithm. Lin et al. [22] proposed a background

subtraction based approach for MOS by utilizing the con-

cept of the hyper-bit plane with spatial and temporal infor-

mation. The existing methods for moving object detection

(MOD) based on low rank and sparse decomposition are

able to reduce the effect of Gaussian noise. Recently, Chen

et al. [6] proposed unstructured regularized low-rank rep-

resentation based method for MOD. Linhao et al. [21] pro-

posed hierarchical background subtraction and foreground

segmentation modeling approach with alternating optimiza-

tion technique for MOD. Javed et al. [16] proposed super-

pixel based spatio-temporal structured sparse robust prin-

cipal component analysis based technique for MOD with

spatial and temporal regularization.

In recent work, the different MOD techniques success-

fully brought significant performance with convolutional

neural networks (CNN). In [20], language referring expres-

sions are used for MOS. Here, language specifications make

the system more robust to background clutter, complex dy-

namic seen. Yuhua et al. [7] proposed pixel-wise metric

learning for video frame segmentation by considering the

reference frame and its segmented mask as input to the em-

bedding network. The spatial and temporal dependencies

are encoded in [5] using a trained CNN model and optical

flow repectievly. Seoung et al. [46] proposed an identi-

cal encoder network to process the key frame and reference

frame interdependently. Further, these individual features

are concatenated using a global convolution network. Fi-

nally, a refinement module with residual learning is used

for fast MOS.

Some of the researchers used tracking-based methods

[9], [42] to detect the region-of-interest for MOS. To over-

come the large deformation, occlusion, and cluttered back-

ground problem, the tracking-based method is proposed [9]

for accurate online MOS. Tracking is used to find the re-

gion of interest to be segmented. Similarly, in [42] depth-

wise cross correlation-based approach is proposed for ob-

ject tracking and segmentation task. A static and dynamic

visual attention prediction approach is proposed in [43] for

MOS. Paul et al. [41] proposed semantic pixel-wise fea-

tures concatenation with global and local feature match-

ing techniques for MOS. The combination of probabilistic

generative approach and backbone feature extractor with a

predication module is proposed for MOS [18]. Ping et. al

[14] proposed dynamic identity propagation and attention

network for MOS. They utilized the concept of lightweight

fine-tuning on the first frame of the test video. Along with

motion and appearance features, Lu et al. [24] has pro-

posed a co-attention mechanism to improve the discrimi-

native foreground representations. Mandal et. al proposed

an approaches for MOS with the help of temporal depth re-

ductionist based background estimation [27], [26], [28].

Propagation based encoder-decoder network with rank-

ing attention module is proposed by Ziqin et al. [45] for

MOS. To select and rank the effective foreground feature

maps based on propagation and matching, the ranking atten-

tion module is utilized. Another approach based on motion

and appearance features with a parallel processing network

along with a memory module is proposed in [40]. In [40],

independent object motion between the number of succes-

sive frames, object appearance and temporal consistency

parameters are considered to impose additional constraints

on the segmentation. Single and multiple object segmenta-

tion using lucid data dreaming is proposed by Khoreva et

al. [19]. A fascinating approach without temporal depen-

dencies is proposed by Maninis et al. [29] using the learned

features on ImageNet as a pre-trained model. In [12], Grif-

fin proposed a technique for MOS without any training or

ground-truth requirement. Kai et al. [47] proposed two-

stream network to get the effective spatial and temporal in-

formation for MOS.

Receptive field-based methods show significant im-

provement for various computer vision applications like fast

object detection [23], video salient object detection (VSOD)

[37], etc. In [23], a hand-crafted approach is proposed with

a receptive field block to enhance the discriminability and

robustness of features. Similarly, pyramid dilated bidirec-

tional ConvLSTM is proposed in [37] to extract the multi-

scale spatio-temporal features for VSOD. Dilated convolu-

tion helps the network to learn the spatial feature with dif-

ferent scales. Saliency learning with a compact encoder-

decoder based approach is proposed in [31] for MOS. Yang

et al. [48] proposed a background modeling approach with

atrous convolution, residual block and deep network to esti-

mate spatial information, to avoid degradation problems and
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to capture temporal information respectively. The learning-

based combination of background estimation, saliency es-

timation and foreground detection is proposed in [33] with

small video streams obtained from the original video. Ak-

ilan et al. proposed different approaches for video surveil-

lance applications with 3D transpose convolution and resid-

ual connections [2], encoder-decoder CNN technique with

the help of multi-view receptive field [3] and slow encoder-

decoder with strided convolution [1]. In [2], [3], and [1],

authors trained the network on one baseline video and fine-

tuned on target video frames with learned parameters as ini-

tial weights for accurate foreground detection. Recently,

Zhou et al.[50] proposed a novel interleaved two-stream

network architecture to learn powerful spatio-temporal fea-

tures for MOS.

Tang et al. [38] proposed cascaded CNN based encoder-

decoder approach with adversarial learning to estimate the

global saliency and the residual network is used to estimate

the local saliency for salient object detection. Similarly,

Dudhane et al. [11] proposed the cycle-consistent GANs

with generator of encoder-decoder architecture for under-

water image enhancement. Also, Zhang et al. [49] proposed

conditional GANs with dense connections and local-global

information for image de-raining.

From the above literature, it is observed that, the exist-

ing methods have improved the performance significantly

for MOS. But, it requires complicated training or extensive

fine-tuning or inappropriate training-testing data distribu-

tion. Therefore, the generalized effect of this works with

a completely unseen video is difficult to identify. Thus, a

novel end-to-end recurrent feature sharing based generative

adversarial network is proposed with seen and unseen video

analysis for MOS. Figure 1 illustrates the performance com-

parison of the proposed method with ground-truth MOS.

The major contributions of the proposed work are illustrated

below:

1. An end-to-end multi-frame recurrent feature sharing

adversarial learning network is proposed with seen and

unseen video analysis.

2. Spatio-temporal structural dependencies are learned

with the help of dilated convolution, temporally sam-

pled successive video frame and recurrent feature shar-

ing.

3. Multi-scale residual block with dense connections is

proposed to learn prominent features related to the

foreground and refinement module with the residual

block is proposed for moving object segmentation.

Extensive experimental analysis of the proposed method

with disjoint (unseen video analysis) and global (seen

video analysis) training-testing is done on two benchmark

video datasets namly DAVIS-2016 [35] and ChangeDetec-

tion.net (CDnet)-2014 [44]).

3. Proposed Framework

In literature, various researchers have taken advantage

of the pre-trained CNN model to extract pixel-wise seman-

tic features or to fine-tune the pre-trained network for the

MOS task. Recently, GAN-based methods give a signifi-

cant improvement in various applications like image style

transfer, image enhancement, etc. Basically, GAN based

approaches have two networks, namely generator and dis-

criminator. The main aim of the discriminator network is

to distinguish authentic distribution with the estimated gen-

erator output while the generator is designed to generate

the fake distribution to fool the discriminator network. The

methods used for any automated video processing applica-

tion need to process a large amount of training data. Also,

the training of a deeper network undergoes the vanishing

gradients problem. To overcome these limitations, an end-

to-end adversarial network with the recurrent, multi-scale

residual block with dense connection and refinement mod-

ule is proposed for foreground localization. The temporal

information between successive video frames is captured

using multi-frame selection with temporal sampling and re-

current technique. Dilated convolution at multiple scales

with different sampling rates is used to extract spatial fea-

tures. Thus, both the spatial and temporal features are en-

coded in the proposed network. The detailed information

related to each block of the proposed framework is shown

in Figure 2.

While designing the network, the choice of the fil-

ter size plays an important role for better feature learn-

ing for the specified task. To resolve this issue, a

residual module with dense connection and multi-scale

convolution filters are proposed. Finally, the refine-

ment module with a residual block is proposed to pro-

duce the mask output. The output of previous frames

along with three successive temporal sampled video frames

{(tin, (t− 3)in, (t− 6)in, (t− 1)out) , .......} are used as

input to estimate the current frame foreground objects.

The proposed network comprises of encoder block

followed by dilated convolution (DCB), multi-scale residual

block with dense connection (MRDC) and refinement

module with residual block (RfrB). The encoder block

(EnC) is defined as 3×3 convolution followed by batch

Normalization with ReLU having ’m’ filters and stride

’n’ EnCy 3 sdn-m. Similarly, the refinement mod-

ule with a residual block having 64 filters is denoted

as RfrBk-64. Finally, decoder block (Ded) is used

with 3×3 convolution followed by batch Normaliza-

tion with ReLU having ’m’ filters and stride ’n’ is

noted as Ded3sdn-m. Thus, the proposed network

is defined as: EnC1 3 sd1-64, EnC2 3 sd2-128,

EnC3 3 sd2-192, EnC4 3 sd2-256, DCB-64,

MRDCc-64 (cǫ(1,2,3)), RfrB1-192, RfrB2-128,

Ded3sd2-64.
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Figure 2. Proposed system framework for foreground localization.

Figure 3. Visualization of dilated convolution block (DCB).

The detailed information related to each layer with math-

ematical expression is given below:

Convolutional layer is very important and basic operation

for learning based methods. The convolution filters are used

to extract the information with different kernels. In general,

convolution operation is explained as,

ℜstl
Sj

= blj+
∑

i∈Rj

(

M
(l−1)
i ⊛ ψstl

Si,j

)

; st ∈ (1, 2);S ∈ (1, 3, 5)

(1)

where, M
(l−1)
i is input, ℜstl

Sj
represents jth feature map of

lth layer, Rj represents feature map , ψstl
Si,j

is convolution

kernel with stride factor (st) and filter size (S), ⊛ and blj are

convolution operation and bias factor.

Encoder block is first block of the proposed network to

extract low level feature. The mathematical expression of

EnC is,

EnCstl
Sj

= Φ



ξl



blj +
∑

i∈Rj

(

M
(l−1)
i ⊛ ψstl

Si,j

)







 (2)

where, ψst
S indicates convolution operation with filter size

S × S (3 × 3) with stride factor st ǫ (1,2,2,2) to down-

sample the feature maps, ξ and Φ represents batch normal-

ization and ReLu activation function respectively. In pro-

posed method, four encoder blocks are used with different

stride factor to extract low level feature. Here, the extracted

feature of decoder block from previous frame are given as

input to the respective encoder block along with previous

layer output. Mathematical expression for each encoder

layer input is given as,

EnC2 3 sd2 = EnC1 3 sd1 ⊕Ded3sd2 (3)

EnC3 3 sd2 = EnC2 3 sd2 ⊕RfrB2 (4)

EnC4 3 sd2 = EnC3 3 sd2 ⊕RfrB1 (5)

Recurrent make sense that the output/feature maps from

previous frames acts as a feedback signal which is recur-

sively passed through the network and network parameters
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at different time instances are shared.

Dilated Convolution: After encoder blocks, dilated con-

volution block (DCB) is used to extract multi-scale contex-

tual information. Dilated convolution block is specifically

used for prediction due to its capability to expand the re-

ceptive field without losing resolution. The aggregated fea-

tures from DCB block are fed to multi-scale residual block

with dense connection (MRDC) to learn prominent feature

related to foreground. Detailed visualization of DCB block

is shown in Figure 3. In MRDC module, multi-scale con-

volution filters with residual connection are used named as

multi-scale residual block (MRB). The technique used for

dense connections is given as,

MRBn =

n−1
∑

i=1

MRBi ; n > 1 (6)

where, MRBn is input to the nth MRB module, MRBi is

response of ith MRB module and n ∈ (1, 6). Each MRB

uses parallel convolution filters with kernel size of 3×3,

5×5 and 7×7 followed by ReLU. Here, to integrate the fea-

tures learned by the respective convolution block with dif-

ferent scales, we employed feature concatenation operation

followed by a convolution block. Further, these features are

added to get robust features learned by different scales (for

more details, please refer MRB and MRDC block from Fig-

ure 2).

The proposed decoder network consists of two refinement

modules, a decoder block, a final convolution layer to gen-

erate the foreground object. The output from MRDC block

is concatenated with target encoder stream through skip-

connections and given to proposed refinement block to pro-

duce a foreground localization output. To merge the differ-

ent scale feature efficiently, we used two refinement mod-

ules as the building block of proposed network. After re-

finement blocks, one decoder blocks is used to map the

extracted features into original input size. Decoder block

(Ded) is explained as,

DedstlSj
= Φ



ξl



blj +
∑

i∈Rj

(

M
(l−1)
i ⊛ ψ

stl
Si,j

)







 (7)

where, ψ
st

S indicates deconvolution operation with filter size

S × S (3 × 3), st is stride factor (st=2) to up-sample the

feature maps, ξ and Φ represents batch normalization and

Relu activation function.

3.1. Network Loss

The main objective function for network is given as,

Yt = δ(Xi
t : X

N−i
t−N ) N ∈ (0, 3, 6) (8)

where, Yt is estimated output of network, Xi
t : XN−i

t−N is

considered input video frames. In adversarial training, the

objective function of generator network with discriminator

(D) is defined as,

LGAN (G,D) = Ex, y[logD(x, y)]+,

Ex, z[log(1−D(x,G(x, z))]
(9)

Where, Ẑ random noise vector.

4. Training of Proposed Method

The learning of the proposed network is concentrated in

different ways like disjoint (unseen) and global (seen) data

based training-testing. For unseen training-testing, within

database videos are separated as training-testing splits with-

out any overlap. The video frames in a video are divided

into training-testing splits for seen data training-testing. For

training of the proposed network, we took an approach

of disjoint (unseen) training-testing (DTT), which is per-

formed on DAVIS-2016 [35] and global (seen) training-

testing (GTT) is done on CDnet-2014 [44] database. The

training details are discussed in the next sub-sections.

4.1. Disjoint (Unseen) Training­Testing

We selected the DAVIS-2016 database for DTT. This

database is having 50 videos with different attributes like

fast-motion, dynamic background, motion blur, scale varia-

tion, background clutter, camera shake, interacting objects,

low resolution, occlusions, etc. Here, 30 videos (along with

respective ground-truths) from DAVIS-2016 database are

used similar to STCRF [45] for training. Remaining 20

videos are used for testing purpose.

4.2. Global (Seen) Training­Testing

The CDnet-2014 database is used for GTT of the pro-

posed method similar to [2], [3] and [1]. In [38], 90% of

video frames from each video are used for training and the

remaining samples are used for testing. Also, in [2], [3] and

[1], 70% of video frames are used for training the network

and the rest of (30%) the video frames are used to test the

effectiveness of the network. In the proposed method, 30%
data is used for training and the remaining data is used for

testing. For proposed network global training-testing, from

each video 30% of initial video frames are selected from

CDnet-2014 for training and the remaining frames are uti-

lized for testing.

The discriminator network and remaining settings for

the training of the proposed network are similar to [15].

The network is initialized with random weights for both

the training-testing and is learned using a stochastic gra-

dient descent algorithm with a learning rate of 0.0002. The

weight parameters of the network are updated (500 and 200

epochs for DTT and GTT respectively) on NVIDIA DGX

station with processor 2.2 GHz, Intel Xeon E5-2698 (20-

Core), NVIDIA Tesla V100 4×16 GB GPU.
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Figure 4. Qualitative result comparison of proposed method with existing state-of-the-art methods on DAVIS-2016 database, (a) input

frame, output extracted using (b) FEELVOS-[41], (c) AGME-[18], (d) LUCID-[19], (e) CNIM-[5], (f) OSVOS-[29], (g) RANet-[45], (h)

proposed method, (i) ground-truth.

Table 1. Quantitative results comparison of proposed method with

existing sate-of-the-art methods on DAVIS-2016.

Methods Publication F-measure

LSMO [40] IJCV-19 0.779

AGS [43] CVPR-19 0.774

CoSNet [24] CVPR-19 0.795

FEELVOS [41] CVPR-19 0.822

RGMP [46] CVPR-18 0.820

AGME [18] CVPR-19 0.822

FAVOS [9] CVPR-18 0.795

LUCID [19] IJCV-19 0.820

CNIM [5] CVPR-18 0.850

DIPNet [14] WACV-20 0.864

OSVOS [29] TPAMI-19 0.875

RANet [45] ICCV-19 0.876

Proposed Method - 0.889

5. Results and Discussion

The experimental results of the proposed method for

MOS are discussed in this section. The segmentation re-

sults (qualitative and quantitative) analysis of the proposed

approach are examined on two state-of-the-art databases,

DAVIS-2016 [35] and CDnet-2014 [44] for MOS. For quan-

titative results, the average F-measure is calculated.

5.1. Results on DAVIS­2016

The DAVIS-2016 database is one of the challenging

databases for foreground localization having 50 video se-

quences with 854×480 spatial resolution and average 70

frames per video. These videos are recorded with differ-

ent attributes like fast-motion, dynamic background, mo-

tion blur, scale variation, background clutter, camera shake,

interacting objects, low resolution, occlusions, etc. with 24

frames per second. For experimental purpose, ground truths

are provided for each video frame with pixel-wise manual

annotation. The segmentation accuracy is examined quali-

tatively as well as quantitatively and compared with respec-

tive ground-truth and existing state-of-the-art methods. Ta-

ble 1 gives the quantitative results comparison with existing

methods in terms of average F-measure. The qualitative re-

sults of the proposed method are compared with the existing

methods given in Figure 4.

Some of the recently published work [5], [29] and [45]

achieved the significant improvement in accuracy, but these

models make use of pre-trained weights or require fine-

tuning of the network. The DeepLabv2 VGG16 pre-trained

on PASCAL VOC is used as an initial weight parameter in
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Table 2. Category wise average F-measure comparison of proposed method with existing methods for MOS on CDnet-2014 database.

Methods Publication Baseline DyanBG BadWeath CamJitt Shadow Avg

SGSM-BS [36] TIP-18 0.9500 0.8600 0.8200 0.8500 0.8900 0.874

B-SSSR [17] TIP-19 0.9600 0.9200 0.9300 0.9400 0.9300 0.9360

ResNet [8] TCSVT-18 0.9294 0.9461 0.9518 0.8221 0.9647 0.9228

DeepBs [4] PR-18 0.9580 0.8761 0.8301 0.8990 0.9304 0.8987

sEnDec [1] ITIS-19 0.9591 0.9389 0.9542 0.9001 0.9293 0.9363

3DLSTM [2] ITIS-19 0.9597 0.9487 - 0.9570 0.9352 0.9502

MRFCNN [3] TVT-19 0.9726 0.9580 0.9655 0.9452 0.9435 0.9563

Proposed Method 0.9498 0.9614 0.9723 0.9638 0.9573 0.9609

Figure 5. Visual result comparison of existing methods, (a) input

frame, (b) DeepBs [4], (c) MSFgNet [33], (d) sEnDec [1], (e)

3DLSTM [2], (f) MRFCNN [3], (g) proposed method output and

(h) ground-truth on CDnet-2014 database.

[5] with VGG-Net as a backbone network. After that, 60

video clips are used for training of the network for video

object segmentation. Similarly, three-stage (base, parent

Figure 6. Visual result comparison of existing methods (DeepBs

[4] and MSFgNet [33]) on CDnet-2014 database.

and test) is proposed in [29]. Initially, the parent network

is trained on the DAVIS-2016 training set with pre-trained

weights of ImageNet through the base network. Further,

for video object segmentation, the trained parent network is

fine-tuned on one frame along with the ground-truth of each

test sequence. In [45], initially the network is trained on

MSRA10K, ECSSD and HKU-IS for static image segmen-

tation. Further, the trained model is fine-tuned on DAVIS-

2016 and DAVIS-2017 for video object segmentation. Here,

the proposed method is introduced on only the DAVIS-2016

database. Without any pre-trained weights or fine-tuning of

the network, the proposed method shows very close perfor-

mance for foreground localization as compared to [5], [29]

and [45]. We give this credit to our proposed multi-scale

residual block with dense connection and recurrent tech-

nique.

5.2. Results on CDnet­2014

In this experimentation, the detection accuracy of the

proposed method is verified on the CDnet-2014 dataset

using a globally trained network. The considered videos

from different video categories are baseline (Highway, Of-

fice, Pedestrians, PETS2006), bad weather (blizzard, skat-
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ing, snowFall), dynamic background (boats, canoe, fall,

overpass), camera jitter (badminton, boulevard, traffic)

and shadow (backdoor, busStation, copyMachine, peoplen-

Shade). The Table 2, Figure 5 and Figure 6 gives the quanti-

tative and qualitative result comparison of proposed method

with existing methods respectively. In literature, [4] used

150 frames from each video to train the network. But, ran-

dom selection of video frames for training-testing is ques-

tionable because in random selection frame ft is selected

for training and a temporally closest frame f(t+1) or f(t−1)

may be used in testing. As FBS is a temporally processed

decision-making problem, it is quite difficult to get signif-

icant results with this type of training and testing because

these approaches are not able to estimate accurate motion

related to the foreground. In [2], [1] and [3], 70% video

frames from each video are used for training and remain-

ing video frames are used for testing with video-wise train-

ing and fine-tuning approach. Here, all these approaches

are trained on source domain video and trained weights are

used to fine-tune the network for target domain video. In [1]

and [3], along with gray-scale input frames, computed back-

ground frame through temporal median filtering is used as

input to the network. But, estimating one background frame

for the entire video is not suitable for outdoor seen video.

In the proposed method, 30% video frames from each video

are collectively used for training and the remaining frames

are used for testing. From Table 2, it is evident that the pro-

posed method gives significantly improved performance as

compared to [2], [3] and [1] even-though less data is used

for training of the proposed network.

From qualitative and quantitative results analysis, the

proposed recurrent architecture with multi-scale residual

dense connection is able to refine the prediction about fore-

ground probability maps by iteratively correcting the previ-

ous mistakes.

5.3. Ablation Study of Proposed Network
The effectiveness of the proposed algorithm is depend

upon the proposed recurrent feature sharing and multi-scale

residual block with dense connections. Does the proposed

recurrent feature sharing will help the network for ef-

fective learning? To do so, the accuracy is examined with

(W/i) and without (W/o) recurrent feature sharing. The

quantitative analysis in terms of average F-measure is given

in the Table 3. From results, it is clear that the proposed

recurrent feature sharing help the network to learn more

robust and effective foreground features. Further, in the

proposed network, the MRDC blocks are used. How the

MRDC blocks contributed to the learning of the pro-

posed network?. To scrutinize this, the proposed network

is trained without and with MRDC blocks and accuracy is

examined. The quantitative results are given in the Table

3. From Table 3, it is cleared that the proposed recurrent

feature sharing from previous frame decoder features with

Table 3. Ablation analysis of proposed network on recurrent fea-

ture sharing and MRDC block on DAVIS-2016 (W/i:With and

W/o:Without).

Methods F-measure

W/o MRDC + W/o Recurrent 0.8456

W/i #1 MRDC + W/o Recurrent 0.8509

W/i #2 MRDC + W/o Recurrent 0.8596

W/i #3 MRDC + W/o Recurrent 0.8636

W/i #4 MRDC + W/o Recurrent 0.8532

W/o MRDC + W/i Recurrent 0.8587

W/i #3 MRDC + W/i Recurrent 0.8889

encoder features of current frame and MRDC blocks are

effective to get more robust and meaningful foreground fea-

tures.

6. Conclusion

In this work, an end-to-end recurrent adversarial learning

network is proposed for moving object segmentation with

dilated convolution, multi-scale residual with dense con-

nection module and refinement module. Along with tem-

porally sampled successive video frames, the learned de-

coder features of the previous frame are shared with en-

coder features for current frame foreground segmentation

to get enough motion information. The dilated convolu-

tion is used after the encoder block to extract spatial fea-

tures at multiple scales with different sampling rates. Thus,

the proposed method considers spatial and temporal fea-

tures through dilated convolution and recurrent technique

respectively. Also, the proposed network comprises of

multi-scale residual blocks with dense connections to learn

foreground related prominent features and to avoid van-

ishing gradient problem. Further, to produce the output,

a refinement module is proposed, which takes the output

from the MRDC block and also features from the target

encoder block through skip-connections. Further, the net-

work’s learning is concentrated on different ways like dis-

joint and global training-testing for MOS. An extensive ex-

perimental analysis of the proposed method is done on two

benchmark video datasets with seen and unseen data anal-

ysis for MOS. Experimental results show that the proposed

network outperforms the existing state-of-the-art methods

on benchmark datasets for moving object segmentation.
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