
Efficient 3D Video Engine Using Frame Redundancy

Gao Peng Bo Pang Cewu Lu*

Shanghai Jiao Tong University

{penggao, pangbo, lucewu}@sjtu.edu.cn

Abstract

Traditional 3d video understanding methods process

videos frame by frame. We argue that a lot of computation

in this mechanism is redundant based on a key observation

- adjacent frames in 3D videos have visually similar geom-

etry structure. To handle the redundancy, we propose the

Efficient 3D Video Engine (EVE), aiming to avoid the com-

putation of redundant points. It consists of two modules:

1) redundancy removing module designed to detect redun-

dancy and remove it; 2) residual learning module to extract

features on non-redundant points. As a simple plug and

play framework, EVE can be easily incorporated in main-

stream 3D models. Experiments demonstrate that EVE can

significantly reduce computation without performance loss

on large scale datasets. On the other hand, with similar

computation, EVE outperforms the strong baseline by up

to 4.1 mIoU on SemanticKITTI. The code is available on

https://github.com/ecr23xx/eve.

1. Introduction

3D video understanding is becoming an industry and

academic popular task, and many 3D spatial-temporal

datasets have been proposed [1, 19, 24, 44, 45]. Recently,

deep convolutional neural networks (CNNs) advanced dif-

ferent tasks of 3D video understanding, such as 3D video

segmentation and 3D action recognition [3, 13, 33, 45].

3D videos are mostly represented as consecutive point

cloud frames and current state-of-the-art deep learning-

based 3D video processing methods are all in frame-by-

frame mechanism or using the stacked frames’ spatial-

temporal features [3, 32, 33]. However, as shown in Fig. 1,

there are a lot of geometrically similar points between ad-

jacent frames. We argue that repeatedly processing them

will introduce huge redundant computation, making it com-

putationally expensive. For example, to process one clip

(5 frames) of 80K points frame by frame, a strong baseline

*Cewu Lu is corresponding author, member of Qing Yuan Research

Institute and MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai

Jiao Tong University, China and Shanghai Qi Zhi institute.

Point cloud at time tPoint cloud at time t+1

Figure 1: Motivation. Adjacent 3D point clouds are visu-

ally similar after registration. We argue that the computa-

tion of many overlapped or close points can be reused to

accelerate 3D video tasks.

MinkUNet [3] needs 5 × 119.2G multiply-add operations

(FLOPs) operations, which is around 30× larger than a typ-

ical image recognition model such as ResNet50 [16].

To reduce redundant computation, we propose to take

advantage of the geometrically close points between adja-

cent frames in a video clip. Because the semantic infor-

mation of 3D cloud is encoded in the geometrical structure

of points, we naturally hypothesize that the geometrically

close points must share similar high-level deep features.

Thus finding an efficient method to reuse these features, in-

stead of recalculating them, would be a potential efficient

solver for 3D video tasks.

Instead of taking each frame as an independent input,

we propose the Efficient 3D Video Engine (EVE) to utilize

the correspondence between frames and avoid redundant

computation. It contains a redundancy removing module

to detect the correspondence between two adjacent frames

and reuse features for geometrically close points. Remain-

ing points are processed by a residual learning module to

learn the residual information. Fig. 2 illustrates our ideas.

We argue that this match-and-residual learning mechanism

should be more efficient than frame-by-frame processing

for point cloud videos.

We conduct comprehensive experiments on large-scale

point cloud video datasets to show the universal existence

of redundancy and evaluate the proposed EVE. Our exper-

3792

iments indicate that frame redundancy in point cloud video

is huge, over 60% computation is repetitive using current

mainstream methods. By matching and reusing features

with previous frames, the redundant computation can be

saved. For non-redundant points, it’s better to model it as

residual features to their nearest points in the previous frame

rather than directly process it.

Results on large-scale 3D video datasets justified that the

proposed EVE could maintain accuracy while avoiding re-

dundant computation. As shown in Fig. 3, with the pro-

posed EVE, we improve the current strong baseline by 4.1

mIoU with similar computation on SemanticKITTI [1]. Re-

sult on Synthia4D [44] also justifies that EVE is more effi-

cient than the current mainstream method.

Our contributions in this paper are three fold:

• We propose and analyze the frame redundancy prob-

lem in 3D video understanding;

• We propose the Efficient Video Engine (EVE) to pro-

cess 3D videos more efficiently;

• The proposed EVE use similar computation while out-

performing current strong baselines (relative improve-

ments of 8%).

2. Related Work

3D Deep Learning. 3D deep learning has long been re-

searched [5, 21, 23, 25, 26, 35, 40, 41, 49, 54, 61, 64]. Qi et

al. proposes PointNet [40] which directly performs deep

learning on point clouds with the help of symmetric func-

tions. To aggregate neighborhood information, previous

works, like PointNet++ [41], defines different convolution

kernels on the k-nearest-neighbor or a spherical neighbor-

hood, which greatly improves the capacity of PointNet.

Recently, methods that do not process information in the

point cloud domain emerged. MinkowskiNet [3] and Sub-

manifold Sparse Convolutional Networks [11] uses sparse

convolution to process point cloud, which generates input-

output kernel mapping on the fly and skips points that are in

ground state.

Temporal Understanding. With the availability of large

amounts of video datasets [9, 12, 22, 27, 39, 46, 48], 3D

convolution based methods have achieved remarkable suc-

cess on video understanding and action recognition with 3D

spatial-temporal features: [2, 7, 28–30, 47, 52, 55, 63, 66],

more effective than recursive methods [4, 37, 38, 62]. Re-

cently, several 3D point cloud video datasets have been

proposed [1, 24]. Choy et al. [3] studies 3D video un-

derstanding via 4D Spatial-Temporal neural networks and

conditional random fields. Liu et al. [33] proposed a me-

teor module to process 3D sequence information. However,

those methods require huge computation for point cloud se-

quences. Compared with 3D methods, most computation of

4D methods comes from the stacked feature map. But we

find there exists redundancy among 4D clips, thus we aim

to reduce the redundant computation in it.

Structural redundancy. Efforts have been paid to reduce

structural redundancy in deep learning. OctNet [42] uti-

lized a more efficient data structure oct-trees to store sparse

voxel, which aimed to reduce the geometry redundancy in

3D voxel representation. Graham et al. [11] introduced

sub-manifold sparse convolution that eliminated the com-

putation of values in some inactive output positions by rec-

ognizing the input cells in the ground state, which aimed

to reduce the redundancy computation in 3D voxel convo-

lution. The proposed Recurrent Residual Module (RRM)

[36] eliminates computation on overlapping areas between

neighboring frames in a 2D video clip.

Efficient Deep Learning for Videos. Video understand-

ing is much more computationally expensive than image

recognition. To improve the efficiency of video processing,

Pan et al. [36] utilizes dynamic sparse matrix-vector mul-

tiplication techniques and temporal redundancy of videos

to realize speedup on ASICs such as EIE [14]. CP-

Net [31] aggregates information from potential correspon-

dences in video representation to improve video under-

standing. Wang et al. [57,58] proposed to utilize correspon-

dence in time as a supervision signal.

Besides, A lot of efforts have been paid to the accel-

eration of general purpose deep learning computing, in-

cluding pruning [15, 18, 34], weight quantization [56, 65]

and hardware-aware neural architecture search [50, 51, 59].

These methods are orthogonal to video-specific efficient

deep learning approaches.

However, to the best of our knowledge, all the above

methods are tailored for 2D understanding and 2D video

processing. None of them takes consideration of the special

properties of 3D data and typical 3D operations like sparse

convolutions [11], which is the major topic of this paper.

3. Method

3.1. Task Definition

We first introduce the 3D point cloud video task. A clip

of point clouds X with T frames are given, which is defined

as

X = {Xt | t = 0, . . . , T} (1)

where Xt = {xi
t | i = 0, . . . , Nt} denotes point cloud with

Nt points at time t in clip X. For point cloud video tasks

, each frame Xt will be processed by a network backbone

(e.g., MinkUNet [3]), the corresponding output feature of

3793

Encoder-DecoderPoint cloud Point featuresMatched points Unmatched points

 pointsX0 : N0

 pointsX1 : N1

Matching

g(X0, X1)

X+
1

residual

computation
X−

1

indexing

 pointsX2 : N2

Matching

g(X1, X2)

X+
2

X−
2

Y0

Y1

Y2

indexing

(a) Redundancy removing (b) Residual learning

residual

computation

Figure 2: Model overview. EVE consists of (a) redundancy removing module and (b) residual learning module. Given a

point cloud clip X = {Xt | t = 0, · · · , T}, the first frame X0 is processed by an encoder-decoder, getting features Y0 for

each point. For the rest frames Xt(t > 1), EVE matches it with previous frame Xt−1, splitting Xt into X+
t and X−

t based

on the matched pair’s L2 distance (defined in Sec. 3.3.3). For X+
t (red ones), EVE skipped the computation and use point

features with corresponding indices in Yt−1. For X−

t (green ones), EVE computes the residual features. By combining the

matched and unmatched parts, EVE outputs features Yt for each point in Xt. Best viewed in color.

each input point is denoted as

Y = {Yt | t = 0, . . . , T} (2)

where Yt = {yit | i = 0, . . . , Nt}. For each point xi
t ∈ Xt,

its corresponding feature is yit. Then for specific tasks (like

segmentation), Yt will be processed by specific heads and

output the final labels.

In the rest of paper, we will use two adjacent point

cloud frames Xt = {xi
t | i = 0, . . . , Nt} and Xt−1 =

{xj
t−1 | j = 0, . . . , Nt−1}(t > 1) to illustrate the frame

redundancy problem and the proposed efficient solver.

3.2. Frame Redundancy Problem

Based on universal awareness, adjacent frames in one

video are usually visually similar. As shown in Fig. 1, two

adjacent frames from one point cloud video, Xt (in blue)

and Xt−1 (in red), have visual similar geometry structure.

Current point-based methods and voxel-based methods all

process each point cloud frame in full size, thus we assume

that a lot of computation is redundant.

Formally, we define the frame redundancy as, features

of points in current frame can be represented by features of

points in the previous frame, which is,

yit = y
j
t−1, where yit ∈ Yt, y

j
t−1 ∈ Yt−1. (3)

To have a more specific understanding of the redun-

dancy problem, we make a statistics on SemanticKITTI [1]

dataset’s clips. We iterate through the point cloud clips in

train split, and match each frame with previous frame using

the Nearest Neighbor (NN) algorithm. If the nearest point

pair has the same label, we take it as a redundant pair. For

its train split, the redundant ratio is 86.0% ± 0.5, which in-

dicates approximately 86.0% points have the same label as

previous frame. Intuitively, if we can avoid processing these

points by reusing features computed before, a lot computa-

tion can be saved.

3.3. Efficient 3D Video Engine

To reuse the redundant features, computation of the pro-

posed method should be correlated to the number of points

(linear positive correlation) so that computation can be re-

duced by removing redundant points. Traditional grid-

defined convolution network do not meet this criteria be-

3794

cause it requires the feature map to be a dense tensor. There-

fore, we opt to use sparse neural network [3, 10, 11] as our

network backbone. The sparse tensor representation, even

some voxels are removed, can still be processed by sparse

convolution with sparsity preserved. The preserved spar-

sity enables a linear or sub-linear relationship between input

number of points with the computation needed.

Based on the sparse tensor representation, we propose

the Efficient 3D Video Engine (EVE), which contains a re-

dundancy removing module to match adjacent point cloud

frames, and a residual learning module to learn the residual

information. Fig. 2 illustrates our concept. Algo. 1 provides

the PyTorch style pseudo-code of EVE. We will first give an

overview of EVE, and then describe each module in details.

3.3.1 Overview

For the first frame, because there is no previous frame to

match with, EVE will process it solely in full size as the

base frame for the next frame. Formally, EVE processes the

first frame X0 with encoder-decoder f(·), getting its feature

set Y0,

Y0 = f(X0). (4)

For consequent frame Xt(t > 1), EVE transforms it and

matches it with previous base frame Xt−1 to find the re-

dundancy. The matching function g(·) will be discussed in

details in Sec. 3.3.2. All points will be matched with their

nearest neighbourhood after transformation, and point pairs

with distance below a given threshold are accepted as suc-

cessfully matched pairs, P , and others are unsuccessfully

matched pairs, Q:

P,Q = g(Xt, Xt−1). (5)

Points in P will inherit the features of their correspond-

ing points with a negligible computational complexity. For

points in Q, a designed residual learning method will com-

pute their features, which will be discussed in Sec. 3.3.3.

Combining two parts together, we get features Yt as,

Yt = Y −

t ∪ Y +
t , (6)

where Y +
t is features of the successfully matched points and

Y −

t is features of the unsuccessfully matched points in Xt.

3.3.2 Redundancy Removing module

Next we describe the instantiation for the matching func-

tion g(·). Although correspondence in time has long been

researched [31, 36, 57, 58], it is still challenging to utilize

it to improve efficiency due to the irregular matching struc-

ture. Because traditional convolution is defined on grids of

voxels, if the matched voxels are removed, the sparse fea-

ture map cannot be directly convoluted.

Algorithm 1: Pseudocode of EVE in a PyTorch-like style

f: sparse conv based encoder-decoder network

g: matching function

alpha: ratio of successful matched points

T: number of frames in a clip

y = []

for t in range(T):

N = x[t].size(0)

if t == 0:

yt = f(x[t]) # directly process 1st frame

else:

matching indices sorted by distance: N x C

cur_match, prev_match = g(x[t], x[t-1])

propogate feature from last frame:

match_num x C

match_num = int(N * alpha)

yt_plus = y[t-1][prev_match[:match_num]]

residual feature of left points

res_num x C

res_num = int(N * (1 - alpha))

left_behind_idx = cur_match[-res_num:]

tr = f(x[t-1][left_behind_idx])

yt_minus = tr + y[t-1][prev_match[-res_num:]]

union

yt = zeros(N, dim_out) # init empty tensor

yt[cur_match[:match_num]] = yt_plus

yt[cur_match[-res_num:]] = yt_minus

y.append(yt)

Instead of directly subtracting frames, we opt to use ge-

ometry distance based matching function to detect the re-

dundant points between adjacent frames. In general, we

will find the semantically closest point x
ji
t−1 in Xt−1 for

every xi
t in Xt. If the geometry distance (L2 distance) after

registration between xi
t and x

ji
t−1 is below a threshold δ, we

take it a successful match. Otherwise, we do not consider

it a successful match. Formally, it can be represented as

g(Xt, Xt−1) that:

P,Q = g(Xt, Xt−1),

P = {(xi
t, x

ji
t−1) | ||x

i
t − x

ji
t−1||

2 ≤ δ},

Q = {(xi
t, x

ji
t−1) | ||x

i
t − x

ji
t−1||

2 > δ},

(7)

where P and Q are successfully and unsuccessfully

matched points pairs set based on point L2 distance. In

practice, we manually set the value of δ so that a fix ra-

tio of points, α, (alpha in Algo. 1) are in P and others are

in Q.

After matching, we reuse the features in every pair in P
and computation of these points can be saved,

Y +
t = {yjit−1 | where (xi

t, x
ji
t−1) ∈ P}. (8)

One natural choice to find the closest point x
ji
t−1 is

the Nearest Neighbor search (NN) algorithm. It has been

3795

widely adopted in 3D deep learning [20,41]. NN algorithm

directly matches each point with its nearest neighbor point,

such that for each point xi
t,

x
ji
t−1 = argmin

j

||xi
t − x

j
t−1||

2 for x
j
t−1 ∈ Xt−1. (9)

Although NN matching is better than directly subtracting

scheme, the matching is still sensitive to camera movement

and sampling deviation. Thus we need a more accurate in-

stantiation of matching function. Here we describe the Iter-

ative Closest Point (ICP) algorithm, which iteratively finds

an optimal transformation [R, t] : Xt → Xt−1 that mini-

mize the distance between given sets till convergence. For-

mally, in each iteration, ICP minimizes the error

E(R, t) =

N∑

i

||(Rxi
t + t)− x

ji
t−1||, (10)

where x
ji
t−1 is xi

t’s nearest point in Xt−1 calculated by NN

matching. And Xt will be updated by R and t for new

iteration until the average distance between Xt and Xt−1 is

below a given threshold or the number of iteration exceeds

the maximum number.

Through these iteratively affine transformation, Xt is

transformed to align with Xt−1, so that the problem of cam-

era movement and sampling deviation is alleviated and the

matching is more accurate.

3.3.3 Residual Learning Module

Points in Q will be processed by a residual learning module

f(·). The output of residual learning module is Y −

t , which

will be union with Y +
t to get the full feature set Yt.

One straightforward method to process the partial feature

map is directly processing it with f (Eq. 4),

Y −

t = f(X−

t) (11)

where X−

t = {xi
t | (x

i
t, x

ji
t−1) ∈ Q}, is the unsuccessfully

matched points set.

The drawback of this simple method is obvious that it

reduces point cloud resolution, which has been proved to

impair CNN’s performance [6, 17]. And more importantly,

the partial point cloud X−

t does not preserve the full geome-

try information as the full-size point cloud, thus it’s difficult

to maintain accuracy by solely processing X−

t .

To deal with the problems above, we draw inspiration

from recent works on residual connection [16, 30, 31, 31]

and propose a residual learning module to learn the resid-

ual information of the unsuccessfully matched points in the

previous frame. Specifically, we utilize the corresponding

point x
ji
t−1 in Q as base feature for xi

t and calculate the

residual information as Eq. 12 shows.

Y −

t = f(X−

t) + f(X−

t−1), (12)

where X−

t is the unsuccessfully matched points, X−

t−1 =

{xji
t−1 | (xi

t, x
ji
t−1) ∈ Q} are corresponding points at time

t− 1.

Y −

t do not lose much context information thanks to the

base features in the previous frame, which is calculated with

complete context information. And the computed resid-

ual features introduce new information from current frame.

This mechanism enables efficiently extracting features from

the residual point features while maintaining performance.

4. Experiments

4.1. Experiments setup

All the experiments are on semantic segmentation task,

and use the mean Intersection over Union (mIoU) as eval-

uation protocol. Our running environment is GTX 2080Ti

GPU and Intel Xeon E5-2678 v3 CPU.

We select MinkUNet [3] as our baseline method. Based

on our experiments, we manually set T as 5 without specifi-

cation. The default choice for fusion type in residual learn-

ing module is residual connection, and the default matching

algorithm in redundancy removing module we use is Itera-

tive Closest Point (ICP). Without specification, the match-

ing threshold is set to ensure 50% points are successfully

matched. We measure FLOPs of Sparse Convolution [3]

which is used in both MinkUNet and EVE by multiplying

the size of kernel map with the number of input channels

and output channels. The number of points of each scene is

fixed to ensure the comparison is fair.

During training, we use Stochastic Gradient Descent

(SGD) [43] as the optimizer. For model with Efficient 3D

Video Engine (EVE), we import the weights of encoder in

model without EVE as pre-trained weights for EVE, and

freeze the encoder-decoder for the first frame.

4.2. Datasets

SemanticKITTI We use SemanticKITTI [1] dataset sin-

gle scan task [1] to evaluate the performance of Efficient

Video Engine’s (EVE). SemanticKITTI is based on the

odometry dataset of the KITTI Vision Benchmark [8]. It

consists of 22 sequences, splitting sequences 0 to 10 as

training set, and 11 to 21 as test set. Overall, it contains

23201 full 3D scans for training and 20351 for testing.

We use voxel size 0.05 as default to voxelize the point

cloud scene without specification. We randomly choose

50000 points from each scene so that one GPU contains one

video clip in training. We use cosine annealing scheduler

as the learning rate scheduler, and the base learning rate is

set as 0.24 for baseline training, and 0.12 for EVE training.

And in evaluation, we process the full point cloud without

random sampling.

3796

method domain size convolution val mIoU test mIoU FLOPs(G) memory(M)

PointNet [40]

3D 50K pts point-based

- 14.6

PointNet++ [41] - 20.1

TangentConv [53] - 40.9

RandLA-Net [20] - 50.3

SqueezeSeg

2D
64 × 2048

pixels
pixel-based

- 29.5

SqueezeSegV2 [60] - 39.7 13.6

DarkNet21 [1] - 47.4 213.1

DarkNet53 [1] - 49.9 377.1

MinkNet [3]

3D

80K pts

voxel-based

57.0 52.1 119.2 ∼665

EVE (α=50%) 80K pts 56.0 51.5 89.6 ∼393

MinkNet [3] 50K pts 51.7 - 86.8 ∼631

EVE (α=60%) 50K pts 52.2 - 53.9 ∼375

Table 1: Semantic segmentation result for SemanticKITTI. The proposed EVE can maintain segmentation accuracy while

reduce computation. Compared with the same baseline with lower resolution input, EVE only needs similar FLOPs but

achieve much higher accuracy. EVE is also more computation friendly and more accurate than 2D counterpart.

Method test mIoU GFLOPs

MinkNet [3] 75.9 84.7

EVE (α=40%) 75.2 58.7

EVE (α=50%) 74.2 51.9

EVE (α=60%) 74.3 44.8

Table 2: Semantic segmentation result for Synthia4D.

Synthia4D We also experiment on Synthia4D [44] to

evaluate EVE’s performance. Synthia4D is a large synthetic

dataset designed to facilitate the training of deep neural

networks for visual inference in driving scenarios. Photo-

realistic renderings are generated from a virtual city, allow-

ing dense and precise annotations of 13 semantic classes,

together with pixel-accurate depth. We follow the train/-

val/test split as prescribed by [3].

We use voxel size 0.15 as default to voxelize the point

cloud scene. We randomly choose 50000 points from each

scene so that one GPU contains one video clip in training.

And we follow pre-processing in [3], which removes the

outlier points to reduce computation and ignores reserved

and void points. We use cosine annealing scheduler as the

learning rate scheduler, and the base learning rate is set as

0.12 for EVE training. During evaluation, we process the

full point cloud without random sampling.

4.3. Results on Semantic Segmentation

Tab. 1 compares the MinkUNet based EVE method

with current state-of-the-art methods and Fig. 4 shows

some qualitative results of EVE on the validation split.

Given these results, EVE’s performance is superior to

strong pixel-based and point-based baselines. Com-

pared with voxel-based method, we achieve higher perfor-

mance (51.7% v.s. 52.2%) but need much less computa-

GFLOPs: -20

GFL
OPs

: -29
.6

GFLOPs: -32.9

m
I
o
U
:
+
4
.3

mIoU: +0.4

Figure 3: Mean IoU / computation comparisons on Se-

manticKITTI. EVE has a better performance / computa-

tion balance. With similar computation, EVE achieve much

higher mIoU (+4.1) than baseline method (the red dotted

line). With similar performance, EVE reduces up to 32.9

GFLOPs (the green dotted line).

tion (86.8 GFLOPs v.s. 53.9 GFLOPs) and memory usage

(631M v.s. 375M). Category-wise (Fig. 5), EVE also keeps

up with the baseline method. The largest absolute decrease

are observed for “parking” (-0.051), “truck” (-0.048) and

“terrain” (-0.029). These categories are all physically close

to the road, the matching accuracy of which we analyze

might be prone to the LiDAR scanning wave. Even though,

the absolute drop is still less than 0.05. On the other hand,

categories like “bicyclist” (+0.146) and “person” (+0.059)

which have distance with road, obtain a higher performance

compared with baseline. This demonstrates that EVE has

the ability to maintain or improve the accuracy while reduce

redundant computation under different circumstances.

Fig. 3 compares EVE with MinkUNet [3] on both mIoU

and needed computation resource. With similar computa-

tion overhead, EVE can achieves higher mIoU (the red dot-

3797

G
T

P
re
d

car road sidewalk vegetation fence person building

Figure 4: Qualitative results of EVE on the validation set of SemanticKITTI. Images in the first come from EVE’s prediction,

and images in the second row is the ground truth result. Red circles show failure cases.

ted line) compared with baseline method. And to achieve

the same mIoU, EVE needs less GFLOPs (the green dotted

line), which demonstrates EVE is more efficient.

For point-based state-of-the-art methods RandLA-

Net [20], we use latency instead of FLOPs to measure be-

cause it does not process one scene at one pass. Its aver-

age latency for one frame is 2.01 s. In comparison, EVE

needs 0.22 s to processes one frame in average, which is al-

most an order of magnitude faster than point-based state-

of-the-art method RandLA-Net which is tailored for effi-

cient inference. These results demonstrate that EVE can

reduce a lot computation while preserve high mIoU. EVE

also outperforms its pixel-based / point-based counterparts

with much better mIoU and less computation.

Tab. 2 evaluates EVE on Synthia4D. The results also

demonstrate that EVE outperforms strong baseline method

with a better mIoU / computation balance.

4.4. Ablation Study

Matching accuracy. We compare different matching func-

tion introduced in Sec. 3.3.2 on several metrics. The match-

ing accuracy is defined as follow. For each match pair in

P and Q (Eq. 7), if the corresponding label is the same,

we take the matching as correct. Otherwise the matching is

wrong.

Tab. 3 (a) and (b) show that the high matching accuracy is

important for EVE. With the same match ratio (50%), EVE

with Iterative Closest Point (ICP) performs better (+5.1

mIoU) than that with Nearest Neighbor (NN). Although NN

matching accuracy is high enough to ensure point pairs in

P are correctly matched, the performance is also hurt. This

result indicates that matching accuracy for point pairs in in

Q is also important.

To further validate this idea, we compare EVE’s per-

0

0.25

0.5

0.75

1

ca
r

m
o
to

r

tr
u
ck

ve
h
ic

le

p
er

so
n

b
ic

yc
lis

t

ro
ad

p
ar

ki
n
g

si
d
ew

al
k

b
u
ild

in
g

fe
n
ce

ve
g
et

at
io

n
tr

u
n
k

te
rr

ai
n

p
o
le

tr
affi

c-
si

g
n

m
ea

n

baseline (51.7 mIoU) EVE (52.2 mIoU)

-0.048

-0.051

-0.026
-0.029

+0.146

+0.059+0.023

+0.020

Figure 5: Per-category IoU on SemanticKITTI:

EVE v.s. MinkUNet baseline. The highlighted categories

are the 4 highest absolute drop (green digits) and increase

(red digits). The largest absolute decrease are observed for

“parking” (-0.051), “truck” (-0.048), “terrain” (-0.029)

and “sidewalk” (-0.026). In general, EVE maintains similar

performance as baseline for all categories. (Best viewed in

color)

formance with different ICP hyper-parameters settings on

SemanticKITTI. We change the ICP convergence threshold

and maximum matching iteration to control the matching

accuracy. The result is shown in Tab. 3 (b). We could see a

clear positive relationship between matching accuracy and

mIoU, which aligns with our hypothesis above.

Matching ratio. We experiment with using different

matching ratio α (defined in Sec. 3.3.2). Tab. 3 (c) shows

validation mIoU and GFLOPs of EVE with different match-

ing ratio. In general, higher α means more computation is

reused from previous frame thus less GFLOPs. But when

α is too high (≥ 60% in our case), residual learning mod-

ule cannot get enough information from the residual point

cloud, thus the validation mIoU starts to drop.

We desire reuse as many point features as possible, but

3798

match algo. size match acc. val mIoU

NN
80K pts

∼89.6% 50.90

ICP ∼96.0% 56.0

NN
50K pts

∼85.7% 46.70

ICP ∼95.9% 51.6

(a) Matching function comparison

match acc. val mIoU

∼88.3% 47.6%

∼90.1% 49.1%

∼92.3% 51.0%

∼95.9% 51.6%

(b) Matching accuracy comparison

α GFLOPs val mIoU

0% 86.8 51.7%

25% 80.3 51.5%

50% 62.7 51.6%

60% 53.9 52.2%

75% 39.9 50.1%

(c) Matching ratio comparison

Table 3: Ablation experiments on redundancy matching module. (a), (b): Under different matching setting, the matching

accuracy has the key impact on EVE’s performance with different input point cloud size. (c): higher matching ratio α leads

to less GFLOPs, but when α exceeds a threshold (60%), val mIoU drops.

fusion function size val mIoU

in-place
80K pts

51.2

residual 56.0

in-place
50K pts

51.0

residual 51.6

Table 4: Fusion function comparison. Residual connec-

tion performs better than in-place operation with different

input size.

we also need to leave enough points so the residual learning

module gets enough information. Based on this result, we

choose 50% and 60% as the default value for α.

Fusion function. We compare different fusion algorithms

introduced in Sec. 3.3.3. Tab. 4 shows performance of in-

place fusion and residual fusion with different size of point

cloud as input. EVE with residual fusion consistently out-

performs EVE with in-place fusion, especially the point

cloud size is huge (+4.8 mIoU). This result indicates that

residual fusion is one key factor to EVE, which aligns with

our assumption that, directly processing the residual point

cloud will fail as the loss of information.

Number of frames in a clip. Tab. 5 compares EVE’s per-

formance with different number of frames, T . In general,

higher T leads to more computation saving. EVE success-

fully maintains the validation mIoU with different T , and

it even outperforms baseline method by 0.3 mIoU when

T = 3. This result demonstrates that EVE is more effi-

cient than the baseline method. And EVE has the potential

in bringing in more temporal information to increase base-

line performance.

We also notice that as T increases, the relative saved

computation decreases. That’s because the relationship be-

tween average computation and number of frames in a clip,

T , is
α(T−1)+1

T
= 1−α

T
+ α (here we assume the saving

computation is linear to the matching ratio α). When α is

fixed, the saved computation would be less with increasing

T as the derivative of T is negative. Therefore, we do not

need to increase T infinitely, and we select 5 as T ’s default

value due to analysis above.

Failure cases. Red circles in Fig. 4 shows some failure

T 1 3 4 5 6

FLOPs(G) 86.8 75.4 64.5 62.7 55.0

val mIoU (%) 51.7 52.0 51.8 51.6 51.7

Table 5: Comparison on number of frames. We fix

matching ratio α as 50% and number of points as 50k.

Higher T leads to more computation saving. EVE success-

fully maintains the validation mIoU with different T .

cases. We observe that failure cases appear most between

“road” and other categories (like “sidewalk” in the pro-

vided case). We speculate this is due to the redundancy

removing failure as the irregular point pattern and LiDAR

scanning wave of the road. Improving the matching accu-

racy around the road would be a possible direction for future

research.

5. Conclusion

In this paper, we propose the Efficient 3D Video En-

gine (EVE) based on the frame redundancy observation in

3D video understanding tasks. Our experiments reveal that

1) Frame redundancy in point cloud video is huge, over

60% computation is repetitive using current mainstream

methods. By matching and reusing features with previous

frames, the redundant computation can be saved. 2) For

non-redundant points, it’s better to model it as residual fea-

tures to their nearest points in the previous frame rather than

directly process it. 3) Matching accuracy is a key factor to

the whole EVE pipeline, more accurate matching will im-

prove EVE performance. We hope that EVE can foster fu-

ture works in 3D video tasks.

6. Acknowledgement

This work is supported in part by the National Key
R&D Program of China, No. 2017YFA0700800, Na-
tional Natural Science Foundation of China under Grants
61772332 and Shanghai Qi Zhi Institute, SHEITC(2018-
RGZN-02046). Thanks Haotian Tang, Sucheng Qian,
Chang Ge in Shanghai Jiao Tong University for valuable
discussions.

3799

References

[1] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-

zel, Sven Behnke, Cyrill Stachniss, and Juergen Gall. Se-

mantickitti: A dataset for semantic scene understanding of

lidar sequences. In ICCV, 2019.

[2] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In CVPR,

pages 6299–6308, 2017.

[3] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d

spatio-temporal convnets: Minkowski convolutional neural

networks. In CVPR, pages 3075–3084, 2019.

[4] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,

Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,

and Trevor Darrell. Long-term recurrent convolutional net-

works for visual recognition and description. In CVPR, pages

2625–2634, 2015.

[5] Hao-Shu Fang, Chenxi Wang, Minghao Gou, and Cewu Lu.

Graspnet-1billion: A large-scale benchmark for general ob-

ject grasping. In CVPR, pages 11444–11453, 2020.

[6] Christoph Feichtenhofer. X3d: Expanding architectures for

efficient video recognition. In ICCV, 2020.

[7] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and

Kaiming He. Slowfast networks for video recognition. arXiv

preprint arXiv:1812.03982, 2018.

[8] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pages 3354–3361. IEEE, 2012.

[9] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-

ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,

Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz

Mueller-Freitag, et al. The” something something” video

database for learning and evaluating visual common sense.

In ICCV, 2017.

[10] Ben Graham. Sparse 3d convolutional neural networks. In

BMVC, pages 150.1–150.9, September 2015.

[11] Benjamin Graham, Martin Engelcke, and Laurens van der

Maaten. 3d semantic segmentation with submanifold sparse

convolutional networks. In CVPR, pages 9224–9232, 2018.

[12] Chunhui Gu, Chen Sun, David A Ross, Carl Vondrick, Car-

oline Pantofaru, Yeqing Li, Sudheendra Vijayanarasimhan,

George Toderici, Susanna Ricco, Rahul Sukthankar, et al.

Ava: A video dataset of spatio-temporally localized atomic

visual actions. In CVPR, pages 6047–6056, 2018.

[13] Michelle Guo, Edward Chou, De-An Huang, Shuran Song,

Serena Yeung, and Li Fei-Fei. Neural graph matching net-

works for fewshot 3d action recognition. In ECCV, pages

653–669, 2018.

[14] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pe-

dram, Mark A Horowitz, and William J Dally. Eie: effi-

cient inference engine on compressed deep neural network.

In ISCA, pages 243–254. IEEE, 2016.

[15] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. CVPR, pages

770–778, 2016.

[17] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Jun-

yuan Xie, and Mu Li. Bag of tricks to train convolutional

neural networks for image classification. In CVPR, 2018.

[18] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. Amc: Automl for model compression and accel-

eration on mobile devices. In ECCV, pages 784–800, 2018.

[19] JF Hu, WS Zheng, J Lai, and J Zhang. Jointly learning

heterogeneous features for rgb-d activity recognition. IEEE

transactions on pattern analysis and machine intelligence,

39(11):2186–2200, 2017.

[20] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan

Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham.

Randla-net: Efficient semantic segmentation of large-scale

point clouds. CVPR, 2020.

[21] Mingyang Jiang, Yiran Wu, Tianqi Zhao, Zelin Zhao, and

Cewu Lu. Pointsift: A sift-like network module for

3d point cloud semantic segmentation. arXiv preprint

arXiv:1807.00652, 2018.

[22] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,

Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,

Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-

man action video dataset. arXiv preprint arXiv:1705.06950,

2017.

[23] Jiefeng Li, Can Wang, Wentao Liu, Chen Qian, and Cewu

Lu. Hmor: Hierarchical multi-person ordinal relations for

monocular multi-person 3d pose estimation. arXiv preprint

arXiv:2008.00206, 2020.

[24] Wanqing Li, Zhengyou Zhang, and Zicheng Liu. Action

recognition based on a bag of 3d points. In 2010 IEEE Com-

puter Society Conference on Computer Vision and Pattern

Recognition-Workshops, pages 9–14. IEEE, 2010.

[25] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,

and Baoquan Chen. Pointcnn: Convolution on x-transformed

points. In NIPS, pages 820–830, 2018.

[26] Yong-Lu Li, Xinpeng Liu, Han Lu, Shiyi Wang, Junqi Liu,

Jiefeng Li, and Cewu Lu. Detailed 2d-3d joint representation

for human-object interaction. In CVPR, 2020.

[27] Yong-Lu Li, Liang Xu, Xijie Huang, Xinpeng Liu, Ze Ma,

Mingyang Chen, Shiyi Wang, Hao-Shu Fang, and Cewu Lu.

Hake: Human activity knowledge engine. arXiv preprint

arXiv:1904.06539, 2019.

[28] Yong-Lu Li, Liang Xu, Xinpeng Liu, Xijie Huang, Yue Xu,

Shiyi Wang, Hao-Shu Fang, Ze Ma, Mingyang Chen, and

Cewu Lu. Pastanet: Toward human activity knowledge en-

gine. In CVPR, pages 382–391, 2020.

[29] Yong-Lu Li, Siyuan Zhou, Xijie Huang, Liang Xu, Ze Ma,

Hao-Shu Fang, Yanfeng Wang, and Cewu Lu. Transferable

interactiveness knowledge for human-object interaction de-

tection. In CVPR, 2019.

[30] Ji Lin, Chuang Gan, and Song Han. Temporal shift

module for efficient video understanding. arXiv preprint

arXiv:1811.08383, 2018.

[31] Xingyu Liu, Joon-Young Lee, and Hailin Jin. Learning video

representations from correspondence proposals. In CVPR,

pages 4273–4281, 2019.

3800

[32] Xingyu Liu, Charles R Qi, and Leonidas J Guibas.

Flownet3d: Learning scene flow in 3d point clouds. In

CVPR, pages 529–537, 2019.

[33] Xingyu Liu, Mengyuan Yan, and Jeannette Bohg. Meteor-

net: Deep learning on dynamic 3d point cloud sequences. In

ICCV, pages 9246–9255, 2019.

[34] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin

Yang, Tim Kwang-Ting Cheng, and Jian Sun. Metapruning:

Meta learning for automatic neural network channel pruning.

arXiv preprint arXiv:1903.10258, 2019.

[35] Jiageng Mao, Xiaogang Wang, and Hongsheng Li. Interpo-

lated convolutional networks for 3d point cloud understand-

ing. arXiv preprint arXiv:1908.04512, 2019.

[36] Bowen Pan, Wuwei Lin, Xiaolin Fang, Chaoqin Huang,

Bolei Zhou, and Cewu Lu. Recurrent residual module for

fast inference in videos. In CVPR, pages 1536–1545, 2018.

[37] Bo Pang, Kaiwen Zha, Hanwen Cao, Chen Shi, and Cewu

Lu. Deep rnn framework for visual sequential applications.

In CVPR, pages 423–432, 2019.

[38] Bo Pang, Kaiwen Zha, Hanwen Cao, Jiajun Tang, Minghui

Yu, and Cewu Lu. Complex sequential understanding

through the awareness of spatial and temporal concepts. Na-

ture Machine Intelligence, 2(5):245–253, 2020.

[39] Bo Pang, Kaiwen Zha, Yifan Zhang, and Cewu Lu. Further

understanding videos through adverbs: A new video task. In

AAAI, pages 11823–11830, 2020.

[40] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In CVPR, pages 652–660, 2017.

[41] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In NIPS, pages 5099–5108,

2017.

[42] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.

Octnet: Learning deep 3d representations at high resolutions.

In CVPR, pages 3577–3586, 2017.

[43] Herbert Robbins and Sutton Monro. A stochastic approxi-

mation method. The annals of mathematical statistics, pages

400–407, 1951.

[44] German Ros, Laura Sellart, Joanna Materzynska, David

Vazquez, and Antonio M Lopez. The synthia dataset: A large

collection of synthetic images for semantic segmentation of

urban scenes. In CVPR, pages 3234–3243, 2016.

[45] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang.

Ntu rgb+ d: A large scale dataset for 3d human activity anal-

ysis. In CVPR, pages 1010–1019, 2016.

[46] Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali

Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in

homes: Crowdsourcing data collection for activity under-

standing. In ECCV, pages 510–526. Springer, 2016.

[47] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In

NIPS, 2014.

[48] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.

Ucf101: A dataset of 101 human actions classes from videos

in the wild. arXiv preprint arXiv:1212.0402, 2012.

[49] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

Splatnet: Sparse lattice networks for point cloud processing.

In CVPR, pages 2530–2539, 2018.

[50] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In CVPR, pages 2820–2828, 2019.

[51] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In International

Conference on Machine Learning, pages 6105–6114, 2019.

[52] Jiajun Tang, Jin Xia, Xinzhi Mu, Bo Pang, and Cewu Lu.

Asynchronous interaction aggregation for action detection.

arXiv preprint arXiv:2004.07485, 2020.

[53] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-

Yi Zhou. Tangent convolutions for dense prediction in 3d. In

CVPR, pages 3887–3896, 2018.

[54] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,

Beatriz Marcotegui, François Goulette, and Leonidas J

Guibas. Kpconv: Flexible and deformable convolution for

point clouds. arXiv preprint arXiv:1904.08889, 2019.

[55] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torre-

sani, and Manohar Paluri. Learning spatiotemporal features

with 3d convolutional networks. In ICCV, pages 4489–4497,

2015.

[56] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.

Haq: Hardware-aware automated quantization with mixed

precision. In CVPR, pages 8612–8620, 2019.

[57] Xiaolong Wang and Abhinav Gupta. Unsupervised learning

of visual representations using videos. In ICCV, 2015.

[58] Xiaolong Wang, Allan Jabri, and Alexei A. Efros. Learn-

ing correspondence from the cycle-consistency of time. In

CVPR, 2019.

[59] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

CVPR, pages 10734–10742, 2019.

[60] Bichen Wu, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and

Kurt Keutzer. Squeezesegv2: Improved model structure and

unsupervised domain adaptation for road-object segmenta-

tion from a lidar point cloud. In ICRA, pages 4376–4382.

IEEE, 2019.

[61] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep

convolutional networks on 3d point clouds. In CVPR, pages

9621–9630, 2019.

[62] Zuxuan Wu, Xi Wang, Yu-Gang Jiang, Hao Ye, and Xi-

angyang Xue. Modeling spatial-temporal clues in a hy-

brid deep learning framework for video classification. In

ACMMM, pages 461–470, 2015.

[63] Jin Xia, Jiajun Tang, and Cewu Lu. Three branches:

Detecting actions with richer features. arXiv preprint

arXiv:1908.04519, 2019.

[64] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.

Spidercnn: Deep learning on point sets with parameterized

convolutional filters. In ECCV, pages 87–102, 2018.

3801

[65] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and

Yurong Chen. Incremental network quantization: Towards

lossless cnns with low-precision weights. arXiv preprint

arXiv:1702.03044, 2017.

[66] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Tor-

ralba. Temporal relational reasoning in videos. In ECCV,

pages 803–818, 2018.

3802

