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Abstract

Video captioning is the task of predicting a semantic and

syntactically correct sequence of words given some context

video. The most successful methods for video captioning

have a strong dependency on the effectiveness of semantic

representations learned from visual models, but often pro-

duce syntactically incorrect sentences which harms their

performance on standard datasets. In this paper, we ad-

dress this limitation by considering syntactic representation

learning as an essential component of video captioning. We

construct a visual-syntactic embedding by mapping into a

common vector space a visual representation, that depends

only on the video, with a syntactic representation that de-

pends only on Part-of-Speech (POS) tagging structures of

the video description. We integrate this joint representation

into an encoder-decoder architecture that we call Visual-

Semantic-Syntactic Aligned Network (SemSynAN), which

guides the decoder (text generation stage) by aligning tem-

poral compositions of visual, semantic, and syntactic rep-

resentations. We tested our proposed architecture obtain-

ing state-of-the-art results on two widely used video cap-

tioning datasets: the Microsoft Video Description (MSVD)

dataset and the Microsoft Research Video-to-Text (MSR-

VTT) dataset.

1. Introduction

A way of bridging vision and language is the automatic

generation of natural language descriptions of videos, also

known as video captioning [3, 17, 19, 24, 25, 35, 42, 45, 60].

This topic represents a fundamental challenge for several re-

search areas like video analysis and understanding, human-

computer interaction, and deep learning applications for vi-

sion. As a text generation task, video captioning is substan-

tially more difficult than predicting a single sentence from

an image (image captioning) [5, 9, 16, 27, 28, 32, 37, 53]
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Figure 1. Example of video caption generation with Visual-

Syntactic Embedding. The method computes high-level semantic

and syntactic representations from the visual representation of the

video. Next, the decoder generates a sentence from them.

since spatial-temporal information in videos introduces di-

versity and complexity regarding the visual content and the

structure of associated textual descriptions.

The application of Deep Learning in both computer vi-

sion and natural language processing is gaining popularity

due to its success in tasks like action recognition [15, 26,

30, 34] and machine translation [12, 52]. Specifically for

video captioning, the state-of-the-art methods are based on

encoder-decoder deep learning architectures. The encoder

part of such architectures, usually based on Convolutional

Neural Networks (CNN), compresses the video into feature

representations, e.g., appearance features, motion features,

and high-level semantic representations. The decoder, usu-

ally based on Recurrent Neural Networks (RNN), generates

the caption one word at a time given the encoder represen-

tations. Most successful architectures are focused on gener-

ating the correct words and concepts in the output descrip-

tion by including semantic features, but usually neglects the

syntactic structure of the sentences describing the videos.

In this paper, we propose an encoder-decoder model (see

Figure 1) that, besides considering visual and semantic fea-

tures, incorporates in the decoder phase, a visual-syntactic

representation extracted from the input video. The three

types of representations (visual, semantic and syntactic rep-

resentations) are combined with what we call var-norm-

compositional LSTM and adaptive fusion gates that decide
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when and how to include each feature type in the token gen-

eration phase. Specifically, the main contributions of this

paper are as follows:

1. We propose a model to create visual-syntactic em-

beddings by exploiting the Part-of-Speech (POS) tem-

plates of video descriptions. We do this by learning

two functions: φ(·) that maps videos, and ω(·) that

maps (POS tags of) captions, both into a common vec-

tor space. The learning process is based on a match

and rank strategy, and ensures that videos and their

corresponding captions are mapped close together in

the common space. Then, when producing features

for the decoder architecture (see the next point), we

can use the function φ(·) to map the input video and

generate our desired visual-syntactic embedding. To

the best of our knowledge, this is the first approach to

jointly learn embeddings from videos and (POS tags

of) descriptions. Moreover, our proposal constitutes

the first instance of an effective use of a ranking model

to obtain syntactic representations of videos.

2. We propose the Visual-Semantic-Syntactic Aligned

Network (SemSynAN) for video captioning that in-

tegrates global semantic and syntactic representations

of the input video. It learns how to combine vi-

sual, semantic, and syntactic information in pairs

(i.e., visual-semantic, visual-syntactic, and semantic-

syntactic) while generating output tokens. As our re-

sults show, this process produces more accurate de-

scriptions, both semantically and syntactically.

3. We evaluate our method on two widely used datasets:

the Microsoft Video Description (MSVD) dataset [33]

and the Microsoft Research Video-to-Text (MSR-

VTT) dataset [56]. Except for one metric in MSR-

VTT, we improve the state-of-the-art in both datasets

in all metrics. For instance, in MSVD we obtain a rel-

ative improvement of 10.8% for METEOR and 8.2%

for CIDEr, and in MSR-VTT a relative improvement

of 2.6% for BLEU-4 and of 1.7% for METEOR.

2. Related Work

Previous work on video captioning employed template-

based models [21, 29, 31, 48, 50, 57, 58], which aim to

generate sentences within a reduced set of templates that

assure grammatical correctness. These templates produce

sentences organizing the results of the first stage of recog-

nition of the relevant visual content (Subject-Verb-Object

(SVO) triplets). However, the required complexity of rules

and templates makes their manual design a time-consuming

and highly expensive task for any sufficiently rich domain.

Hence, these approaches soon become unsuitable for deal-

ing with open-domain datasets.

2.1. Joint Embeddings And Semantic Guiding

For tasks like video retrieval from descriptions and video

descriptions retrieval from videos [10, 11, 14, 38, 39], the

joint visual-semantic embeddings have a successful appli-

cation. These embeddings are constructed by combining

two models: a language model that maps the captions to

a language representation vector, and a visual model that

obtains a visual representation vector from visual features.

Both models are trained for projecting those representa-

tions into a joint space, minimizing a distance function.

Dong et al. [11] obtain high-performance in retrieval tasks

by using the same multi-level architecture for both models,

and training with the triplet-ranking-loss function [13].

For video captioning, these embeddings have not been

widely explored [18, 35, 42]. In LSTM-E [42], a joint em-

bedding component is utilized to bridge the gap between

visual content and sentence semantics. This embedding

is trained by minimizing the relevance loss and coherence

loss simultaneously. In SibNet [35], autoencoder for vi-

sual information, and a visual-semantic embedding for se-

mantic information are exploited. These joint embeddings

only consider the implicit contextual information of word

vectors. To improve the perplexity and syntax correctness

of generated sentences, we learn a new representation of

videos with suitable syntactic information. We propose a

joint visual-syntactic embedding, trained for retrieving POS

tagging sequences from videos. We employ it to produce

syntactic features and alleviate the syntactic inconsistency

between the video content and the generated caption.

Another way of exploiting informative semantics is by

learning to ensemble the result of visual perception mod-

els [3, 17, 36, 43, 59]. Pan et al. [43] incorporated the trans-

ferred semantic attributes learned from two sources (images

and videos) inside a CNN-RNN framework. For this, they

integrated a transfer unit to dynamically control the impact

of each source’s semantic attributes as an additional input

to LSTM. Gan et al. [17] included the semantic meaning

via a semantic-concept-detector model, which computes the

probability of each concept appears in the video. They in-

corporated concept-dependent weight tensors in LSTM for

composing the semantic representations. More recently,

Yuan et al. [59] proposed the Semantic Guiding LSTM,

which jointly explores visual and semantic features using

two semantic guiding layers. Chen et al. [3] improved the

model proposed by Gan et al. [17] by using the hyperbolic

tangent tanh(·) to activate the raw cell input instead of the

logistic sigmoid σ(·), and integrating the global semantic

feature at each step instead of only at the beginning.

These methods show the benefits of describing the

videos according to dynamic visual and semantic informa-

tion. However, these models’ performance has a strong

dependence on the quality of semantic concept detection

models. This strong dependence can be alleviated by in-
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cluding an adaptive mechanism that selectively determines

the visual and semantic information required to generate

each word. In this sense, we combine two fusion gates for

adaptively mix three aligned temporal compositions of three

sources: visual, semantic, and syntactic.

2.2. Syntactic Guiding

Although some recent works in image captioning [8, 23]

and video captioning [25, 54] have explored the use of syn-

tactic information in the generation process, its impact has

not been widely explored. For the video captioning task,

Hou et al. [25] created a model that first generates a se-

quence of POS tags and a sequence of words, and then

learns the joint probability of both sequences using a prob-

abilistic directed acyclic graph. Wang et al. [54] integrated

a syntactic representation in the decoder, also learned by

a POS sequence generator. A weakness of these models

is that they do not directly exploit the relationship neither

between syntactic and visual representations nor between

syntactic and semantic representations. In contrast, we pro-

pose a method to learn a visual-syntactic embedding and

obtain syntactic representations of videos, instead of learn-

ing to generate a sequence of POS tags. We also include

two compositional layers to obtain visual-syntactic-related

and semantic-syntactic-related representations.

3. Our Approach

As a learning problem, video captioning can be for-

malized as follows. Given a set D of pairs (x, y), where

x = (x1, x2, . . . , xn) is a sequence representing frames

from a video, and y = (w1, w2, . . . , wm) is a sequence of

words that describes the information in x, we want to con-

struct a model that maximizes

p(w1, w2, . . . , wm|x1, x2, . . . , xn)

over all pairs (x, y) ∈ D. That is, the model maximizes

the probability of the descriptive information (y) given the

input video (x). Usually, in video caption datasets, there are

several descriptions for the same video, that is, for every

video x exists at least two descriptions y1 and y2 such that

y1 6= y2 and (x, y1), (x, y2) ∈ D. In the experiments we use

datasets in which every video has at least 20 descriptions.

One way of solving a video-caption problem is to train

a model that first constructs an encoder representation from

x, say enc(x) and then, using enc(x) as input, decodes it to

produce the sequence y each word at a time. In this paper,

we propose a Deep Learning encoder-decoder architecture

that uses classical building blocks such as CNNs and RNNs

but with some crucial additions to mix visual, semantic, and

syntactic features from the training data to boost its perfor-

mance (Figure 2). We developed our method under the as-

sumption that integrating semantic-concept representations

with syntactic representations can improve the quality of

generated sentences. Compared with previous work, our

main contribution is the addition of the syntactic part. As

we show in the experimental section below, this component

allows us to improve the state of the art in video captioning.

Now, we describe our model for predicting a video’s

global syntactic representation. Next, we introduce an ef-

fective way to fuse semantic and syntactic temporal repre-

sentations into our video captioning method’s decoder.

3.1. Encoder and Visual­Syntactic Embedding

For encoding the input video x, we propose an architec-

ture of three stages. The first stage consists in compress-

ing the video into a global representation that we denote by

ρ(·), which combines two standard visual features extractor.

Specifically, we sample p frames from x and extract 2D-

CNN feature vectors {a1, a2, . . . , ap} and 3D-CNN feature

vectors {m1,m2, . . . ,mp} intuitively representing the ap-

pearance and motion information of the video, respectively.

Then, these features are concatenated and averaged to pro-

duce ρ(x), that is, ρ(x) = 1

p

∑p
i=1

[ai,mi]. We emphasize

that in our proposal, the feature extractors (2D- and 3D-

CNNs) are fixed. In other words, we leverage pre-trained

feature extractors and do not train them in our architecture.

The second stage in our encoder consists of producing a

semantic representation of the video. Based on video cap-

tioning studies like Chen et al. [3] and Gan et al. [17], we

use a standard concept detector. The concept detector is es-

sentially a multi-class classifier that gives probabilities for

possible keywords that are relevant to describe a specific

video. Recall that our task is a video-captioning task, so we

need alternative data to train such a classifier. To do this,

we first construct a set T of keywords by considering the K

most frequent words in all the descriptions in our dataset D
(|T | = K). Then, for every video, say x⋆, in D, we con-

sider the set of all keywords that appear in the descriptions

for x⋆, that is, the set

tags(x⋆) = {w ∈ T | ∃ y, (x⋆, y) ∈ D and w occurs in y}.

Then, for training the classifier, we use the dataset DT

composed of all the pairs (x, tags(x)) such that x is a video

in D. We consider a standard MLP architecture that has

ρ(x) as input, ReLU activation in hidden layers and a sig-

moid activation at the output, producing a vector S(ρ(x)) ∈
[0, 1]K . We train it with a component-wise binary cross-

entropy loss as it is customary for multi-class classifiers.

The idea is that the i-th component of S(ρ(x)) is the proba-

bility assigned by the model to the fact that wi ∈ tags(x⋆).
We use S(ρ(x)) as the concept detector vector.

3.1.1 Visual-Syntactic Embedding

The third stage in our encoder architecture produces what

we call visual-syntactic embedding. We next explain the
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Figure 2. Proposed video captioning model. Firstly, we extract 2D-CNN and 3D-CNN visual features and a global representation ρ(x).
Next, the method predicts semantic and syntactic representations of the video by S(ρ(x)) and φ(ρ(x)), respectively. Then, the decoder

generates the t-th word dynamically combining these three vectors in pairs. A different VNCL layer processes each pair.

Visual-Syntactic

Embedding

Figure 3. Visual-Syntactic Embedding. The model learns to map

from video and POS sequences to a common space by the func-

tions φ(·) and ω(·), preserving the relationship between visual

content and positive syntactic structures.

main intuition and how they are constructed from the data.

We claim that cues about the syntactic structure of the

video’s descriptions can be directly extracted from a video

without necessarily extracting explicit information about

the entities or objects participating. For example, there may

be several videos in our dataset that, because of their struc-

ture, share a description pattern of the form

〈object1〉 〈object2〉 〈action〉 〈object3〉

as in a description like “〈The dog〉 and 〈the cat〉 〈are lying〉
on 〈the floor〉.” We propose to train a model to compute

a suitable syntactic representation of descriptions directly

from the input video. We attack this representation learning

problem as a Part-Of-Speech template retrieval problem.

Given a pair (x, y) ∈ D, our strategy is to learn how

to map the feature vector ρ(x) and the sequence of POS

tags of y into a d-dimensional common space (Figure 3).

Specifically, the aim is to learn two mapping functions φ(·)
and ω(·) (encoders) that map from visual features and POS

template vectors, respectively, to the joint embedding space.

Before explaining the specific architecture that we use

for mappings φ(·) and ω(·), we describe how we train them

to construct embeddings into a common space by using the

triplet-ranking-loss approach [11]. For now it is enough

to assume that both φ(·) and ω(·) produces vectors in R
d.

Assume that dist(·, ·) is a distance function in R
d. Let

(x, y) ∈ D and assume that y⋆ is an arbitrary description

in the dataset not associated with x (a negative example).

We would like the following to hold

dist
(

φ(ρ(x)), ω(y)
)

+ α < dist
(

φ(ρ(x)), ω(y⋆)
)

,

where α is a margin that is enforced between positive and

negative pairs. This gives rise to a natural optimization

problem in which one wants to minimize

max

{

0, dist
(

φ(ρ(x)), ω(y)
)

+α−dist
(

φ(ρ(x)), ω(y⋆)
)

}

over all triples (x, y, y⋆) where (x, y) ∈ D and y⋆ is a

negative example. This formulation is the classic version

of triple-ranking loss. In our architecture, we use an im-

proved version, which penalizes the model taking into ac-

count the hardest negative examples [11, 13]. In this im-

proved version, one considers a tuple (x, y, x⋆, y⋆) where

(x, y) ∈ D, y⋆ is the closest negative example for x, and x⋆

is the closest negative example for y. We refer the reader to

Dong et al. [11] and Faghiri et al. [13] for details.

Given the way for training the mappings, we can explain

the architecture of both encoders φ(·) and ω(·). On the

one hand, we define the visual encoder φ(·) → R
d sim-

ilar to the concept detector model, but removing the sig-

moid activation function and incorporating a Batch Nor-

malization layer. On the other hand, to map the sequence

of POS tags, we define ω(·) → R
d extending the encod-

ing proposed in [11] for sentences. Specifically, ω(·) en-

codes a POS tags sequence t by concatenating three inter-

mediate representations of the sequence that we call global,

temporal, and local-enhancing, denoted by ω1(t), ω2(t),
and ω3(t), respectively. Then, this concatenation is pro-

jected in the embedding space by another MLP T, that is,
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ω(t) = T
(

[ω1(t), ω2(t), ω3(t)]
)

. We next describe how

ω1(t), ω2(t), and ω3(t) are computed.

The global representation ω1(t) is computed simply as a

bag-of-words representation of the POS tags in t. Given that

we consider 28 POS tags, ω1(t) is a 28-dimensional vector.

The temporal representation ω2(t) is constructed by using a

recurrent network over the POS tag sequence. More specifi-

cally, we first compute the sequence H = (ĥ1, ĥ2, . . . , ĥm)
as the output of a bidirectional GRU network over the POS

tags t = (t1, t2, . . . , tm). Then ω2(t) is computed as the

average of the vectors in H . Finally, the local-enhancing

representation ω3(t) is computed as a one-dimensional con-

volution over the sequence H and a final max pooling.

3.2. The Decoder

Given the output of our encoder, i.e., the averaged feature

representation ρ(x), the concept detector vector S(ρ(x))
and the visual-syntactic encoding φ(ρ(x)), our decoder net-

work, that we denote by ψ, generates the natural language

description y = ψ
(

ρ(x), S(ρ(x)), φ(ρ(x))
)

. We define ψ as

a recurrent architecture that generates the tokens in y each

word at a time. This recurrent architecture has four compo-

nents to dynamically decide when to use visual-semantic,

visual-syntactic, or semantic-syntactic temporal informa-

tion in the generation process (Figure 2). Our decoder deals

with the usual overfitting of video captioning models by in-

corporating dropout and layer normalization strategies.

In detail, our decoder has three specialized recurrent lay-

ers based on compositional-LSTM network [3, 17], and an

additional layer to combine the outputs of the three recur-

rent layers defined by two levels of what we call fusion

gates. The role of this combination layer is to adaptively

mix the outputs of the three recurrent layers, while the role

of the recurrent layers is to capture temporal states related to

a specific pair of feature information (i.e., visual-semantic,

visual-syntactic, and semantic-syntactic). Unlike other ar-

chitectures [2, 19, 41], our recurrent layers are not deeply

connected (the output of one is not the input of another).

Intuitively, each one is in charge of combining two different

information channels separately. So, we compute the three

layers in parallel without increasing the execution time.

Var-Norm-Compositional LSTM (VNCL). As a build-

ing block, we use a recurrent layer that we call Var-Norm-

Compositional LSTM that is defined as follows. We first

define a general operator F over matrices and vectors as

F (u, v,mu,mv, U, V,W ) =

W
(

U(u⊙mu)⊙ V (v ⊙mv)
)

.

Now consider as input the vectors q, r and the sequence

x1, . . . , xN . We define two sequences h1, . . . , hN and

c1, . . . , cN by using F in an LSTM-like way recursively

as follows. Let ∗ represent i (input), f (forget), o (output)

and c (cell), as in the gates of an LSTM. We first define the

intermediate vectors ẑ∗, x̂∗,t and ĥ∗,t by

ẑ∗ = F (q, r,m∗,q,m∗,r, C∗,1, C∗,2, C∗,3),

x̂∗,t = F (xt, r,m∗,x,m∗,r,W∗,1,W∗,2,W∗,3),

ĥ∗,t = F (ht−1, r,m∗,h,m∗,r, U∗,1, U∗,2, U∗,3),

where W∗,j , U∗,j and C∗,j with j = 1, 2, 3 are weight ma-

trices to be learned, and m∗,q , m∗,r, m∗,x and m∗,h are the

dropout masks applied to q, r, xt and ht−1, one for each

gate. We note that these dropout masks are the same for

every step t and, as every dropout, are picked randomly for

every training step. Then, we compute the gates as

ît = σ(BN(x̂i,t + ẑi + ĥi,t + bi)),

f̂t = σ(BN(x̂f,t + ẑf + ĥf,t + bf )),

ôt = σ(BN(x̂o,t + ẑo + ĥo,t + bo)),

ĉt = tanh(BN(x̂c,t + ẑc + ĥc,t + bc)),

where b∗ is a bias vector to be learned for each gate ∗ ∈
{i, f, o, c} and BN denotes a Batch Normalization layer ap-

plied before the activation functions. Finally, we have that

ct = f̂t ⊙ ct−1 + ît ⊙ ĉt,

ht = ôt ⊙ tanh(ct).

We denote the above recursive process simply as

(ht, ct) = VNCL(ht−1, ct−1, xt, q, r) (1)

Now, given the VNCL definition, we can define each layer

in our recurrent decoder architecture.

The Visual-Semantic layer (v-se-LSTM) incorporates

semantic information focusing on the meaning of the visual

and language context information. v-se-LSTM takes into

account the global visual representation ρ(x) and the result

of our concept detector S(ρ(x)).

(hvse
t , cvse

t ) = VNCL

(

hvse
t−1

, cvse
t−1

, xt, ρ(x), S(ρ(x))
)

The Visual-Syntactic layer (v-sy-LSTM) incorporates

syntactic information focusing on the structure of the visual

and POS tagging information. v-sy-LSTM takes into ac-

count the visual information ρ(x) and its projection in the

visual-syntactic embedding φ(ρ(x)).

(hvsy
t , c

vsy
t ) = VNCL

(

h
vsy
t−1

, c
vsy
t−1

, xt, ρ(x), φ(ρ(x))
)

The Semantic-Syntactic layer (se-sy-LSTM) processes

the semantic primitives S(ρ(x)) and the syntactic represen-

tation φ(ρ(x)), regardless of the visual features informa-

tion. The temporal semantic-syntactic-related information

allows the decoder to generate words without considering

the visual content, e.g., linking verbs.

hss
t , c

ss
t = VNCL

(

hss
t−1

, css
t−1

, xt, S(ρ(x)), φ(ρ(x))
)
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Figure 4. Hierarchical fusion strategy. Two adaptive gates are con-

nected in a cascade way. TA represents our Temporal Attention

module. β1 and β2 are weight-vectors computed by the sigmoid

of two fully-connected layers (FC).
⊙

and
⊕

are the element-

wise multiplication and addition.

3.2.1 Combination with Hierarchic Fusion Gates

For combining the output of the three recurrent units, we

propose a hierarchical fusion strategy before generating the

word in each step (Figure 4). This strategy is an essential

component of our model. It consists of a temporal atten-

tion mechanism (TA) and two adaptive gates that intuitively

decide how and when to use (or forget) the visual-related

information from v-se-LSTM and v-sy-LSTM layers. For

TA, we base our mechanism on the soft attention [1]. With

this strategy, the decoder learns to dynamically weight the

temporal feature vectors in each step. For each video, with

visual features [ai,mi] at i-th frames segment, we compute

the TA in step t by at = 1

p

∑p
i=1

αi[ai,mi], where αi is

the weight related to the i-th frames segment. We compute

these weights considering the three recurrent layers’ hidden

states by αi = softmax
(

Wa,2 ·(Wa,1 ·[h
vse
t , h

vsy
t , hss

t ]+ba)
)

,

where Wa,1, Wa,2 and ba are parameters to be learned.

Given the TA in step t and the decoder’s output in the

previous step ht−1, the fusion gates select the most accu-

rate information between hvse
t , h

vsy
t and hss

t . The model first

fuses the visual-related layers (hvse
t and h

vsy
t ) in a tempo-

ral vector. Then, this vector is fused with the semantic-

syntactic-related information hss
t , increasing the chance of

generating captions with correct semantic meaning and syn-

tactic structure. We define this component as follows:

ht = β2 ⊙
(

β1 ⊙ hvse
t + (1− β1)⊙ h

vsy
t

)

+ (1− β2)⊙ hss
t ,

such that,

β1 = σ
(

Wh,1 · [ht−1, at] + bh,1
)

,

β2 = σ
(

Wh,2 · [ht−1, at] + bh,2
)

,

where Wh,1, Wh,2, bh,1 and bh,2 are learnable parameters.

3.3. Syntax­weighted Loss

As a language generation task, the video captioning

models are usually trained by the principle of Maximum

Likelihood Estimation, also known as Cross-Entropy mini-

mization (CELoss) [20]. However, the weak relationship of

the CELoss function with the popular evaluation metrics of

video captioning [45, 47], constitutes a limitation of its use.

To overcome this limitation while aiming to consider

syntactic information in the training phase, we propose the

syntax-weighted loss function. Our function improves the

loss used by Chen et al. [3], considering the distance be-

tween the syntactic representation and the POS structure

of the generated description. Thus, given a video x, the

ground-truth caption y = (y1, y2, . . . , yL) of x, and the

POS tagging t of the generated description, we define the

weight w = max
{

1, Lβ −
(

dist
(

φ(ρ(x)), ω(t)
)

+ 1
)γ}

,

and we minimize

−
1

w

L
∑

i=1

log pθ(yi|yz<i), (2)

where β ∈ [0, 1] and γ ∈ [0, 1] are hyperparameters used to

manage the balance between the length (conciseness) and

syntactic correctness of generated descriptions. Greater β

implies longer captions, and greater γ implies better syntax.

4. Experimental Evaluation

For the evaluation, we use two widely used benchmark

datasets that are publicly available: MSVD [33] and MSR-

VTT [56]. On the one hand, the MSVD dataset contains

1,970 videos with 41 descriptions per video on average and

a total of 12,859 unique words. We use the MSVD’s stan-

dard split, i.e., 1,200, 100, and 670 videos for training,

validation, and testing. On the other hand, the MSR-VTT

dataset contains about 50 hours, with 200,000 clip-sentence

pairs (approximately 20 descriptions per clip), covering a

broad range of categories and diverse visual content. We

also use the MSR-VTT’s standard split, i.e., 6,512, 498, and

2,990 clips for training, validation, and testing. For com-

paring, we report results on four popular evaluation metrics

using the Microsoft COCO evaluation server [4].

4.1. Training Setup

To extract 2D-CNN features of the video, we use

ResNet-152 [22] feature extractor pre-trained on Ima-

geNet [7, 49]. For 3D-CNN, we use ECO [62] and R(2+1)D

[51] feature extractors, both pre-trained on Kinetics-400

dataset. On details, for frame-level representations, we con-

catenate the ResNet-152, and ECO features vectors, result-

ing in 3584-dimensional feature vectors. Concerning global

representation, we average these features and concatenate

it with the 512-dimensional R(2+1)D feature, obtaining a

4096-dimension global representation. To represent text de-

scriptions, we obtain the vocabulary from the training set of

each dataset. Next, we map each description to a sequence

of indices in the vocabulary, putting the 〈eos〉 and 〈unk〉 to-

kens at the end and in the positions of unknown words.
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Table 1. Ablation study on the testing set of MSVD and MSR-VTT datasets. Each row reports the results by changing only one aspect of

the method, e.g., the architecture −(v-se, se-sy) shows the results obtained by the model without the v-se-LSTM and se-sy-LSTM layers.
Architecture MSVD MSR-VTT

BLEU-4 METEOR CIDEr ROUGEL BLEU-4 METEOR CIDEr ROUGEL

SemSynAN (ours) 64.4 41.9 111.5 79.5 46.4 30.4 51.9 64.7

−v-sy 59.4 39.4 107.2 77.0 45.3 29.0 48.0 62.4
−se-sy 58.3 39.5 106.8 76.3 44.6 29.6 48.9 62.6
−(v-se, se-sy) 48.5 34.3 75.8 72.1 40.7 27.6 42.6 60.5
−(v-se, v-sy) 56.7 37.2 92.0 74.9 45.3 28.8 47.7 62.4
−hfg 60.8 41.3 103.9 75.9 45.8 29.7 48.0 63.0
−R(2+1)D 61.9 39.7 105.4 77.0 43.7 29.6 50.0 61.6
−wl 50.5 39.8 98.1 73.5 43.9 26.9 43.0 59.8
−vd 49.2 39.4 101.4 74.0 43.6 27.2 45.2 61.9
−max 63.7 41.2 108.1 79.0 45.6 30.1 48.0 63.1

For the visual-syntactic embedding, we set the dimen-

sion of the common space to 512, the hidden sizes of the

visual model to 2048 and 1024, and the hidden size of the

biGRU layer of the syntactic model to 1024. We trained the

model on the MSR-VTT dataset using the cosine distance

as the dist(·, ·) function, a learning rate of 1 × 10−5 and a

margin parameter of 0.1. Some methods like LSTM-E [42]

use all ground-truth captions while others like LJRV [40]

and Dong et al. [11] randomly sample five ground-truth cap-

tions per video. We follow the latter strategy. By sampling

a random subset, the most frequent syntactic structure is

most likely to be selected. Our results demonstrate that, in

MSVD and MSR-VTT, five samples are sufficient for learn-

ing the cues about the syntactic structure of video captions.

We use Adam optimizer with an initial learning rate of

4×10−5 for the MSR-VTT dataset and 2×10−5 for MSVD

and a batch-size of 64. We trained for at least 50 epochs

with early-stopping criteria of 10 epochs. Each VNCL layer

has a hidden size of 1024, and we use a keep probability of

0.8 for their dropout masks and 0.5 in all other cases. For

our syntax-weighted loss function, we set the parameters

β = 0.7 and γ = 0.9 and use the cosine distance.We fine-

tune the hyperparameters on the validation sets and select

the best checkpoint for testing according to a linear combi-

nation of BLEU-4, METEOR, CIDEr, and ROUGEL mea-

sures. We implemented our models and training methods

on PyTorch1 [46]. They are publicly available on GitHub2.

4.2. Results and Analysis

Ablation Study. Table 1 shows the results of nine ablated

experiments that we performed on the MSVD and MSR-

VTT datasets. Specifically, we evaluate our SemSynAN

model by removing, in separate runs, one or two of our

VNCL layers, the fusion gates, the weighted-loss function,

the dropout masks and the maximum sampling strategy.

−v-sy and −se-sy. These two runs figure out the contribu-

tion of each VNCL layers that process syntactic informa-

tion. These runs’ models have two VNCL layers only and

combine them by only one fusion gate.

1https://pytorch.org
2Our code is available at https://github.com/jssprz/

visual_syntactic_embedding_video_captioning

Table 2. Performance comparison with the state-of-the-art meth-

ods on the testing set of MSVD dataset.
Approach BLEU-4 METEOR CIDEr ROUGEL

LSTM-E [42] 45.3 31.0 - -
SCN-LSTM [17] 51.1 33.5 77.7 -
TDDF [60] 45.8 33.3 73.0 69.7
MTVC [44] 54.5 36.0 92.4 72.8
BAE [2] 42.5 32.4 63.5 -
MFATT-TM-SP [36] 52.0 33.5 - -
ECO [62] 53.5 35.0 85.8 -
SibNet [35] 54.2 34.8 88.2 71.7
Joint-VisualPOS [25] 52.8 36.1 87.8 71.5
GFN-POS RL(IR+M) [54] 53.9 34.9 91.0 72.1
hLSTMat [19] 54.3 33.9 73.8 -
SAVCSS [3] 61.8 37.8 103.0 76.8
DSD-3 DS-SEM [24] 50.1 34.7 76.0 73.1
ORG-TRL [61] 54.3 36.4 95.2 73.9

SemSynAN (ours) 64.4 41.9 111.5 79.5

−(v-se, se-sy) and −(v-se, v-sy). These runs also evaluate

the effectiveness of introducing syntactic information but

removing two VNCL layers. These runs’ models are based

on only one syntactic-related layer.

−hfg. In this experiment, the decoder computes the out-

put in each step by concatenating the output of each layer

instead of using our hierarchical gated fusion.

−wl. In this run, we trained the model with the CELoss

function for optimizing the model. CELoss cannot ex-

tract the effectiveness of our model as well as our syntax-

weighted loss in MSVD and MSR-VTT.

−vd. In this run, we trained the model without using our

dropout masks as part of VNCL layers. Using the same

dropout masks for every step has a high impact on the model

performance in both datasets.

−max. In this run, we sampled the word from the output

multinomial probability distribution in the training phase,

making the higher probabilities more likely to be sampled.

For testing, we always chose the argmax.

The first four rows of Table 1 demonstrate that our model

is significantly enhanced by including the syntactic infor-

mation on both datasets, proving the proposed method’s ef-

fectiveness. Overall, the performance of our model is im-

proved with the incorporation of each component.

Comparison with State of the Art on MSVD. Table 2

shows the performance of the proposed approach and other

state-of-the-art methods on the MSVD dataset. The SCN-
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Table 3. Performance comparison with the state-of-the-art meth-

ods on the testing set of MSR-VTT dataset. * denotes results that

were obtained by reinforcement learning of that metric.
Approach BLEU-4 METEOR CIDEr ROUGEL

TDDF [60] 37.3 27.8 43.8 59.2
MTVC [44] 40.8 28.8 47.1 60.2
CIDEnt RL [45] 40.5 28.4 51.7* 61.4
HRL [55] 41.3 28.7 48.8* 61.7
PickNet [6] 38.9 27.2 42.1 59.5
MFATT-TM-SP [36] 39.1 26.7 - -
SibNet [35] 40.9 27.5 47.5 60.2
Joint-VisualPOS [25] 42.3 29.7 49.1 62.8
GFN-POS RL(IR+M) [54] 41.3 28.7 53.4* 62.1
hLSTMat [19] 39.7 27.0 43.4 -
SAVCSS [3] 43.8 28.9 51.4* 62.4
DSD-3 DS-SEM [24] 45.2 29.9 51.1 64.2
ORG-TRL [61] 43.6 28.8 50.9 62.1

SemSynAN (ours) 46.4 30.4 51.9 64.7

LSTM [17], and SAVCSS [3] methods process a semantic

representation by visual-semantic compositional LSTM de-

coders, without considering the syntactic information. The

incorporation of syntactic representation with our compo-

sitional modules improves the performance in comparison

to those approaches. Likewise, the superior performance

of our sentence generator framework is demonstrated in

comparison to model that exploit fixed encoding based on

2D-CNN and 3D-CNN features, such as LSTM-E, SCN-

LSTM, SAVCSS. Two recent approaches [25, 54] use the

syntactic information from the POS tagging structure but

do not directly consider temporal relations between the vi-

sual, semantic, and syntactic representations. In the pro-

posed approach, the semantic and syntactic representations

are adaptively fused with the visual features, determining

the most accurate information for generating each word.

Hence, it is seen that our SemSynAN provides better scores

than the previous syntax-based approaches. Specifically,

our method has a relative BLEU-4 improvement of 4.2%
(

64.4−61.8
61.8

)

, METEOR of 10.8%
(

41.9−37.8
37.8

)

, CIDEr of

8.2%
(

111.5−103.0
103.0

)

, and ROUGEL of 3.5%
(

79.5−76.8
76.8

)

.

Comparison with State of the Art on MSR-VTT. Table 3

compares the performance of our SemSynAN model with

the recently published results on the MSR-VTT dataset.

Our approach surpasses the methods that exploit the POS

tagging structure of video captions [25, 54], and the ap-

proaches based on visual-semantic embeddings [35] and

compositions [3, 17]. Unlike CIDEnt RL [45], HRL [55],

GFN-POS RL(IR+M) [54], and SAVCSS [3], we do not

use reinforcement learning to directly maximize any met-

ric. However, our approach improves the results in terms of

all metrics except CIDEr, where GFN-POS RL(IR+M) [54]

rich better score by reinforcing this score. Specifically,

our model has a relative BLEU-4 improvement of 2.6%
(

46.4−45.2
45.2

)

, METEOR of 1.7%
(

30.4−29.9
29.9

)

, and ROUGEL

of 0.8%
(

64.7−64.2
64.2

)

. While, in terms of relative CIDEr,

our approach outperforms the models without reinforce-

ment learning by 1.6%
(

51.9−51.1
51.1

)

.

GT 1:
GT 2:
POS:
- (v-se, se-sy):
- v-sy:
ours:

a man and woman are riding a motorcycle
a man and a woman are riding a motorbike
DT NN CC DT* NN VBP VBG DT NN
a man and woman are dancing
a man is riding a motorcycle
a man and woman are riding a motorcycle

GT 1:
GT 2:
POS:
- (v-se, se-sy):
- v-sy:
ours:

a man is putting food on a plate
the man is pouring sauce over the pasta
DT NN VBZ VBG NN IN DT NN

a man is stirring a container
a man is pouring sauce over spaghetti sauce over spaghetti sauce

a man is pouring sauce into a bowl

GT 1:
GT 2:
POS:
- (v-se, se-sy):
- v-sy:
ours:

a woman is applying makeup on her face
a woman is powdering her face
DT NN VBZ VBG NN* IN* PRP$ NN
a girl is styling her hair
a woman is applying eye shadow
a woman is applying makeup on her face

Figure 5. Three representative samples from the test split of

MSVD, which cover ground-truth captions and their POS struc-

ture, two of our ablation models, and our proposal. Highlighted,

the words and POS tags that the model predicted correctly.

4.2.1 Qualitative Analysis

Figure 5 shows the predictions of our model for three video

examples of the MSVD dataset. To observe the improve-

ment in the captions generated by our model, we compared

these predictions with the outputs of two of our ablated

models, i.e., −v-sy and −(v-se, se-sy). We highlighted some

words and POS tags where the model combined the seman-

tic and syntactic information correctly. In these three ex-

amples, we can notice that our proposal generates better de-

scriptions than the ablated models.

In the first example, the approach proposed in Section 3

generates the syntactic pattern “NN CC NN”. In the second

and third examples, different to the ablated models, our ap-

proach predicts the syntactic patterns “NN IN DT NN” and

“NN IN PRP$ NN” respectively. In the last example, −v-sy

and −(v-se, se-sy) fail generating the noun “face”.

5. Conclusions

In this paper, we presented an encoder-decoder model

for video captioning named SemSynAN capable of gener-

ating sentences with more precise semantics and syntax. As

part of this model, we proposed a technique to retrieve POS

tagging structures of video descriptions while obtaining a

high-level syntactic representation from visual information.

We show that paying more attention to syntax improves the

quality of descriptions. Our method guarantees the contex-

tual relation between the words in the sentence, controlling

the semantic meaning and syntactic structure of generated

captions. The experimental results demonstrate that our ap-

proach improves the state of the art on two of the most uti-

lized evaluation benchmarks on video captioning.
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