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Abstract

In this paper, we propose a novel method for irregularity

detection. Previous researches solve this problem as a One-

Class Classification (OCC) task where they train a reference

model on all of the available samples. Then, they consider

a test sample as an anomaly if it has a diversion from the

reference model. Generative Adversarial Networks (GANs)

have achieved the most promising results for OCC while

implementing and training such networks, especially for

the OCC task, is a cumbersome and computationally expen-

sive procedure. To cope with the mentioned challenges, we

present a simple but effective method to solve the irregularity

detection as a binary classification task in order to make the

implementation easier along with improving the detection

performance. We learn two deep neural networks (genera-

tor and discriminator) in a GAN-style setting on merely the

normal samples. During training, the generator gradually

becomes an expert to generate samples which are similar to

the normal ones. In the training phase, when the generator

fails to produce normal data (in the early stages of learn-

ing and also prior to the complete convergence), it can be

considered as an irregularity generator. In this way, we si-

multaneously generate the irregular samples. Afterward, we

train a binary classifier on the generated anomalous samples

along with the normal instances in order to be capable of

detecting irregularities. The proposed framework applies to

different related applications of outlier and anomaly detec-

tion in images and videos, respectively. The results confirm

that our proposed method is superior to the baseline and

state-of-the-art solutions.

1. Introduction

One-Class Classification (OCC) is the task of detecting

samples which are unseen or out-of-target distribution. In

other words, an OCC method looks for anomalies, i.e., unex-

pected behaviors or events which do not (or rarely) occur in

the training data [36]. Such methods should be trained just

in the presence of normal samples (in distribution) and do

not mind the concept of outlires. Furthermore, outliers are

 

Figure 1: Generated instances (blue) by a GAN trained

on normal (target class) samples (red) during training in

different epochs. We use t-SNE to represent samples in two

dimensions. As can be seen in earlier epochs, the generator

of GAN produces samples which are completely different

from normal ones. But as the learning process continues

by the increase of epochs, both types of samples are getting

close to each other gradually.

conceptually diverse and very complex. These difficulties

alongside the high correlation of OCC to a wide range of

computer vision and machine learning applications pose an

ongoing challenge.

Inspired by the successes of deep learning solutions, es-

pecially Generative Adversarial Networks (GANs), some

methods like ALOCC [33, 29] have been presented for out-

lier detection. In a nutshell, such methods adversarially learn

two deep neural networks, one for generating fake data and

another for discriminating normal samples from outliers. Al-

though they have achieved promising results, as same as all

other GAN-based methods, learning to find the optimum

parameters is a bothersome procedure. Also, for the OCC

task, finding the appropriate time for stopping the learning

process to achieve the best performance without any valida-

tion samples of outlier class is very challenging and needs

trial and error [33, 34]. In beside of this, their performance

is highly dependent on hyper-parameters such as number of

layers, kernels and the learning rate.

To address the mentioned challenges, we propose a very

simple yet efficient method for detecting outlier samples.

Similar to the prior approaches, we take advantage of the

adversarial learning, but use it in a completely different man-

ner. Previously proposed methods such as AVID [34] and

ALOCC [33], have focused to adversarially learn the distri-

bution of normal data and consider all of the instances with

a major diversion from the reference model as outlier. In
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contrary to such solutions, we suggest a simple and straight-

forward way for generating irregular samples which do not

follow the distribution of normal data. Generated irregulari-

ties alongside of available normal instances, simply can be

used for training a binary classifiers.

GAN is a well-known tool for generating samples with

the same distribution of training ones, i.e., normal class data.

Having analyzed the generator network of a GAN during the

training procedure, we have interestingly found that its role

is changed as long as the learning process is not finished,

especially when the GAN is trained only on the target class

data for the OCC task. Regarding this analysis, we decide to

benefit from the training process of the GAN for generating

outliers. In Fig. 1, the generated samples (blue) using GAN

(i.e., generator network trained on target samples colored

red) in different epochs of training are shown. As can be

seen, they successfully generate the samples near the tar-

get class, but as outliers. By accessing to the target class

data and outliers surrounding them (boundary samples), a

binary classifier can be simply and efficiently used to make

discrimination between target and irregular class. Availabil-

ity of data from both target and outlier class in the training

phase, empowers our algorithm to be almost insensitive to

the change of irregularities in number, in the stage of test.

In fact, our method does experience a considerable drop in

performance in case that irregular samples increase.

The main contributions of this paper are: (1) we propose

an effective solution utilizing GAN for generating unseen

(abnormal) samples. To the best of our knowledge, our pro-

posed model for generating irregular data is the first method

in this area of research, (2) most of the previous approaches

for the OCC task which is based on the adversarial learn-

ing, are very difficult for training and suffer from GANs

weaknesses such as instability. In our case, to avoid these

challenges, we exploit GANs to generate abnormal samples

(outliers) in a completely different manner. Having gener-

ated outliers, we simplify the OCC problem and convert it

into a binary classification task, (3) learning the concept of

normal and outlier class data helps our algorithm to operate

more robust compared to the other approaches, and (4) our

method is merely trained on samples belonging to the target

class. Furthermore, we have achieved the state-of-the-art per-

formance in different applications, such as outlier detection

in images and anomalous event detection in videos.

2. Related Works

OCC is an umbrella term for a group of tasks such as rare

event detection, outlier detection/removal and anomaly de-

tection. All of these tasks are looking for a concept that does

not (or scarcely) occur in the training data. Consequently,

many of real-world problems are highly correlated to the

OCC task. Traditional OCC methods learn the concept of

the target class data as a normal reference model. After-

ward, the samples with a high deviation from this model are

detected as novelty.

Self-representation learning [37, 42, 7, 27] and statistical

modeling [19] are two widely used approaches for solving

the OCC task. Representing of video or image data using

a set of features is a fundamental pre-process. The most

used features for representing the images or videos for the

OCC task are: (1) low level features [4], (2) high level fea-

tures (e.g., trajectories [21]), and (3) deeply learned features

[38, 28, 30]. In the following, we survey the effective and

successful methods have been proposed for OCC problem,

by concentrating on those inspired by the generative adver-

sarial learning.

Self-Representation As has been investigated by the previ-

ously proposed methods, self-representation is a worthwhile

approach for novelty detection task. For instance, Cong et

al. [7] and Sabokrou et al. [27] exploit the self-representation

to detect the irregular events in video and also novelty by

taking the advantages of sparse representation learning. In

fact, in these works the sparsity is utilized as a criterion for

distinguishing between inlier and outlier samples. Further-

more, in the test phase of the some methods, like what has

been suggested by Xu et al. [38] and Cong et al. [7], sam-

ples are reconstructed by an encoder-decoder neural network

trained on the target class data. In this case, the decision

about the type of a sample is made based on the reconstruc-

tion error. In other words, if the reconstruction error for a

sample becomes less than a threshold, it is considered as

inlier. Otherwise, i.e., the reconstruction error exceeds the

threshold, the sample is detected as outlier. Liu et al. [17]

used a low-rank representation rather than sparse representa-

tion and penalized by the sum of self-representation errors.

It is worth mentioning that, this penalization led to more ro-

bustness against outliers (analogous with the work of Adeli

et al. [1]). Similarly, Sabokrou et al. [32, 27] and Xu et

al. [38] proposed algorithms in which the encoder-decoder

neural networks are trained based reconstruction error loss

function exploited for measuring outlier removal and video

anomaly detection. In [22] a method based on modeling the

correspondence between common object appearances and

their associated temporal features is presented.

Statistical Modeling Several works attempt to understand

the positive samples by analyzing their statistical charac-

teristics. As a simple way, they represented the samples

from the target class to a reduced dimension feature space,

a probability distribution with the maximum likelihood is

fit on such represented samples, after that, samples that do

not comply the fitted distribution are detected as outliers or

novelty (e.g., [8, 41, 19]). [24] an efficient method named

Coherence Pursuit (CoP) for Robust Principal Component

Analysis (RPCA) is proposed by Rahmani and Atia. This

method assumed that the correlation between the inlier sam-

ples is very high, and can be spanned in low dimensional
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Figure 2: The outline of our proposed method. (Left:) Irregularity generator, (Right:) Irregularity Detector. I + C networks

are jointly and adversarially trained on normal class data. In training duration, several models (I with different weights) are

considered as the irregularity detector. The D network as a binary classifier is trained on all of the available normal samples

and generated irregular samples by I1:k. After the training process, D acts as an irregularity detector.

sub-spaces, and thus they have a strong mutual coherence

with a large number of data points. As a result, the outliers

either do not accord with the low dimensional subspace or

form small clusters. Also, a method proposed in [40], Out-

lierPursuit, used convex optimization techniques to solve the

PCA problem with robustness to corrupted entries, which

led to the development of many recent methods for PCA

with robustness to outliers. Lerman et al. [14] introduced

REAPER, a convex solution for detecting outliers.

Constrained Reconstruction as Supervision Representa-

tion learning for the normal (regular) class under some con-

straints has achieved successes for detecting irregular events

in the area of visual data. Therefore, in case that test data

does not conform with the imposed constraints, they can po-

tentially be considered as anomaly. As an example, learning

the concept of normal class in order to the reconstruct its

samples with sparse representation and also minimum effort,

which are presented by Cong et al. [7] and Boiman et al. [5]

respectively, is widely employed for the task of rare event

detection. For more details, Boiman et al. [5] consider an

event as anomaly if reconstructing it be nearly impossible

with accordance to the previous observations. Antic et al. [3]

proposed a scene parsing approach in which all of the object

hypotheses for the foreground of a frame are explained by

normal training. Those hypotheses that cannot be explained

by normal training are considered as anomaly. In [27, 33, 7],

normal class is learned through a model by reconstructing

samples with minimum reconstruction errors. High recon-

struction error for a testing sample means the sample is an

outlier. Also, [27, 7] introduced a self-representation tech-

nique for video anomaly and outlier detection through sparse

representation, as a measure for separating inlier and outlier

samples. [23] have exploited GANs with a constrained latent

representations for OCC task.

In a simple term, we can say that any deviation from an

expected and usual behavior is cited as an anomaly in the

system.

3. G2D: Generate to Detect Anomaly

As stated previously, irregularity detection is the task of

finding samples with no or low likelihood of occurrence.

Abnormal or Irregular samples can be any deviation from an

expected and usual behavior or anything which are dissimilar

to the target class data [35]. Hence, they are very diverse

and researchers prefer to learn the shared concept among the

training data, i.e., regular instances. In this case, samples

with a different concept are considered as irregularities. In

this paper, we follow up a new approach for irregularity de-

tection. Although modeling the outlier samples is difficult,

generating them is simple. Due to the high diversity of ir-

regularities, a randomly generated sample can be considered

as an outlier instance regarding the target class, with high

probability. We Generate to Detect (G2D) anomalies using a

binary classification. Our method, i.e., G2D, is composed of

three main modules: (1) Irregularity generator network (I),

(2) Critic network, and (3) Detector network (D).

I acts as an irregularity generator, while it is totally un-

aware of such samples. The key idea is to train a GAN on

normal samples and utilize its generator before the complete

convergence. In fact, generated irregular data should have

some deviation from normal instances. Generated irregular-

ities by I alongside the available normal samples, form an

informative training set for optimizing the parameters of a

Convolutional Neural Network (CNN) like D to distinguish

between normal and anomalous samples. A sketch of our
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proposed method is shown in Fig. 2. The detailed informa-

tion of I, C and D is described in the following sections.

3.1. I: Irregularity Generator Network

GAN is a well-known framework to implicitly learn the

real data distribution. Furthermore, it can effectively gener-

ate samples following the learned distribution. Generally, a

GAN is composed of two neural networks, Generator (G)

and Discriminator (D). G tends to generate samples similar

to the real ones, while the D attempts to correctly distinguish

between generated (fake) and real (target class) data. These

two networks are trained adversarially and in competing with

each other through a min-max objective function. There are

several efficient methods which take advantage of GANs to

learn the distribution of their target class and use D as an

irregularity detector [26, 33, 20, 2]. Inspired by these works,

but from a different point of view, we exploit GANs to learn

an efficient deep neural network in presence of samples from

both normal and outlier classes.

As explained previously, owing to the high diversity of

samples belonging to the outlier class, researchers are unwill-

ing to model and also learn such classes. Thus, they confine

the learning process to only the target class. On the contrary,

we aim to generate samples from the unseen class to solve

the OCC problem as a simple binary classification task.

I is tailored for generating samples from the the unseen

class data. This network receives a random noise vector

sampled from Gaussian distribution, i.e., Z ∈ N (µ1, σ1),
as input, and then maps it to an image. Such networks can

easily generate samples which do not follow the target class

distribution even with no need for the training procedure and

only based on randomly initialized parameters. By consid-

ering U and T as the unseen and target class respectively,

the number of unseen samples is very larger than target

class data, i.e., |U| >> |T | (|.| counts the number of sam-

ples). Consequently, Xr, as a randomly generated sample

by I belongs to the unseen class with high probability (i.e.,

P(Xr ∈ U) = |U|
|T |+|U| ≈ 1). Generated instances in this

way, is not sufficiently informative to use as training set

for a classifier because: (1) generated samples are not se-

mantically similar to the real images, and (2) they are very

different from the target class while for a binary classifica-

tion, samples that are near the boundary of two classes (e.g.,

support vectors in SVM) are essential. To this end, we train

I on samples from the target class to play the role of G net-

work of GANs. I and C are jointly and adversarially trained.

After the training process, I generates samples following

the target class distribution, i.e., pt.

I network gradually learns the distribution of the target

class. Let p′i be the learned distribution by I in ith epoch.

In the learning period, p′ gradually approaches pt. Finally,

in the optimum point, i.e., i = j, p′ meets pt. During the

training of I network, the learned distributions, from p′i=0

to p′i=j , and generated samples by Ii=1:j can be interpreted

as follows:

• pt(I
1(Z) = Xr) = 0 , As explained earlier, we expect

that a sample generated by a random CNN, does not

comply with the distribution of the target class. Ac-

cordingly, samples like Xr are very far from normal

instances.

• For k1 < k2, pt(I
i=k1(Z)) < pt(I

i=k2(Z)). In other

words, it is obvious that more training leads to better

understanding of real data distribution.

• We observe that, For i = k3 close to j, the

KL(pt(I
k3(Z)), pt(I

j(Z)) < ǫ, where KL and ǫ are

the distance between two distributions and a small num-

ber close to zero, respectively. In this case, Ik3 gener-

ates samples, which in term of texture, are very similar

to the target class data, but semantically are completely

different. We investigate that such instances can be

considered as the boundary outlier class data enclosing

the target class samples.

In summary, we save the parameters of I after each epoch.

Therefore, we have a set of generator networks, i.e., Ii=1:j).

Ii can be used for generating: (1) random samples which are

very far from the target class data, (2) outliers surrounding

the normal samples, i.e., instances which are in the boundary

of the target and the outlier class, and (3) samples following

the target class distribution. (1) and (2) are used for generat-

ing outlier samples, while (3) is appropriate for augmenting

the target class data. By generating outliers, the OCC task

turns into a binary classification problem. Note that I is a

CNN which its details is represented in Fig. 3.

3.2. D: Detector Network

D network is a classifier for distinguishing the nor-

mal samples from the simulated anomalies. After the

training process (see Section 3.3), there are sufficiently

available data to train a binary classifier. U =<

Ii(Z1), I
i(Z2) ... I

i(Zm) >, i ∈ [1 · · · k] shows the mk

samples generated by I network where Z ∈ N (µ1, σ1).
Here, k is the number of selected model extracted from the

training procedure of the GAN and m represents the number

of samples generated by each of selected models. Addition-

ally, T =< T1, T2 ... Tn > is the available normal data.

Finally, a fully connected neural network, which ends with

a softmax layer as a binary classifier, can be trained on U
and T in order to properly perform the anomaly detection

task. The softmax layer outputs two scalar values indicating

what class (target or outlier) the processed sample belongs

to. The overall scheme of D network is represented in Fig.

3. D is learned by optimizing the Equ. 1.

2006



D
eC

o
n

v
 (

4
×

4
×

2
5
6

×
ch

an
n

el
_

si
ze

)

D
eC

o
n

v
 (

4
×

4
×

5
1
2

×
2

5
6

)

D
eC

o
n

v
 (

4
×

4
×

1
0
2

4
×

5
1
2

)

D
eC

o
n

v
 (

4
×

4
×

1
0
0

×
1

0
2

4
)

Z
 (

1
0
0

×
1

)

C
o
n

v
 (

4
×

4
×

ch
an

n
el

_
si

ze
×

2
5
6

)

C
o
n

v
 (

4
×

4
×

2
5
6

×
5

1
2

)

C
o
n

v
 (

4
×

4
×

5
1
2

×
1

0
2

4
)

C
o
n

v
 (

4
×

4
×

1
0
2

4
×

1
)

In
p

u
t 

(3
2
×

3
2
×

ch
an

n
el

_
si

ze
)

C
o
n

v
 (

5
×

5
×

ch
an

n
el

_
si

ze
×

2
0
)

P
o

o
l 

(2
×

2
)

C
o
n

v
 (

5
×

5
×

2
0
×

5
0
)

P
o

o
l 

(2
×

2
)

L
o

g
_

S
o

ft
m

ax
 (

5
0
×

2
)

 

(a) I Network (b) C Network (c) D Network 

Figure 3: The detailed structure of I, C and D networks. I and C are adversarially and jointly learned the distribution of the

target class data. D is trained on normal samples and simulationary generated anomalies. In this figure, the elements of (a, b, c,

d, e) show kernel size, kernel size, input channel and output channel, respectively. Note that the channel size is equal to 3 for

RGB images and 1 for grayscale images

LBC = −y log(p(y)) + (1− y) log(1− p(y)) (1)

Where y is the label (1 for anomaly and 0 for normal) and

p(y) is the predicted probability of a sample being abnormal

for all data.

3.3. Training: I + C and D

As explained previously, Goodfellow et al. [9] has in-

troduced an efficient way for adversarial learning of two

different neural networks, G and D , called GAN. GANs

aim to generate samples that follow the real data distribu-

tion through the adversarial training of two networks. G

learns to map a latent space like Z sampled from a spe-

cific distribution, i.e., pz , to a real data distribution (referred

to as pt). D is trained by maximizing the probability of

assigning the correct label to both the actual data and the

fake data from G, while G is simultaneously trained to mini-

mize log(1−D(G(Z))). In other words, G and D play the

following two-players mini-max game:

min
G

max
D

(

EX∼pt
[log(D(X))]

+ EZ∼pz
[log(1−D(G(Z)))]

) (2)

GANs suffer from the fundamental problems which can

also cause difficulties for our algorithm: (1) GANs are not

stable and the model may never converge. In fact, the G loss

does not indicate that an abnormal sample is far form the

normal ones or it resides in the boundary, (2) the behavior

of GANs is not interpretative. Generally, we expect that

decreasing the loss of G results in increasing the quality

of the generated images. But, contrary to our expectation,

it may not happen in practice, and (3) mode collapse is

common for the conventional GANs.

To avoid that defects of the conventional GANs negatively

affect our work, Wasserstein GAN (WGAN) is utilized in-

stead. The discriminator of WGANs are broadly known as

Critic (C). C network of WGAN is similar to G network of

GAN, but the sigmoid function is eliminated. In WGAN, C
network outputs a scalar score rather than a probability. This

score can be interpreted as how real the input images are. In

other words, it measures how good a state (the input) is. I
network is optimized based on the Equ. 3.

LI =
1

m

i=m
∑

i=1

f(xi)− f(I(Zi)) (3)

In GAN, the loss measures how well it fools D networks

rather than a measure of the image quality. The G loss in

GAN does not drop even the image quality improves. Hence,

its value does not properly reflect the progress. Instead, we

need to save the testing images and evaluate it visually. On

the contrary, the loss function of WGAN indicates the image

quality which is more desirable and it is calculated based on

the Equ. 4.

LC =
1

m

i=m
∑

i=1

f(I(Zi)) (4)

The loss of WGAN is much more stable than GAN loss

enabling us to continue learning without experiencing the

drop in accuracy. During training, I models have been saved

for each epoch. Accordingly, we have n different models

after n epochs.

Selecting k networks of n saved models as irregularly

generators can be done in two ways: (1) using validation set
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including both normal and anomalous data, and (2) by ana-

lyzing I network loss. In reality, there are not any samples

from outlier class. Hence, using validation samples is not

feasible, i.e., this approach is flatly contradict our primary

assumption. To follow the second solution, the irregularity

networks are selected as follows:

I(Z) =











Random irregularity (i.e., noise), if L < ǫ1.

Irregularity close to the boundary, if L < ǫ2.

An inlier, if L < ǫ3.

Where, L = LI(i) −LI(i+h) (in our case h=5), I(Z) is a

generated irregularity and LIi is the loss value of I in ith

epoch. With respect to Fig. 4, ǫ1 >> ǫ2 and ǫ2 >> ǫ3.

Fig 4 shows the relation between the loss of I in training

duration and the role of I network.

Hereupon, the classifier network should learn the distri-

bution of normal samples to be able to effectively separate

normal and abnormal instances from each other. Having

selected the k models for I, each of models can generate m

samples. In this case, we have mk samples in addition to

normal data. For the classifier network, normal samples are

considered as real data belonging to the target class while

anomalous samples fall into the outlier class because they

are considered as the fake data.

3.4. Irregularity Detection

We aim to proposed an end-to-end neural network to de-

tect irregular samples. Accordingly, as explained previously,

merely D network plays the role of anomaly detector in

videos and outlier detector in images. The binary classifi-

cation problem, which is the converted version of the OCC

task in our case, can be simply formulated as:

D(X)

{

Normal class (target), if D(X) > α.

Abnormal class (irregularity), if D(X) < α.

Where α is a predetermined threshold (in our case α is

equal to 0.5).

4. Experimental Results

We comprehensively evaluate our proposed solution, i.e.,

G2D, on different datasets. The experimental results along-

side an in-depth analysis are presented in this section. Ob-

tained results confirms the superiority of G2D compared to

the other baseline and state-of-the-art methods. To show the

generality and applicability of the proposed framework for a

variety of tasks, we test it for detecting: (1) outlier images,

and (2) video anomalies.

Outliers Inliers

Figure 4: The relation between the loss function values and

behavior of I network.

4.1. Implementation Details

We implement G2D using PyTorch framework and

Python ran on a 64-bit Ubuntu 18.04 LTS system with an

Intel corei7 3.80GHz processor, 16 GB RAM and NVIDIA

GTX 1080 GPU. We use Adam as the optimizer. The learn-

ing rate of I and C are the same and equal to 0.0001 with

0.5 as Beta1, 0.999 as Beta2 and a batch size of 64. For D
network, optimizer is SGD and learning rate is equal to 0.01.

Also, momentum is equal to 0.9 with a batch size of 32. We

use negative log likelihood function as the loss function for

D network. The detailed structures of I and D is explained

in Sections 3.1 and 3.2, respectively. These structures are

kept fixed for different tasks.

4.2. Datasets

UCSD: This dataset [18] is composed of two subsets, Ped1

and Ped2 which are derived from two different outdoor

scenes recorded by a static camera with 10 fps. The resolu-

tions of Ped1 and Ped2 are 158×234 and 240×360, respec-

tively. Since the dominant mobile objects are pedestrians

in these scenes, the rest objects (e.g., cars, skateboarders,

wheelchairs or bicycles) are considered as anomalies. Our

proposed algorithm has been evaluated on Ped2.

MNIST: This dataset [13] consists of 60,000 handwritten

digits from “0” to “9”. Each of digit categories is considered

as the target class, i.e., inlier, and the outliers are simulated

by randomly sampling images from the other categories

with the proportion of 10% to 50%. This process has been

repeated for all of digit categories.

Caltech-256: This dataset [10] includes 256 object cate-

gories and 30,607 images in total. Each category contains at

least 80 images. Analogous with the previous works [33], the

procedure is repeated three times. We have used n ∈ 1, 3, 5
which are randomly chosen categories as inliers, i.e., target

class data. The first 150 images of each category is opted in

case that the category has more than 150 images. A certain
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Table 1: Frame-level comparisons on Ped2. The best result

is boldface and the second best result is underlined.

Method EER Method EER

MPCCA [11] 30% RE [27] 15%

Sabokrou et al.[31] 16% Ravanbakhsh et al. [26] 13%

MDT [18] 24% Ravanbakhsh et al. [25] 14%

Li et al. [15] 18.5% Deep-Anomaly[31] 13%

Dan Xu et al. [39] 20% Deep-cascade [32] 9%

AVID[34] 14% NRE [32] 14%

ALOCC [33] 13% Ours (G2D) 11%

number of outliers are randomly selected from the “clutter”

category. Each of conducted experiments includes exactly

50% outliers.

4.3. Video Anomaly Detection

Visual analysis of unusual and rare events has been drawn

the attention of many researchers in computer vision commu-

nities. The complexity of the video processing poses even

more challenges for detecting anomalous events or novelty

compared to outlier detection in image processing. G2D is

evaluated on a widely-used and popular dataset, USCD [18]

Ped2. The results are reported based on frame-level basis.

Results on UCSD Ped2: In this experiment, each frame is

divided into 2D patches of size 30×30 with the overlap of

5. As explained in Section 3.3, I network generates a set of

irregular samples with the same size of normal patches. In

this way, D network is trained on both generated irregular

and available normal patches as a binary classifier. In the

state of test, D is able to detect whether the extracted patches

of a frame is abnormal or not.

The comparison is made based on a frame-level Equal

Error Rate (EER). To this end, detecting a pixel of a frame

as anomaly leads to considering the whole frame as an ab-

normal sample. Table 1 represents the results obtained from

the conducted experiments. As it is clear, we have attained

comparable and even better result to the other state-of-the-art

methods while our work is general with no further tuning to

the video based tasks or any other specific applications. Note

that G2D treats video as images, i.e., unlike the other ap-

proaches (especially Deep-Cascade [30] and Deep-Anomaly

[31]) benefited from both spatial and temporal complex fea-

tures, our proposed method operates on a patches extracted

from the spatial features of the frames.

4.4. Image Outlier Detection

If machine learning based methods fail in dealing with

processing the data contaminated by noise and irregularities,

they experience a considerable drop in performance. The

necessity of providing a proper solution to cope with this
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Figure 5: Comparisons of F1-scores on MNIST dataset for

different percentages of outlier samples got involved in the

experiment.

problem is inevitable because outliers are very common in

realistic vision-based training sets. we evaluate the perfor-

mance of G2D using MNIST and Caltech datasets.

Results on MNIST: I and C networks are adversarially and

jointly trained on normal samples. Similar to the previous ex-

periments, mk outlier samples simultaneously are generated

and D network is trained on normal and generated abnormal

samples. We report the performance of our method based

on F1-score measure against the percentage of outlier in-

stances. Figure 5 confirm that G2D has a better performance,

in terms of F1-score, compared to the other state-of-the-art

methods. Also, as can be seen, G2D is insensitive to change

of outlier portion. The other baseline solutions have a ref-

erence model which learns the distribution of normal data.

Accordingly, they are able to effectively detect normal sam-

ple while facing unusual events cause a sharp drop in their

performance. Hence, when outliers form 10% of the total

data, all of the methods performs well. However, with the

increase of outliers in number, F1-score has declined. On

the other hand, G2D knows the concept of both normal and

abnormal data (generated anomalous samples) leading to the

higher precision for detecting anomalies and operates more

robust. Therefore, the growth of outliers has a negligible

effect on the performance of our proposed method and thus it

does not experience a noticeable drop in F1-score measure.

Results on Caltech-256: We compare our work with other

six methods therein designed specifically for outlier detec-

tion, including R-graph [42], REAPER [14], OutlierPursuit

[40], LRR [17], SSGAN [12] and ALOCC [33]. The per-

formance metrics of this experiment are F1-score and the

Area Under the Curve (AUC). Results listed in the Table 2

confirm G2D performs at least as good as the other solutions,

whereas it outperforms them in many cases.

4.5. Complexity

In our method, irregularity detection is only performed by

D network. Hence, there is an end-to-end architecture which
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Table 2: Results on Caltech-256 dataset. Inliers are randomly sampled of one, three or five selected categories. Furthermore,

irregularities are randomly chosen from category 257-clutter. Two first rows: Inliers are from one category of images, with

50% portion of outliers; Two second rows: Inliers are from three categories of images, with 50% portion of outliers; Two

last rows: Inliers come from five categories of images, while outliers form 50% of the samples.

R-graph [42] REAPER [14] OutlierPursuit [40] LRR [17] SSGAN [12] ALOCC [33] Ours (G2D)

AUC 0.948 0.816 0.837 0.907 - 0.942 0.957

F1 0.914 0.808 0.823 0.893 0.977 0.928 0.945

AUC 0.29 0.796 0.788 0.479 - 0.938 0.951

F1 0.880 0.784 0.779 0.671 0.963 0.913 0.922

AUC 0.913 0.657 0.629 0.337 - 0.923 0.939

F1 0.858 0.716 0.711 0.667 0.945 0.905 0.913

is capable of processing an image or video with a lower com-

plexity than the other GAN-based state-of-the-art methods

such as AVID[34] or ALOCC[33]. Irregularity detection is

properly done if a sample processed by two complicated neu-

ral networks either for ALOCC or AVD. Otherwise, these

algorithms are not able to attain high accuracy. For more

details, ALOCC utilized both G network, which includes

an encoder-decoder neural network, and D network of a

pre-trained GAN to achieve better results.

5. Discussion

In this section, the significant issues and the way of deal-

ing with them by our proposed method, i.e., G2D, are thor-

oughly investigated.

Weak supervision: G2D is an unsupervised method even

though knowing that there is not any irregular samples

among the training data can be considered as a weak su-

pervision. In reality, abnormal data are rare and broadly

form just a little portion of all samples. Accordingly, the

existence of a few number of anomalous instances among

the normal data is not problematic in case of considering all

the available data as normal.

Generality: G2D is a general purpose framework for the

OCC task which can easily fit to various range of problems

(see Section 3). However, we have achieved comparable

and even better results than the other state-of-the-arts (see

Section 4). Obviously, If we customize our algorithm, e.g.,

by some modifications in the size and the order of convo-

lutional layers, for a specific-purpose application, the final

performance improves.

Convenience of implementation: G2D is easily imple-

mentable forming one of the most important of our con-

tributions. Generally, GAN-based approaches suffer form

finding the optimum point for stopping the training process

of its two joint neural networks, G and D. In fact, determin-

ing a suitable moment in which the discriminator learns the

distribution of the normal data is very challenging. On the

contrary, our method does not get involved with this burden-

some task because we utilized non-optimal trained models

for simulationary generating abnormal samples.

Normal data augmentation: As discussed in Section 3.1,

all of the models are saved during training. Samples can be

generated by the trained models fall into three categories:

(1) far from the target class, (2) near to the boundary, and

(3) semantically similar to normal samples. Having trained

I network, models belonging to the third category are ap-

propriate for generating samples following the concept of

normal data and very similar to them. Therefore, we can

use our algorithm for augmenting normal class. This feature

is very useful especially when the normal instances are not

sufficient.

False positive rate reduction: The majority of the proposed

solution for the OCC task, like anomaly detection, suffer

from high false positive rate. This difficulty is mainly caused

by the samples resides in the boundary between normal and

anomalous data. Lim et al. [16] attempted to solve this prob-

lem by generating normal data in the boundary. Also, we are

able to solve this problem by carefully generating abnormal

instances. However, producing anomalies mistakenly does

not help. In order to gain better performance in this regard,

we can check the quality of simulated anomalies. High qual-

ity of the generated samples is an indicator that the model is

very close to a suitable boundary which can effectively dis-

tinguish between normal and abnormal instances. Note that

reducing the false positive rate is just one of the application

of our work while it is the main contribution of [16].

6. Conclusion

In this paper we propose a general purpose framework for

irregularity detection. Firstly, two networks are unsupervis-

edly and adversarially trained on just normal samples aiming

to generate irregular data. Afterward, a deep neural network

as a binary classifier learns the simultaneously generated

anomalies along with the available normal instances. Result

have confirmed that our proposed method, i.e., G2D, can

accurately detect irregularities while it is totally unaware of

abnormal class data.
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