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Abstract

To reduce the risk of infecting or being infected by the

recent COVID-19 virus, wearing mask is enforced or rec-

ommended by many countries. AI based system for auto-

matically detecting whether individuals are wearing face

mask becomes an urgent requirement in high risk facili-

ties and crowded public places. Due to lacking of exist-

ing masked face datasets and the urgent low-cost applica-

tion requirement, we propose a progressive semi-supervised

learning method – called maskedFaceNet to minimize the

efforts on data annotation and letting deep models to learn

by using less annotated training data. With this method, the

detection accuracy is further improved progressively while

adapting to various application scenarios. Experimental

results show that our maskedFaceNet is more efficient and

accurate compared to other methods. Furthermore, we also

contribute two masked face datasets for benchmarking and

for the benefit of future research.

1. Introduction

Object detection (OD), being a fundamental problem in

computer vision (CV), is a contemporaneous process of es-

timating the types and locations of object instances in an

image or video frames. Similar to human vision system,

CV has many real applications such as scene and docu-

ment analysis [34, 9], riderless [1, 45], health care [41]

and robotics [47, 39]. Since past few decades when OD

was casted as a machine learning problem, several hand-

crafted features and classifiers were proposed [13]. But af-

ter the success of AlexNet [19], convolutional neural net-

work (CNN) increased exponentially in CV applications.

One of the most focused CV problem is face detection

(FD) which is considered as the basic step for any face as-

sociated applications such as face tracking and recognition

[29, 12]. Since pentad, deep learning (DL) emerged to be

a promising footstep in the field of face detection [51, 55].

However, the need of real-time FD with high accuracy in

complex scenario is still a challenging due to occlusion, il-

lumination, pose and scale variations.

As an exceptional case of OD, FD utilizes similar fea-

tures and adopts many state-of-the-art OD methods as their

backbone. These powerful CNN-based FDs attempt to ad-

dress the above challenges to some extents by exploiting

the feature maps [43] and computing extra information or

by applying dense anchors [57]. But in spite of their suc-

cess towards human-level for most of the images, an evi-

dent research gap still exist with those faces which are blur

or occluded by 50% or more like the masked faces (Figure

1) or dark faces with dark masks (Figure 1f). In the re-

cent COVID-19 pandemic, wearing mask is recommended

to minimize the spread of the virus. In certain countries,

it is compulsory to wear face mask when people visit to

crowded public places. Wearing face mask is also common

in places like health care centers and pharmaceutical labs.

In above situations, the existing FDs mostly fails or per-

forms poor because they are trained using easy face datasets

where faces are almost frontal/profile and complete (or has

less occlusion). As stated by Chi et al., today most of the

FDs are focused to detect faces with high recall rate while

ignoring their precision [7].

We believe training FDs with such easy images (Figure

1a) is not much useful in real-life scenarios, as mentioned

above. On contrary, to collect huge real wild data with oc-

clusions and then annotate them is a tedious and time con-

suming job. Sometimes, data annotation needs domain ex-

perts such as in biomedical tasks where it is really expensive

to hire experts. Therefore, this paper focus on the real use

cases where huge object-level annotation with high preci-

sion is an important challenge and progressively learning

the object variations that keeps changing periodically/non-

periodically. The challenges involved in masked face de-

tection is shown in Figure 1 where different possible cases

including faces with and without mask of different shape

and color are highlighted in image.

Today’s digital world is full of unlabeled data that can

help the networks in their learning process. Hence, the

semi-supervised learning (SSL) algorithm utilizes the ben-

efit from both labeled and unlabeled data. In classical SSL

image classification, the model is updated using labeled and

label-estimated from the model itself [32]. Therefore, the
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Figure 1: Masked face detection challenges. (a) Single face with and without mask, (b) Masked and non-masked faces in

same image wearing different color masks, (c) Side-by-faces with and without mask, (d) Occluded faces with mask or non-

mask objects, (e) Different color mask and PPE and (f) Dark faces with and without mask. Note: the images are collected

from various local news channels available over Internet.

key concept of SSL is to efficiently improve the model loss.

In this paper, we investigated the effect of data size and re-

cursive use of weight initialization in object detection SSL

to improve the deep learning based FD. We propose a novel

three-phase semi-supervised training strategy to efficiently

detect faces with and without mask in public places. In-

spired by [48], the proposed masked FD utilizes the unla-

beled data for better weight initialization to ameliorate the

performance index compared to the standard baseline ap-

proach (details are in Section 4). To summarize the contri-

butions of this paper:

• We explore use of less data for training deep models

with varying parameters to study the potential direc-

tion of progressive semi-supervised masked face de-

tection. For this study, we introduce two real scenario

datasets which include faces with and without mask:

MASK-face-v1 and MASK-face-v2.

• We proposed a real-time light weighted deep detector,

called maskedFaceNet which utilizes unlabeled dataset

to boost the network performance.

• We conducted a comprehensive experimental analysis

to verify the challenges involved in masked face detec-

tion using less annotated training data. We also exam-

ine the role of pseudo-labels in object detection task.

The main advantage of our proposed method is that it

shares the knowledge to identify similar objects which re-

duces the effort of object-level annotation. The paper is

organized in five sections. Section 2 describes the related

works while Section 3 introduce the details of the proposed

approach followed by extensive analysis and ablation stud-

ies on maskedFaceNet in Section 4. Finally, Section 5 con-

cludes the paper and discusses the potential future direc-

tions of masked face recognition.

2. Related Work

As the problem definition stated in previous section, the

masked face detection, similar to generic object detection

[31], refers to localization of human faces with and without

mask in an image. In this section, we cover various CNN-

based OD algorithms followed by face detection methods

and finally address a few state-of-the-art approaches in de-

tecting masked faces.

2.1. Object Detection

CNN-based learning has deep impact in CV applica-

tions [31] such as education and surveillance [30] and oth-

ers [31]. The traditional ODs were based on some hand-

crafted features such as Haar features [24], scale-invariant

feature transform [56] and feature pyramid [13]. These fea-

tures needs to be engineered very carefully and they are

very much application dependent. Recently, deep learning

based ODs which adopt strong supervision in learning be-

comes dominant due to their excellent performance. ODs

normally follow two major approaches: bottom-up and top-

down, among which later is more common in deep mod-

els. Top-down approaches are further categorized into two:

two-stage (Fast and faster R-CNN) and one-stage (YOLO

and SSD) methods. Two-stage methods [37, 10] mainly

focus on reducing the negative examples produced from

the dense sliding windows, called anchors, while one-stage

methods [28, 36] directly aims to predict results from an-

chors after feature extraction from the input image. Un-

like two-stage approach, SSD framework gets benefit due

to it’s higher inference efficiency and therefore attracts at-

tention for real-time face detectors. In DL, all the vari-

ants of Faster R-CNN (Region-based Convolutional Neural

Network), R-FCN (Region-based Fully Convolutional Net-

work), SSD (Single Shot Detector) and YOLO (You Only

Looks Once) are heavily dependent on huge training data

which are manually annotated with objects and their local-
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izations (e.g. ImageNet [11] and COCO [26]), which is very

tedious job.

2.2. Face Detection

Under OD, face detection is one of the most important

and challenging task which is grouped into three possi-

ble categories. The first category is boost-based FD which

adopts boosted cascade Haar features [44], SURF cascade

[22] and Normalized Pixels Difference [23]. The second

category is Deformable Part Model (DPM) based where

deformation of faces are modeled. For example, Chen et

al. proposed a joint detection and alignment FD in a sin-

gle framework [4] while Ghiasi and Fowlkes proposed a

joint detector that can handle face detection as well as key

feature localization [15]. The third method is CNN-based

which directly learn features from the input image, for ex-

ample, CascadeCNN [21], Contextual Multi-Scale Region-

based CNN (CMS-RCNN) [58], Supervised Transformer

Network (STN) [3], MTCNN-based [52], Hyperface [35],

YOLO-face [5] and Face-SSD [17]. CascadeCNN is a

boosted exemplar-based FD while CMS-RCNN is uncon-

strained contextual multi-scale FD. In [33], Opitz et al. in-

troduced a novel grid loss to deal with partial occlusion in

face detection task. In contrast to this, Chen et al. [3] pro-

posed STN with a cascade CNN to address the challenge

of huge face pose variation in real-word for face detection.

Next, Ranjan et al. proposed CNN-based face detection and

gender recognition [35]. In [17], Fully Convolutional Neu-

ral Network (FCNN) was used to detect multiple faces in

a single image of different sizes. There are several other

FDs proposed by various researchers that utilize advantages

of two-stage and one-stage approaches such as FANet [51]

and S3FD [54] but mostly performs poorly for masked faces

or faces with more than 50% occlusion.

2.3. Masked Face Detection

In past literature, there is no much work related to

masked face detection and therefore very limited articles

are found. The first reported masked FD in wild image

was by Ge et al. where they used locally linear embed-

ding with CNN [14]. They also introduce a MAsked FAces

(MAFA) dataset with 30,811 Internet images. Each im-

age in MAFA contains at least one face occluded by vari-

ous types of masks which also includes faces covered with

hand or other objects. The second recently published Reti-

naMask is more close to masked face detection objective

where a subset of MAFA and WIDER [49] datasets with

and without masked faces are created and tested to achieve

an average precision rate of 92.65%. Here, the occlusion

is not only mask but other objects too. Qiting Ye [50] pro-

posed a novel framework using MTCNN [52] and VGG-16

[40] for masked face detection. With similar motivation,

Lin et al. proposed a modified version of LeNet (MLeNet)

for surveillance video masked face detection [25]. Chen et

al. [6] used adversarial occlusion-awareness for face detec-

tion on MAFA dataset.

Other than these, in current COVID-19 pandemic many

countries like France1 and companies such as SenseTime

implemented their own system to monitor people wearing

masks in public places. However, the research in this di-

rection is still very limited and the methods or the trained

models may not be able to work well or difficult to adapt

to various application scenarios. Even researchers from

NIST2 found that the existing face recognition models fails

as much as 50% of the time. Motivated with SSD ob-

ject detector [28] and teacher-student model [48], we pro-

posed a light weighted real-time maskedFaceNet to detect

faces in wild scenario which requires less annotated train-

ing data and utilizes semi-supervised data for recalibration

of weights. Our proposed model, similar to biological phe-

nomenon of human vision system, uses a receptive field

(RF) to increase the eccentricity of feature maps.

3. Proposed Methodology

In this section, we introduce our proposed single shot

scale-invariant maskedFaceNet followed by the training

strategy, the loss function and the implementation details.

3.1. Problem Definition

Generally in image classification task, with a given la-

beled image dataset, say D = {(x, y)}, and an unlabeled

image dataset, say U = {(u)}, SSL aims to solve the fol-

lowing problem:

min
θ

∑

(x,y)ǫD

LSL(x, y, θ) + β
∑

(u)ǫU

LUL(u, θ) (1)

where LSL and LUL represents the supervised and unla-

beled loss, respectively. The value θ is the total trainable

parameters of the given model and β is the weight balancing

parameter which is R>0. In notation, y represents the hard-

label for image data x but their is no label for data u, as it be-

longs to the unlabeled set, but D << U . There are different

ways to compute pseudo-labels for uǫU and calculate the

per-example unsupervised or semi-supervised loss (LUL)

proposed by various CV researchers [20, 46, 42]. In [38],

Ren, Yeh and Schwing stated that not all unlabeled data

are equal and therefore introduced per-example weights to

compute LUL. This improves the performance of SSL al-

gorithm but leads to the computational expense and there-

1France is using AI to detect whether people are wear-

ing masks https://slate.com/technology/2020/05/

france-artificial-intelligence-mask-detection-coronavirus.

html
2https://www.nist.gov/news-events/news/2020/07/

nist-launches-studies-masks-effect-face-recognition-software
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Figure 2: Architecture of maskedFaceNet consisting of convolutional layers, BatchNorm and ReLU along with dedicated

assistant layers, prediction layers and multi-task loss layers (color coded for convenience).

fore, they used influence function to deal with it. In this pa-

per, following the SSL for image classification, we progres-

sively used the unlabeled data for object detection. Unlike

[38], we used varying confidence α for all uǫU . Specifi-

cally, instead of obtaining only the pseudo-label [20] for u

we also consider the network’s confidence for the predicted

label for it’s weight contribution, i.e., (ỹ, α) = pθ(c|u).
Thus, the above problem is redefined as:

min
Θ

∑

(X,Y )ǫD

LSL(X,Y,Θ) + β
∑

(U,Ỹ )ǫU

LUL(U, Ỹ ,Θ)

(2)

where (X,Y ) and (U, Ỹ ) are the input and output pairs re-

spectively for labeled and unlabeled data where each set has

five tuples, i.e., four coordinates with width and height and

the face class c. In case of Ỹ there is an extra score tuple

α for fair Θ parameters learning. Thus, the weight impor-

tance wu for the unlabeled data is initialized as λ ∗α where

pθ(u) ≥ α and λ represents the network learning rate. In

LSL, the default score for hard-labeled data is one. The

concept is somewhat resembles to curriculum learning [2].

The architectural detailed is discussed in the following sub-

section.

3.2. The maskedFaceNet Model

As mentioned above, the proposed maskedFaceNet is in-

spired by a feed-forward SSD approach which is a collec-

tion of fixed size bounding boxes and scores that are pro-

duced for every possible object class instances. These pre-

dictions are then passed through non-maximum suppression

(NMS) layer to compute the final detections. Our masked-

FaceNet structure is based on the standard VGG-16 [40]

like network with a few additional assistant layers. The

VGG-16 like RFBNet [27] is truncated before the classifi-

cation layers. The architecture till conv5 x is then followed

by assistant layers, as shown in Figure 2.

Homogeneous to SSD architecture, maskedFaceNet is

also a multi-scale one-stage framework for masked face de-

tection. As shown in Figure 2, the fully connected (fc) lay-

ers are transformed to convolutional layers to reduce the

complexity and the maxpool layers are replaced with con-

volutional layers with stride two (r = 2) to learn the impor-

tant properties while down sampling the input. The layers

are decreased in size progressively which introduces multi-

scale feature maps to detect different size faces. This makes

the proposed model lightweight yet is powerful to capture

the true face features with and without mask. Here, in this

mode all additional assistant layers are randomly initialized

with the ”Xavier” initialization method [16].

Note, in the proposed maskedFaceNet model, conv4,

conv5, conv6 and conv7 are used as the detection feature

maps which associates to different anchor scales to predict

distinct face sizes in an image. BatchNorm layer is used af-

ter every conv layers followed by ReLU, as shown in Figure

2. The assistant layer here is dedicated to the task of masked

face detection and regulates feature maps accordingly.

The second last layer is the prediction layer, before

multi-task loss layers, which is a (u×3×3×v) conv layer

where variable u and v denote the input and output channel

number, respectively. The anchor output is a set of four off-

sets, related to bounding box coordinates and Nc scores for
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classification, where c = 3 in our case. The anchors used

in this paper is set to 1:1 aspect ratio, as the face bound-

ing boxes mostly fit in a square quadrangle (approx). Fol-

lowed by multi-task smoothL1 loss and softmax loss layers

for masked face bounding box regression and classification,

respectively. The training strategy used to train the masked-

FaceNet is discussed in detail in the very next subsection.

3.3. Training Strategy

As shown in Figure 3, the training of maskedFaceNet

is done in three-phase fashion. In first phase, due to in-

sufficient masked face image dataset, the proposed network

is first trained on big WIDER face dataset [49] to initial-

ize maskedFaceNet with proper weights to reduce the false

positive cases in face detection. For this, we adopted grid

loss [33] to learn the detector to detect even partial faces

correctly. This learning helps further in detecting faces cov-

ered via masks or similar occlusions, which is our ultimate

objective. We then fine-tune it on the proposed masked face

datasets D: MASK-face vi, where i = {1, 2} (see Table 1

for datasets detail). Before the network is trained on masked

dataset, we fixed the first two layers of maskedFaceNet, i.e.,

conv1 and conv2, to inherit the information learned from

WIDER face dataset. Note, now the learning loss function

for masked face detection is updated to smoothL1 loss, due

to its better consistence performance in object detection (see

Section 4).

In second phase, the trained maskedFaceNet model is

used to generate pseudo-labels for the unlabeled video

frames related to COVID-19 collected from various local

news channels over the Internet. Let’s say, the unlabeled

video frame dataset U is semi-labeled and based on its con-

fidence score α, a new pseudo-labeled dataset V is obtained,

which is a subset of U and D < V . It is then used to re-

train maskedFaceNet parameter. As we know, the larger

the dataset the better the learning is. Therefore, we be-

lieved this pseudo-labeled masked face dataset V will set

a better network performance, similar to [48]. To make sure

learning is not biased, the video frames are collected from

difference sources and are of different resolutions. There

are total ten video clips collected for experiment purpose

of different lengths, counting to a total of 61,937 unla-

beled images in U dataset. The generated pseudo-labeled

dataset V with α = 0.9 has 42,000 images, which is huge

enough compared to MASK-face vi dataset. This pseudo-

labeled dataset is much suitable to train maskedFaceNet

from scratch. The experimental details are discussed in Sec-

tion 4. Note, if α is varied, the performance analysis will

differ. The size of V dataset can also be explored and can be

set to a balanced class dataset. In this paper, we ignore this

setting to strictly focus on the our proposed hypothesis of

boosting the performance via progressive semi-supervised

data.

In third phase, the semi-supervised trained masked-

FaceNet model is fine-tuned again with the hard-labeled

MASK-face vi dataset to obtain the best masked face de-

tection model with less labeled data. The flow of train-

ing phases are detailed in Figure 3. While training in

phase-three, we introduce a progressive training for pseudo-

labeled data. That is, the pseudo-labels are gradually

pumped-in to the training process in such a way that the

higher score are first entered followed by the lower scores.

This actually updates the gradient based hyper-parameters

which is based on the average over mini-batch size (b) of

the complete training set, say VN . The noise scale λ×Vi

b

will keep network active, where i ranges from 1 to VN . This

approach will reduces the total computation cost yet reach

to the optimal solution.

We also introduced a lighter version of maskedFaceNet

that follows the same architecture with less convolutional

layers, resulting a faster performing maskedFaceNet with

almost equivalent results. That is to say, in the third phase

a new lighter weighted maskedFaceNet with Θ′ parameter

which is < Θ is also examined (see the experiment Section).

3.4. Loss Function

The overall objective of maskedFaceNet detector is to

detect masked and non-masked faces in real-time with high

accuracy rate. Therefore, similar to [34], the ultimate ob-

jective loss function L of maskedFaceNet is a summation

of regression loss Lreg and classification loss Lcls which is

defined as:

L (pc, v, v∗) =
1

N
(Lcls (pc) + Λ× Lreg (v, v∗) (3)

where N is the count of matched bounding boxes and Λ is

a constant to balance these two terms which is set to 1 by

default. Variable pc is the corresponding probability and c

represents the class. The set (v, v∗) is the predicted and

ground truth (GT) bounding boxes for the corresponding

class, respectively. The classification loss is a softmax loss

over multiple classes c, defined as:

Lcls (pc) = − log pc (4)

and the regression loss Lreg is defined as:

Lreg (v, v∗) = Si ǫ {x,y,w,h}

{

γ (vi − vi∗)2 if |v − v ∗ | < 1
|vi − vi ∗ | − γ otherwise

(5)

where v an v∗ is a four tuple vector with top left corner

and width and height, i.e., (vx, vy, vw, vh), γ = 0.5 and S
denotes the summation. And for final detection, we used

smoothL1 loss as it is less sensitive to outliers.
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Figure 3: The three-phase SSL training scheme.

Table 1: Dataset analysis. *We split it as it was not provided by the author.

Datasets #train #test GT Format Task

FaceMaskDataset [8] 6132 1839 Pascal VOC Detection

AfricanMaskedFaces3 5557* 1389* Pascal VOC Detection

MASK-face v1 1689 198 Pascal VOC Detection

MASK-face v2 3142 335 Pascal VOC Detection

Figure 4: Annotated masked face datasets. First row: Face-

MaskDataset, Second row: AfricanMaskedFaces dataset

Third row: MASK-face v1 head annotated dataset and

Fourth row: MASK-face v2 face annotated dataset. Classes

are color coded.

Table 2: Comparison of maskedFaceNet on MASK-face v1

and MASK-face v2 datasets with various state-of-the-art

methods.

Methods
mAP

MASK-face v1 MASK-face v2

Faster R-CNN ResNet-50 [37] 0.640 0.780

SSD300 [28] 0.470 0.510

FaceBoxes [53] 0.920 0.910

SSD MobileNet [28] 0.490 0.690

maskedFaceNet 0.977 0.981

maskedFaceNet light 0.976 0.981

Table 3: Comparison of state-of-the-art methods along with

the proposed models on FaceMaskDataset [8].

Methods
FaceMaskDataset

mAP Pre-trained

Baseline [8] 0.9075 ImageNet

RetinaMask w MobileNet [18] 0.8165 ImageNet

RetinaMask w ResNet [18] 0.9210 ImageNet

RetinaMask w MobileNet [18] 0.8265 WIDER

RetinaMask w ResNet [18] 0.9265 WIDER

maskedFaceNet 0.9554 WIDER

maskedFaceNet light 0.9405 WIDER

3.5. Implementation Detail

For implementation, maskedFaceNet uses WIDER face

dataset to initialize the weights using grid loss. The weights
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are then updated using learning rate λ = 0.0001, in the first

phase, to fine-tune the model on MASK-face vi dataset for

50 epochs. In the second phase, λ is set to 0.001 and trained

for another 50 epochs on pseudo-labeled dataset V . In the

third phase, the model is fine-tuned with λ = 0.00001 for

30 epochs and decay of 0.1 at every 10 epochs. For all the

three phases, the weight decay ω and momentum µ are set

to 5× 10−2 and 0.9, respectively.

The experiments are all conducted on Intel Xeon work-

station with NVIDIA Titan X 12GB GPU on Pytorch4 plat-

form in Ubuntu 18.04 environment.

4. Experiments and Results

In this section, we firstly introduce the two established

masked face datasets to be public for researchers to analyze

the possible research directions in this field. In Table 1,

both the datasets distribution are detailed and some sample

images are shown in Figure 4. We also used a recently pub-

lished FaceMaskedDataset [8] and African Masked Face

Dataset (Figure 1f) for experiments and further compari-

son with the state-of-the-art methods. Followed by various

different combinations of parameter settings to validate our

light weighted architecture for the real-time masked face

detection.

In this paper, to evaluate the performance of the proposed

model and other state-of-the-art methods, we used mean av-

erage precision (mAP).

Table 4: Comparison of maskedFaceNet on MASK-face v1

and MASK-face v2 datasets with smoothL1-loss and differ-

ent resolution.

MASK-face v1 Dataset

Method mAP (320) mAP (640)

maskedFaceNet 0.9765 0.9775

maskedFaceNet light 0.9753 0.9768

MASK-face v2 Dataset

Method mAP (320) mAP (640)

maskedFaceNet 0.9810 0.9813

maskedFaceNet light 0.9800 0.9812

4.1. Datasets

As mentioned above, since there is no such publicly

available wild dataset for mixed masked faces for face de-

tection, we introduce two new masked face datasets called

MASK-face v1 and MASK-face v2. The datasets consists

of real natural scenes of populations from indoor and out-

door. To make balance between masked and non-masked

faces, we equally inherited face images from WIDER face

4Pytorch: https://pytorch.org/

dataset [49]. In the first version of our dataset, the annota-

tion includes ’face’ and ’mask’ with a bounding box cov-

ering the complete head while in the second version, only

faces are bounded, can see the difference in Figure 4. In

addition, we also compare our proposed method with a re-

cently published FaceMaskDataset [8] which is a subset of

MAFA [14] and WIDER face datasets. Lastly, we merged

our MASK-face v2 with African Masked Face dataset to let

network learn different color and shape of masks on differ-

ent skin color faces (see the ablation study for experimental

results). Since there is no separate training and testing set,

we split African Masked Face dataset into 80%-20% ratio.

Figure 5: Semi-supervised masked face annotation via

maskedFaceNet. First row: MASK-face v1 head anno-

tated and MASK-face v2 face annotated. Classes are color

coded.

4.2. Model Analysis

4.2.1 Comparison with state-of-the-art methods

We implemented and compared various state-of-the-art

ODs and FDs on the public dataset and also on our proposed

datasets. Table 2 shows a detailed comparison on our estab-

lished datasets with other state-of-the-art methods. In Ta-

ble 3, we compared maskedFaceNet with various versions

of RetinaMask [18] FD on FaceMaskDataset [8]. It is ob-

served that the proposed model performance is improved by

4% and 6% compared to the second best method, i.e., Face-

Boxes [53] on MASK-face v1 and MASK-face v2 datasets,

respectively. While in cases of FaceMaskDataset, Reti-

naNet with ResNet backbone manages to secure the second

best position with a mean precision rate of 92.65% where

our maskedFaceNet achieves the best mAP.

4.2.2 Comparisons with different settings

In the second set of experiments, we compare the perfor-

mance index of the proposed method with different input

resolutions, different objective loss functions and different

batch sizes. Table 4 shows comparison of maskedFaceNet

with 320 and 640 input image frames where the perfor-

mance is observed to be quite similar. In Table 5, three

different objective loss functions are analyzed to conclude

that smoothL1 loss is more suitable for mask face detection
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Table 5: mAP comparison of maskedFaceNet on MASK-face v2 with different loss functions and batch sizes.

MASK-face v2 Dataset

Methods L1-loss Wing-loss SmoothL1-loss
Batch Size

b=8 b=12 b=16 b=24 b=48 b=72

maskedFaceNet 0.9779 0.9774 0.9813 0.9789 0.9782 0.9789 0.9813 0.9758 0.9777

maskedFaceNet light 0.9750 0.9751 0.9812 0.9782 0.9782 09781 0.9812 0.9746 0.9768

Table 6: mAP comparison of maskedFaceNet on MASK-

face v2 with and without semi-supervised data.

Methods
MASK-face v2 Dataset

semi-supervised mAP

maskedFaceNet × 0.9533

maskedFaceNet
√

0.9813

maskedFaceNet light × 0.9480

maskedFaceNet light
√

0.9812

Methods MASK-face v2 + African Masked Face Dataset

maskedFaceNet × 0.9636

maskedFaceNet w/o progressive
√

0.9756

maskedFaceNet
√

0.9811

task. Second half of Table 5 shows the role of batch size

while training maskedFaceNet on masked face dataset and

found that batch size 24 performances the best even when

the training dataset is small.

4.2.3 Ablation Study

To evaluate the contribution of the proposed technique that

progressive semi-supervised dataset plays a major role in

training masked FD when the training data itself is small

enough, an ablation study is performed. Table 6 shows com-

parison between with and without semi-supervised train-

ing dataset and is observed that if the model is pre-trained

on huge semi-supervised data, which is ∼13× of MASK-

face v2, and then fine-tuned in progressive semi-supervised

fashion, as shown in Figure 3, the performance boosts by

at least 2% to 3.3%. This improvement depends upon

the number of pseudo labels VN generated via masked-

FaceNet and their score threshold α. A recursive process

of re-generation of semi-supervised data V and re-training

maskedFaceNet will further improve the accuracy but due

to the scope of the proposed hypothesis, we limit it to one

recursion only. Figure 5 shows some of the sample images

with their pseudo-labels (U, Ỹ , α) that are generated auto-

matically after training on MASK-face v1 and/or MASK-

face v2 datasets.

The second experiment we performed is by mixing

different skin color faces, i.e., MASK-face v2 + African

Masked Face datasets. The results are listed in the lower

part of Table 6. The role of the proposed approach is clearly

differentiable from [20] like approaches.

Finally, we calculated the compute power of the pro-

posed maskedFaceNet on both GPU and CPU, for the real-

time analysis. It is observed that maskedFaceNet is well

suitable for CPU computation to achieve the real-time sce-

nario with 38fps, see in Table 7.

Table 7: Computation comparison of maskedFaceNet on

MASK-face v2 for 640 input resolution.

MASK-face v2 Dataset

Methods Computation #params

maskedFaceNet
FPS-GPU 37

568,348
FPS-CPU 29

maskedFaceNet light
FPS-GPU 44

536,140
FPS-CPU 38

5. Conclusions and Future Direction

In this paper, we have proposed a new light weighted

maskedFaceNet for real-time masked face detection. The

proposed model gets benefit from progressive semi-

supervised learning which focus on pseudo-labels that are

generated via the initial stage of the model itself to obtain

a better weight initialization. We also explored the suit-

able objective loss function for masked FDs. For the study,

we established two different real wild masked face datasets.

The experimental results on different datasets show that the

proposed maskedFaceNet outperforms the current state-of-

the-art methods and indicates the effectiveness of the pro-

posed hypothesis for all types of datasets used in this paper.

In further, the work will be directed towards masked

face recognition along with incorrect masked face detec-

tion. And also will try to implement this progressive semi-

supervised hypothesis on other challenging tasks where data

size is limited and data annotation is challenging such as in-

dustrial applications. Another dimension is domain adapta-

tion via semi-supervised training learning.
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