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Abstract

We address the problem of decomposing an image into

albedo and shading. We propose the Fast Fourier Intrin-

sic Network, FFI-Net in short, that operates in the spec-

tral domain, splitting the input into several spectral bands.

Weights in FFI-Net are optimized in the spectral domain,

allowing faster convergence to a lower error. FFI-Net is

lightweight and does not need auxiliary networks for train-

ing. The network is trained end-to-end with a novel spectral

loss which measures the global distance between the net-

work prediction and corresponding ground truth. FFI-Net

achieves state-of-the-art performance on MPI-Sintel, MIT

Intrinsic, and IIW datasets.

1. Introduction

Intrinsic image decomposition refers to the problem of

separating an image I into its albedo and shading [3],

where albedo models the diffuse reflection of the scene ma-

terials and shading represents the lighting and scene geome-

try. We adopt the common assumption that the problem can

be simplified to the per-pixel image formation I = A · S
where A and S are the albedo and shading, respectively.

Factorization of I into A and S is ill-posed. Early work

tackled the factorization by applying constraints and priors

which connect the properties of materials and lighting in

the physical world with the gradient and color changes in

images [21, 18]; however, even the sophisticated physical

modelling can not fully cover the complex optical interac-

tions among materials, light sources, and object/scene ge-

ometry. Intrinsic image decomposition is an open and chal-

lenging problem per se, but it can also benefit many other

vision problems, e.g., semantic segmentation [4], depth es-

timation [20], and color constancy [2].

Traditional approaches for intrinsic image decomposi-
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tion are surveyed in [2], while recent state-of-the-art per-

formance has been achieved with image-to-image transla-

tion networks as in [29, 13, 12, 23, 25, 27]. The mean

squared error (MSE) loss is typically employed in the net-

work training to enforce pixel-wise similarity between the

predicted and ground truth albedo and shading [13, 23, 12].

The MSE loss does not consider correlations between im-

age pixels. Extra loss terms such as loss for the learnable

domain filter [13], perceptual loss [12] and generative ad-

versarial loss [23], are often added to enforce global sim-

ilarities between predictions and ground truth. Proposed

models also exploit a multi-path structure in their networks

to separate the prediction into different levels of details [12]

or contexts [25, 13].

In this work, we propose a Fast Fourier Intrinsic

Network (FFI-Net) for intrinsic image decomposition. The

network design focuses on the multi-path architecture

and loss function, as were intensively exploited in re-

cent works [25, 13, 23, 12], but differs substantially from

the prior arts since no published intrinsic decomposition

method operates in the spectral domain. The intuition is

based on the observation that published approaches [13, 12]

often separate the predictions of structure and details into

different scales, implicitly performing operations that are

indeed best understood in the spectral domain. Image de-

tails, e.g. fine edges, are naturally reflected in the high-

frequency part; on the other hand, image structures such

as flattened color patches are usually reflected in the low-

frequency part. Despite the frequency interpretation behind

the previous works, their models were optimized in the spa-

tial domain. Thus if the intrinsic image decomposition task

is solved in the spectral domain, we might expect, and this is

confirmed by our experiments, the optimization of the net-

work to be more efficient and effective, as in the classifica-

tion task [32]. Furthermore, since each pixel in the spectral

domain is a complex-weighted sum over the image space,

a pixel-wise loss on the spectral map thus can straightfor-

wardly enforce a global similarity between the prediction

and ground truth in the spatial domain.
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Figure 1: Overview of FFI-Net. Different from other deep intrinsic image decomposition architectures, FFI-Net offers several

new modules: (a) F and F−1 layers that convert between spatial and spectral domains using the Fast Fourier Transform

(FFT) and its inverse (Sec. 3.1) ; (b) spectral residual blocks where residual block weights are parametrized in the spectral

domain (Sec. 3.2); (c) spectral banding that splits a spectral map into M (e.g. M = 3) overlapped (low-pass) spectral bands

at the beginning of the network and associates M non-overlapped spectral bands of the image in both spatial and spectral

domain as ground truth by the end of the network. (d) spectral loss which measures global error between the prediction and

ground truth in the spectral domain (Sec. 3.5).

Contributions. We propose a novel network architec-

ture for intrinsic image decomposition where the following

spectral operations and structures replace their spatial do-

main counterparts used in the prior works:

• Spectral banding splits the input image into several

frequency bands, therefore allowing multi-path train-

ing and inference (see Fig. 1).

• Spectral loss provides a global error measure on the

similarity between the predicted A/S and the cor-

responding ground truth, effectively augmenting the

pixel-wise loss.

• Spectral residual block encodes original residual block

with spectral weights, thus obtaining faster conver-

gence to a lower error.

To the best of our knowledge, FFI-Net is the first to ad-

dress intrinsic decomposition in the Fourier domain. Our

experiments with three intrinsic image datasets (MPI-Sintel,

MIL Intrinsic and IIW) demonstrate state-of-the-art accu-

racy for FFI-Net.

2. Related Work

Our main objective is to develop a deep neural network

architecture for intrinsic image decomposition and there-

fore related works will focus on the prior deep architec-

tures [29, 20, 13, 23, 12, 5]. Traditional approaches have

been surveyed in the recent work by Barron and Malik [2].

Nahiriha et al. [29] were the first to propose a deep ar-

chitecture to estimate albedo and shading using a pixel-wise

MSE loss. Kim et al. [20] later added a conditional ran-

dom field (CRF) after the network to jointly learn albedo,

shading and depth. Lettry et al. [23] further proposed to

add an adversarial module. To better model the flattening

effects in natural reflectance images, Fan et al. [13] pro-

posed a 1D recursive domain filter and separate loss layers

customized differently for dense (e.g. MPI-Sintel [9]) and

sparse (e.g. IIW [6]) datasets; Cheng et al. [12] proposed to

use a cross bilateral filtering loss instead of the MSE loss to

ensure the smoothness of albedo and shading output. Re-

cently, Baslamisli et al. [5] adopted a physics-based image

formation model inspired by traditional approaches.

The above works assume the Lambertian reflectance

model and are fully-supervised with ground truth albedo

and shading. There are also many works assum-

ing a non-Lambertian model [34], adopting the weakly-

supervised/unsupervised setting [19, 25, 28, 27], or includ-

ing more synthetic data for training [24, 37]. For instance,

Shi et al. [34] considered the non-Lambertian model in their

algorithm design and train their network with rendered 3D

models from ShapeNet [10]. Li et al. [25] learned intrinsic

images from image sequences over time, where the object

reflectance remains the same with varying illumination. Liu

et al. [27] proposed a novel unsupervised intrinsic image

decomposition framework which directly learns the latent

feature of reflectance and shading from unsupervised and

uncorrelated data. Zhou et al. [37] proposed a global-local
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spherical harmonics lighting model for intrinsic decomposi-

tion, where they apply synthetic data for model pre-training

and fine-tune it with real data in a self-supervised way.

The FFI-Net is inspired by several recent works while the

most important being [12, 32]. FFI-Net differs from Cheng

et al. [12] rather substantially in the following ways: (i)

their hierarchical decomposition is done in the spatial do-

main with fixed-sized Gaussian kernels, while the decom-

position in FFI-Net is made in the spectral domain; (ii) they

use VGG perceptual loss to enforce global similarity be-

tween the intrinsic prediction and ground truth while FFI-

Net uses the basic MSE in the spectral domain; (iii) their

network optimization is done in the spatial domain while

ours in the spectral domain. With respect to the compari-

son to [32], FFI-Net adopts the spectral encoding of CNN

weights from it but novelly introduces several new elements

i.e. spectral banding, spectral loss, spectral residual block,

for intrinsic image decomposition.

3. Fast Fourier Intrinsic Network

Before presenting the building blocks of FFI-Net, we re-

view the properties of the Discrete Fourier Transform.

3.1. Preliminaries

The Discrete Fourier Transform (DFT). For a discrete

2D image I(h,w) = I ∈ R
H×W where h = 0, . . . , H − 1

and w = 0, . . . ,W − 1, the Fourier domain representation

is computed by

F (I)nm =
1√
HW

H−1
∑

h=0

W−1
∑

w=0

I(h,w)e−2πi(nh

H
+mw

W
)

∀n ∈ {0, . . . , H − 1}, ∀m ∈ {0, . . . ,W − 1} . (1)

The DFT is linear and unitary and I can be restored using

the inverse DFT given by F−1(I) = F (I)∗, which is the

conjugate of the transform itself.

Properties of DFT for CNN.

Convolution theorem: Convolution in the spatial domain is

equal to the element-wise product in the spectral domain:

F (x ∗ f) = F (x)⊙ F (f), (2)

where we denote by x and f two spatial signals (e.g.

images), ∗ and ⊙ the operators of the convolution and

the Hadamard product, respectively. DFT can be imple-

mented using the Fast Fourier Transform (FFT), which

reduces the complexity of DFT from O((HW )2) to

O(HW log(HW )).

DFT differentiation: For CNN backpropagation algorithms,

the gradients must be propagated through Fourier transform

layers. Suppose a DFT layer F maps a real-valued input

x ∈ R
H×W to z ∈ C

H×W , and ∂L
∂z

is the gradient of loss

L w.r.t z; Since both F and F−1 are unitary, the back-

propagation through F and F−1 can be written as

∂L
∂x

= F
−1

(

∂L
∂z

)

,
∂L
∂z

= F

(

∂L
∂x

)

. (3)

3.2. The Network Architecture

Our network architecture is built upon the preliminary

discussion about DFT and extended to the intrinsic im-

age decomposition task with several new components (see

Fig. 1). The input image I is first transformed into the

spectral representation F (I). Spectral banding (Sec. 3.4)

is applied afterwards to crop the spectral feature map of

F (I) into M overlapped (low-pass) sub-representations.

DC component is centered in the spectral feature map in

Fig. 1. The M spectral bands are transformed back to the

spatial domain via F−1 as input to feed into N consecutive

spectral residual blocks, respectively (Fig. 2 and Sec. 3.3).

Spectral residual blocks parametrize the conv weights in the

spectral domain for optimization yet their input and out-

put are in the spatial domain. The outputs of the M sub-

branches are transformed to the spectral domain, ground

truth in two domains are associated both before and after the

transformation. The M ground truth are generated via the

spectral banding that is different from previous: it produces

a series of non-overlapped bands similar to the Laplacian

pyramid (Sec. 3.4). The M spectral maps predicted in the

network are summed up to create a complete spectral map

of the image and further converted back to the spatial do-

main; again, ground truth are associated both in the spectral

and spatial domain on the complete image. The loss func-

tion between the ground truth and network predictions are

introduced in the spatial and spectral domain, respectively

(Sec. 3.5 and 3.6): the spatial loss employs the commonly

used pixel-wise MSE in the original images and their gra-

dient maps [13, 23] (Sec. 3.6); the spectral loss also utilizes

pixel-wise MSE loss but on the spectral maps, which pro-

vides an additional global constraint on the intrinsic predic-

tion (Sec. 3.5). Notice that, to infer both the albedo and

shading simultaneously, after the N
2 -th block of each sub-

branch we split it into two streams for albedo and shading,

respectively.

Below we present the spectral residual block, spectral

banding, and spectral loss.

3.3. Spectral Residual Block

Residual blocks [17] are widely applied for intrinsic im-

age decomposition [13, 23]. Inspired by [32], we expect

that spectral encoding of residual blocks can help solve the

intrinsic decomposition task. As shown in Fig. 2, given a

two-conv layer residual block, its input and output are in the

spatial domain but the conv weights are parametrized in the

spectral domain. These weights need to be converted back
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Figure 2: Illustration of the original (left) residual block

and proposed spectral residual block (right). θ denotes the

kernel weights of convolutional filters.

to the spatial domain when convolving with the input. This

reparametrization does not alter the underlying model, it

provides an appropriate domain for parameter optimization,

as the frequency basis captures typical filter structure well.

As suggested in [32], spectral encoding of the network re-

sults in more compact convolutional filters with more mean-

ingful axis-aligned directions for optimization. In the ex-

periment we demonstrate that residual blocks with spectral

weights boost the performance.

3.4. Spectral Banding

Inspired by the multi-path structure in [12], which con-

ducts scale space separation of the albedo/shading image,

we instead perform a spectral domain separation, which

provides more fine-grained control over frequency. The

spectral banding is formulated as:

znm =

{

F (x)nm, if n ∈ [Nl, Nu],m ∈ [Ml,Mu]

0, otherwise
(4)

In a spectral map, values between Nl and Nu in x-axis,

Ml and Mu in y-axis are kept. If Nl and Ml are always ze-

ros, spectral banding works like a smoothing filter. We ap-

ply this special case of spectral banding (Nl and Ml are ze-

ros while Nu and Mu are increased over bands) at the begin-

ning of the network to split the input into overlapped bands

(see Fig. 1 before the spectral residual blocks). If Nl and Ml

are non-zeros, we can separate the spectral map into multi-

ple bands where the upper bounds (Nu, Mu) of a current

band are taken as the lower bounds (Nl, Ml) of its adjacent

band with higher frequency. When we apply the inverse

FFT to these spectral bands, they look like image Laplacian

pyramid with different levels of details [8, 26] (see Fig. 1 af-

ter the spectral residual blocks). In the network, we generate

M of these non-overlapped spectral bands from the ground

truth to associate at the end of each subbranch. In this way,

the subbranch output can be summed together to recover

the final prediction (we call it summing spectral bands in

Fig. 1).

In practice, we can provide a specific range of nm for

znm = 0 in Eq. 4, where the spatial transform of a spec-

tral band can be of adjustable size related to the predefined

range. This makes spectral banding flexible with any input

and output size in a fully-convolutional neural network. No-

tice the level-of-detail exploited in [12] is obtained by ap-

plying the fix-sized Gaussian kernel in the spatial domain,

while spectral banding retrieves the level-of-detail in the

spectral domain explicitly and more effectively; Most im-

portantly, our spectral banding enables the effective usage

of another new component, spectral loss, as below.

3.5. Spectral Loss

Loss functions are defined in both the spectral and spa-

tial domains, here we first detail the spectral loss: since each

pixel in the spectral domain is a weighted sum of the whole

image in the spatial domain, a pixel-wise loss defined on

the spectral representation spontaneously enforces a global

similarity between the spatial prediction and the ground

truth. Inspired by the global loss applied in [23, 13, 12],

we propose a spectral loss defined in the spectral domain:

Ls(x, x̂) = ‖M(F (x))−M(F (x̂))‖22 (5)

where x̂ and x denote the predicted and ground truth

albedo/shading in the spatial domain, respectively. M is

defined as an operator to take the magnitude of a complex

value, M(F (x)) = |F (x)| We only use the magnitude

part as it contains information of the image geometric struc-

ture in the spatial domain while discarding the phase part as

“invisible” (see [1, 15]). This also empirically gives us ben-

efits whilst minimizing the error over the phase part does

not. Notice if we minimize the squared error for the real

and imaginary components, since F is a linear transform,

it will be identical to minimizing the squared error in the

spatial domain, as specified below.

In FFI-Net, spectral losses are directly applied pixel-

wise on the M spectral outputs of the network as well as

on their summation.

3.6. Network Training

Beside the spectral loss, we also adopt representative lo-

cal MSE loss in the spatial domain to let the predication to

be both pixel-wise close and visually similar to the ground

truth. Following [23, 13, 29], we choose the ℓ2 loss defined

on every pixel value and its gradient:

Lp(x, x̂) = ‖x− x̂‖22, Lg(x, x̂) = ‖∇(x)−∇x̂‖22. (6)

Each of the M subbranches in the network is trained with

loss Lss from both spectral and spatial domains:

Lss(x, x̂) = λ1Lp + λ2Lg + λ3Ls. (7)

We empirically choose λ1 = 0.2, λ2 = 0.35, λ3 = 10−6

for all our experiments. Ls is of larger magnitude than

Lg and Lp thus with a smaller weight λ3. Lss is applied
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to all the M subbranches as well as their final summation

in the network, so we have the overall loss LT for target

albedo/shading:

LT =

M
∑

b=1

Lb
ss(xb, x̂b) + Lss(x, x̂), (8)

where we denote by xb and x̂b the ground truth and predic-

tion corresponding to the b-th spectral band of the original

albedo/shading, respectively.

Referring to Fig. 1, LT is computed on both albedo and

shading predictions (LA and LS ), so we have the final loss

L = LA + LS + LAS (9)

LAS = ‖A · S − Â · Ŝ‖22 is added to address the commonly

used constraint I = A · S [12].

4. Experiments

Datasets. We conduct experiments on three popular

datasets: MPI-Sintel [9], MIT Intrinsic [16] and IIW [6].

MPI-Sintel [9] consists of 18 animated video clips of mul-

tiple scenes, each containing 40 or 50 frames. We experi-

ment with two different data splits: image split [29, 13, 12]

and scene split [29, 12]. MIT-Intrinsic [16] contains 20
real objects in 11 different lighting configurations. The

train/test split follows [2]. IIW [6] has 5, 230 real images

of mostly indoor scenes. Pairwise relative reflectance judg-

ments are provided by humans as the ground truth albedo;

the train/test split follows [13].

Training Details. For all datasets, we fix the number of

spectral bands to M = 5 and use N = 10 spectral resid-

ual blocks for each band. Spectral residual blocks have the

same configuration as the ordinary residual block [17] in

terms of filter size, batch normalization, relu etc. Training is

conducted using the Adam optimizer with network weights

randomly initialized. (i) For MPI Sintel, we randomly crop

384 × 384 patch from each image. The upper and lower

bounds (Eq.4) for each spectral band are (384/4, 384/2),
(384/8, 384/4), (384/16, 384/8), (384/32, 384/16) and

(0, 384/32), where Nl = Ml and Nu = Mu for square

crops. We set the batch size to 4 and the learning rate to 4e-

4. (ii) For MIT Intrinsic with smaller images, we randomly

crop 192× 192 patches and flip them. The upper and lower

bounds for each band are (192/4, 192/2), (192/8, 192/4),
(192/16, 192/8), (192/32, 192/16) and (0, 192/32), re-

spectively. The batch size is 8 and learning rate is 8e-3.

(iii) For IIW, we resize each image to 300× 300 as in [13];

the batch size is set to 1 and the learning rate is 1e-2. All

networks are trained till convergences in our experiments.

Evaluation Protocol. We report results using the four

common metrics: (i) si-MSE: scale-invariant mean squared

Sintel scene split si-MSE ×10
2 si-LMSE×10

2 DSSIM×10
2

A S avg A S avg A S avg

DI [29] 2.01 2.24 2.13 1.31 1.48 1.39 20.73 15.94 18.33

DARN [23] 1.77 1.84 1.81 0.98 0.95 0.97 14.21 14.05 14.13

Fan et al. [13] 1.81 1.75 1.78 1.22 1.18 1.20 16.74 13.82 15.28

LapPyrNet [12] 1.38 1.38 1.38 0.92 0.93 0.92 8.46 9.26 8.86

FFI-Net 1.19 1.16 1.18 0.73 0.73 0.73 8.93 8.60 8.77

M=5,Rspec 1.19 1.16 1.18 0.73 0.73 0.73 8.93 8.60 8.77

M=3,Rspec 1.24 1.16 1.20 0.75 0.75 0.75 9.59 8.85 9.22

M=1,Rspec 1.35 1.36 1.35 0.82 0.82 0.82 10.43 10.84 10.63

M=5,Rspat 1.50 1.50 1.50 0.91 0.92 0.91 10.25 9.78 10.01

M=3,Rspat 1.41 1.44 1.42 0.82 0.93 0.88 10.59 9.95 10.27

M=1,Rspat 1.52 1.67 1.60 0.91 1.14 1.02 11.04 11.69 11.37

w/o Lspec (M =5, Rspec) 1.19 1.16 1.18 0.75 0.75 0.75 9.55 8.70 9.13

only Lspec (M =1, Rspat) 1.29 1.28 1.29 0.77 0.84 0.81 10.11 9.13 9.62

Table 1: Results for MPI-Sintel (scene split). si-MSE, si-

LMSE and DSSIM are reported for albedo (A), shading (S)

and their average (avg). We also ablate the key elements of

FFI-Net: number of spectral bands M ∈ {1, 3, 5}, spectral

(Rspec) vs. spatial (Rspat) residual blocks, and the spectral

loss Lspec. FFI-Net is by default with M=5, Rspec. The best

results are marked in bold.
.

error (MSE); (ii) si-LMSE: scale-invariant local MSE,

which uses sliding windows in si-MSE; the window size w
is usually 10% of the larger dimension of the image while

the sliding step is 0.5w; (iii) DSSIM: dissimilarity struc-

tural similarity index measure; it is made to correlate with

the subjective image quality assessments [35]. For MIT,

we also report the MSE and LMSE numbers which can be

seen as variants of si-MSE and si-LMSE [16]. For IIW

with sparse ground truth, we report the weighted human dis-

agreement rate (WHDR) [6, 13].

We compare our method with a number of prior arts;

these approaches are trained in various ways including

fully-/weakly-supervised learning [13, 12, 24, 23, 28, 37],

unsupervised learning [27, 31, 6, 7], as well as learn-

ing from auxiliary datasets [29, 34, 24, 37] (see Sec. 2).

We do not elaborate every detail with every method but

mainly focus our comparison with those representative

fully-supervised methods, e.g. [13, 12, 24, 23].

4.1. Results on MPISintel

Results for FFI-Net and various competing works are

shown in Tab. 1 (scene-split) and Tab. 2 (image-split).

The scene-split setting is more challenging as it requires

generalization over unseen scenes. Tab. 1 shows that FFI-

Net performs the best on most metrics. In particular, it

achieves the best average si-MSE, si-LMSE, and DSSIM

of albedo and shading: 1.18, 0.73, and 8.77, respectively.

FFI-Net achieves the best performance also for the

image-split setting reported in Tab. 2, but with smaller mar-

gin. We suggest a possible reason as the overfitting of deep

networks on the shared contents between training and test

images in image-split. This is illustrated by the recent re-
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Figure 3: Examples on the MPI-Sintel (scene split). We

emphasize the ability of FFI-Net of shadow removal (e.g.

sky - red arrows) in the unseen scene compared to others.

Sintel image split si-MSE×10
2 si-LMSE×10

2 DSSIM×10
2

A S avg A S avg A S avg

Retinex [31] 6.06 7.27 6.67 3.66 4.19 3.93 22.70 24.00 23.35

Lee et al. [22] 4.63 5.07 4.85 2.24 1.92 2.08 19.90 17.70 18.80

SIRFS [2] 4.20 4.36 4.28 2.98 2.64 2.81 21.00 20.60 20.80

Chen et al. [11] 3.07 2.77 2.92 1.85 1.90 1.88 19.60 16.50 18.05

DI [29] 1.00 0.92 0.96 0.83 0.85 0.84 20.14 15.05 17.60

DARN [23] 1.24 1.28 1.26 0.69 0.70 0.70 12.63 12.13 12.38

Kim et al. [20] 0.70 0.90 0.70 0.60 0.70 0.70 9.20 10.10 9.70

Fan et al. [13] 0.67 0.60 0.63 0.41 0.42 0.41 10.50 7.83 9.16

LapPyrNet [12] 0.66 0.60 0.63 0.44 0.42 0.43 6.56 6.37 6.47

Liu et al. [27] 1.59 1.48 1.54 0.87 0.81 0.84 17.97 14.74 16.35

FFI-Net 0.64 0.57 0.61 0.46 0.39 0.42 7.73 6.28 7.01

Table 2: Results for MPI-Sintel (image split)..

sults in [20, 13, 12] from which the error numbers are in-

deed close to 0 (see Tab. 2, they are multiplied by 100).

LapPyrNet [12] performs in general the second best. It

employs several loss functions such as joint bilateral filter-

ing loss, VGG perceptual loss, etc. Notwithstanding, our

results show that the proposed simple spectral loss (Tab. 1,

only Lspec) is as effective as these multiple losses .

Qualitative illustrations are presented in Fig. 3 and Fig. 4

where in particular the low-frequency part of the sky and

high frequency details of the person’s face illustrate the im-

proved prediction thanks to the spectral structure.
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Figure 4: Examples of (A)lbedo and (S)hading predictions

on MPI-Sintel (image split). FFI-Net performs well in dif-

ficult parts, e.g. person fingers, faces (red arrows).

4.2. Results on MIT Intrinsic

For MIT Intrinsic, [23, 13, 12] report si-MSE and si-

LMSE and while [24, 5, 25] report MSE, LMSE and

DSSIM. We include both in Tab. 3 and 4 for comprehen-

sive comparison.

With si-MSE and si-LMSE (Tab. 3), FFI-Net outper-

forms the competing deep learning methods. The traditional

method SIRFS [2] has slightly better si-MSE for albedo and

total si-LMSE. It uses a prior that is particularly suitable

for the MIT Intrinsic images; we notice its clear inferior-

ity over others on MPI-Sintel in Tab. 2. MIT is a rather

small dataset and is therefore often trained with additional

datasets [34, 29] while FFI-Net only trains on MIT.
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Tr. si-MSE ×10
2 si-LMSE×10

2

data A S avg Total

SIRFS [2] M 0.64 0.98 0.81 1.25

Zhou et al. [38] M 2.52 2.29 2.40 3.19

Shi et al. [34] SN+M 2.16 1.35 1.75 2.71

DI [29] ST+M 2.07 1.24 1.65 2.39

Fan et al. [13] M 1.34 0.89 1.11 2.03

LapPyrNet [12] I+M 0.89 0.73 0.81 1.41

FFI-Net M 0.71 0.76 0.73 1.31

Table 3: Results for MIT Intrinsic. All methods use the

training-test split file released in [2]. For si-MSE and si-

LMSE, we use the evaluation code from [13, 2]. Tr. data

lists the datasets used in training: MIT (M), ShapeNet (SN),

Sintel (ST) and ImageNet (I). The best CNN-based results

are marked in bold.
.

Tr. MSE LMSE DSSIM

data A S A S A S

SIRFS [2] M 1.47 0.83 4.16 1.68 12.38 9.85

DI [29] ST+M 2.77 1.54 5.86 2.95 15.26 13.28

Shi et al. [34] SN+M 2.78 1.26 5.03 2.40 14.65 12.00

CGI [24] CGI 2.21 1.86 3.49 2.59 17.39 16.52

CGI [24] CGI+M 1.67 1.27 3.19 2.21 12.87 13.76

Ma et al. [28]∗ M 1.68 0.93 0.74 0.52 – –

Liu et al. [27] M 1.57 1.35 1.46 2.31 – –

FFI-Net M 1.11 0.93 2.91 3.19 10.14 11.39

Table 4: More results for MIT Intrinsic under diffferent

metrics, MSE, LMSE, and DSSIM ([28]∗ uses a different

window size for LMSE). The best CNN-based results are

marked in bold.

(A)

(S)

(A)

(S)

Input Shi et al. [34] DI [29] Fan et al. [13] FFI-Net Ground Truth

Figure 5: Sample (A)lbedo and (S)hading on MIT Intrinsic.

FFI-Net performs better for object details (top), as well as

for the overall appearance (bottom).

We also provide results in MSE, LMSE, and DSSIM in

Tab. 4. FFI-Net performs in general better than latest works

e.g. [28, 24, 27]. Notice that it appears that the LMSE in

[28] is computed using a different window size, thus its two

numbers (italic) in LMSE are not comparable to others.

Methods Training set WHDR (mean)

DI [29] ST 37.30

Shen et al. [33] – 36.90

Retinex (color) [16] – 26.89

Retinex (gray) [16] – 26.84

Garces et al. [14] – 25.46

Zhao et al. [36] – 23.20

L1 flattening [7] – 20.94

Bell et al. [6] – 20.64

Zhou et al. [38] IIW 19.95

Nestmeyer et al. CNN[30] IIW 19.49

Zoran et al. * [39] IIW 17.85

Nestmeyer et al. [30] IIW 17.69

Bi et al. [7] – 17.67

CGI [24] CGI+IIW 17.50

CGI [24] CGI+IIW(A)+SAW 15.50

Fan et al. [13] IIW 14.45

Zhou et al. [37] SUNCG + IIW 15.20

Liu et al. [27] IIW 18.69

FFI-Net w/ WHDR loss IIW 15.81

Table 5: Results for IIW. Evaluation follows the train-test

split in [29]. Note that due to the sparse ground truth avail-

able, FFI-Net does not use the spectral banding and loss, but

instead the WHDR loss in [13].

4.3. Results on IIW

The IIW dataset differs substantially from MPI-Sintel

and MIT Intrinsic in its ground truth. IIW does not have

dense pixel-wise ground truth with physical grounds, but

only sparse pair-wise annotations of points in each image.

Therefore the losses relying on dense prediction, e.g., GAN

discriminator loss/VGG loss, in [12, 23, 28, 34] cannot

apply. That also prevents using our spectral loss and sub-

branch losses. For this experiment, our proposed loss func-

tions were replaced with the WHDR loss used in [13]. Our

network structure remains encoded with spectral weights.

The WHDR scores are shown in Tab. 5. FFI-Net, de-

spite being disabled with spectral banding and loss, still

achieves competitive WHDR score 15.81 among the state-

of-the-arts [24, 13, 37]. The best performance by [13] can

be partly explained by its tailored domain filter that flat-

tens albedo prediction. While [24] and [37] use additional

datasets (e.g. CGI, SAW, SUNCG) along with IIW for train-

ing augmentation.

4.4. Ablation Study

Spectral Bands. Tab. 1 demonstrates that adding more

spectral bands (M ) consistently improves the results. We

use M = 5 as a trade-off between efficiency and accuracy.

It is worth mentioning that using a single spectral band al-

ready outperforms the state-of-the-arts in si-MSE and si-
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Image Zhou [38] (A) Zhou [38] (S) CGI [24] (A) CGI [24] (S) Fan [13] (A) Fan [13] (S) FFI-Net (A) FFI-Net (S)

Figure 6: Qualitative comparisons of (A)lbedo and (S)hading on IIW. Results of our FFI-Net are visually very similar to the

best performing results [13].

Figure 7: Network training convergence for the proposed

spectral (red) and the conventional (blue) residual blocks.

LMSE. We believe this is due to the spectral encoding of

residual blocks and the spectral loss.

Spatial vs Spectral Residual Blocks. Tab. 1 shows using

spectral residual blocks performs significantly better than

the spatial residual blocks (Rspat v.s. Rspec). Fig. 7 shows

using spectral residual blocks significantly accelerates the

convergence rate (3x - 5x) and improves the accuracy.

Spectral Loss. Tab. 1 reports the results of FFI-Net without

spectral loss (w/o Lspec): the performance is inferior to FFI-

Net on the metrics si-LMSE and DSSIM but remains the

same on si-MSE. Unsurprisingly, si-MSE defines the pixel-

wise loss while si-LMSE and DSSIM consider the window-

wise correlations. The results demonstrate the effectiveness

of spectral loss on the global similarity between the intrinsic

prediction and the corresponding ground truth. Moreover,

we point out that FFI-Net (only Lspec) already outperforms

the state-of-the-arts [12, 23, 13] on si-MSE and si-LMSE.

Network parameters and inference time. Tab. 6 pro-

Method Fan [13] Darn [23] Lap [12] CGI [24] FFI-Net

Parameters(Train) 2.80 17.97 138 7.7 0.75

Parameters(Test) 2.80 0.74 0.94 7.7 0.75

Table 6: Network parameter numbers displayed in million-

scale. The training parameters for [23] and [12] includes

that of the GAN discriminator and the VGG classifier, re-

spectively.
.

files the network parameter number of FFI-Net. It generally

needs less parameters compared to the others, which use

extra guidance network [13], adversarial network [23], VG-

GNet [12] and U-Net [24] for training. As for inference

time, we reproduced [13, 12] with the same GPU (GTX

1080) as ours, it is ∼100 ms for [13], ∼70 ms for [12] and

∼42 ms for FFI-Net.

5. Conclusion

We proposed a Fast Fourier Intrinsic Network architec-

ture (FFI-Net) for intrinsic image decomposition. FFI-Net

differs from the existing works in the sense that inference

and network training is performed in the spectral domain

and multi-scale learning is implemented by spectral band-

ing. The spectral residual blocks introduced in this work

converge faster and provide better accuracy than the con-

ventional residual blocks. FFI-Net is lightweight and does

not need auxiliary networks for training. Our experiments

with three popular datasets verify that FFI-Net achieves

state-of-the-art accuracy without auxiliary data training or

specific parameter tuning. In the future work, we will ex-

plore the potential of spectral network components in other

image-to-image translation tasks such as depth estimation

and spatial illumination estimation.
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