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Abstract

Point cloud analysis is attracting attention from Artifi-

cial Intelligence research since it can be widely used in ap-

plications such as robotics, Augmented Reality, self-driving.

However, it is always challenging due to irregularities, un-

orderedness, and sparsity. In this article, we propose a

novel network named Dense-Resolution Network (DRNet)

for point cloud analysis. Our DRNet is designed to learn

local point features from the point cloud in different resolu-

tions. In order to learn local point groups more effectively,

we present a novel grouping method for local neighbor-

hood searching and an error-minimizing module for cap-

turing local features. In addition to validating the net-

work on widely used point cloud segmentation and clas-

sification benchmarks, we also test and visualize the per-

formance of the components. Comparing with other state-

of-the-art methods, our network shows superiority on Mod-

elNet40, ShapeNet synthetic and ScanObjectNN real point

cloud datasets.

1. Introduction

With the help of rapid progress in 3D sensing technol-

ogy, an increasing number of researchers are now focus-

ing on 3D point clouds. Different from complex 3D data

e.g., mesh and volumetric data, point clouds have a simpler

data format. Typically, point clouds are easier to collect us-

ing different types of scanners [3] with specific algorithms:

e.g., LiDAR scanners [12] and Simultaneous localization

and mapping (SLAM) algorithms. Traditional algorithms

addressing point cloud learning [32, 24, 31, 37] used to es-

timate geometric information and capture indirect clues uti-

lizing complicated models. In contrast, deep learning mod-

els provide explicit and effective data-driven approaches to

acquire information from 3D point cloud data, leveraging

Convolutional Neural Networks (CNN).

In general, CNN-related methods for 3D point clouds

can be divided mainly into two categories [7]. The

first one is conversion-based, which converts the 3D

data to some intermediate representations, for example,

Figure 1. A birdeyes view of our Dense-Resolution Network.

MVCNN [34] projects 3D shapes into multi-view 2D im-

ages, and VoxNet [23] transfers point clouds as volumetric

grids. The other one is point-based such as PointNet [28],

which directly processes points. The point-based approach

has become popular due to the introduction of the multi-

layer perceptrons (MLPs) operation in [28]. The subsequent

algorithms [39, 35] adopted MLPs to learn the local features

of point clouds using graph context and kernel points.

In order to recognize fine-grained patterns for complex

objects or scenes, it is necessary to capture the local spa-

tial context of point clouds. To represent local areas for

point clouds, Qi et al. [29] and Liu et al. [19] apply the Ball

Query algorithm [27] to group local points, while Wang et

al. [39] uses k-nearest neighbors (knn) to build point neigh-

borhoods. However, when using these methods, the perfor-

mance is strongly affected by the areas of their pre-defined

neighborhoods, i.e. the searching radius of a Ball Query, or

the k of knn. If the area is too small, it cannot cover suf-

ficient local patterns; if too large, the overlap may involve

redundancies. DPC [6] proposes an idea of dilated point

convolution to increase the size of the receptive field with-

out additional computational cost. Unlike previous works,

we attempt to adaptively define such a local area for each

point w.r.t. the density distribution around it, by which the

point neighborhood would be more reasonable though re-

quiring less manual intervention and parameter tuning.

Unlike 2D images whose pixels are well-organized in lo-

cal neighborhoods, learning the feature representations of

scattered, unordered, and irregular 3D point clouds are al-
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Figure 2. Dense-resolution network architecture. For the FR branch (in green), we learn the full-resolution point cloud features through

a series of Error-minimizing modules (denoted as E-M, see Section 3.2) involving the Adaptive Dilated Point Grouping method (denoted

as ADPG, see Section 3.1). For the MR branch (in blue), point features of different resolutions are investigated in a down/up-sampling

manner with skip connections (dotted lines). DS and US represent our down-sampling and up-sampling processes (more details are in

Section 4.1 and the supplementary material), respectively. By merging the feature maps (denoted as M, see Eq. 4) of the two branches, we

manage point cloud classification and segmentation tasks using fully-connected (FC) layers. C stands for concatenating along channels.

ways challenging. Although one can construct local areas

based on the spatial distances between points, the process

may accumulate biases from different scales of embedding

space and further affect the performance. In addition to fea-

ture encoding, an effective mechanism is also required to

guide the procedure to learn local features.

Previously, the idea of error feedback has been applied in

2D human pose estimation [4] and image Super-Resolution

(SR) [8, 20], in order to regulate the network by compensat-

ing the estimated error. To leverage the properties of both

error-feedback and CNN training mechanism, unlike the

complex error-correcting structures in [15, 30], we propose

an error-minimizing module with lower complexity but bet-

ter performance. Meanwhile, we present a new network ar-

chitecture, named Dense-Resolution Network (DRNet), for

basic 3D point cloud classification and segmentation tasks.

By merging feature maps of a Full-Resolution (FR) branch

that investigates the full size of the point cloud and a Multi-

Resolution (MR) branch that explores different resolutions

of the point cloud in a novel fusion method, we can obtain

more information for a comprehensive analysis. The main

contributions are:

• We propose a novel point grouping method to find

neighbors for each point adaptively, considering the

density distribution of the neighbors.

• We design an error-minimizing module leveraging the

idea of error feedback mechanism to learn the local

features of point clouds.

• We introduce a new network to comprehensively rep-

resent point clouds from different resolutions.

• We conduct thorough experiments to validate the prop-

erties and abilities of our proposals. Our results

demonstrate that our approach outperforms state-of-

the-art methods on three point cloud benchmarks.

2. Related Work

Local points grouping. Contrary to the pioneer Point-

Net [28] that relied on global features, subsequent work

captured more local features in detail. PointNet++ [29]

firstly applied Ball Query, an algorithm for collecting pos-

sible neighbors of a particular point through a ball-like

searching space centering at a point, to group local neigh-

bors. Similarly, local features learning methods such as

[39, 6, 30] use another simple algorithm knn gathering near-

est neighbors based on a distance metric.

Although Ball Query and knn grouping are intuitive,

sometimes the size of the neighborhood (i.e. the receptive

field of the point) is limited due to the range of searching

(i.e. the radius of query ball, or the value of k). Meanwhile,

merely increasing the searching range may involve substan-

tial computational cost. To solve this problem, DPC [6]

extended regular knn to dilated-knn, which gathers local

points over a dilated neighborhood obtained by computing

the k · d nearest neighbors (d is the dilation factor [46]) and

preserving only every d-th nearest point. Moreover, recent

works [29, 19, 44] group neighbors through query balls in

different scales (e.g., multi-scale grouping) to capture infor-

mation from various sizes of the local area.
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However, the existing methods have some issues in com-

mon. On the one hand, the performance of grouping meth-

ods highly relies on pre-defined settings. For example,

DGCNN [39] provided the results under different k condi-

tions, DPC [6] compared the effects of d values, and Point-

Net++ [29] discussed the influence of the query ball radius.

On the other hand, the grouping methods act on all points

without considering each point or object’s distinct condi-

tion. As far as we are concerned, it is necessary to find an

intelligent point-level adaptive grouping method.

Error feedback structure. Previously in 2D computer

vision, Carreira et al. [4] proposed a framework called

Iterative Error Feedback (IEF), which minimized the er-

ror loss between current and desired outputs in the back-

propagation procedure. In contrast to [4], the methods

in [8, 20] complimented the output with a back-projection

unit in the forward procedure. For 3D point clouds, PU-

GAN [15] leveraged a similar idea for point cloud gener-

ation, while [30] presented a structure with specially de-

signed paths for prominent features learning.

Basically, current IEF structures for point clouds are re-

dundant and implicit. Considering the complexity of 3D

data, a concise and explicit IEF module is needed. More im-

portantly, an IEF module is expected to serve two purposes

in the network: first, to make the actual output approach

the desired point clouds representations; second, to help the

grouping process form the adaptive point neighborhoods.

Network architecture for point cloud learning. To realize

different computer vision tasks using deep learning, many

network architectures have been introduced: VGG [33],

ResNet [9], etc. Besides, some works tried different im-

age resolutions for more clues; for example, the fully con-

volutional network [21] keeps the full size of an image, de-

convolution network [26] steps into lower resolutions, and

HRNet [38] shares the features among different resolutions.

As for 3D point clouds, two popular architectures are 1)

PointNet++[29], which downsamples the point clouds using

Farthest Point Sampling (FPS) and upsamples using Fea-

ture Propagation (FP), and 2) a fully convolutional network,

which learns point-wise features from multiple embedding

space scales, for example, DGCNN [39] dynamically up-

dates the crafted point graph around each point. Differ-

ent from the above mentioned methods, our approach ex-

ploits more clues through dense connections between var-

ious resolutions of the point clouds. Furthermore, we in-

vestigate the characteristics of multi-resolutional features,

and then develop a better merging behavior for the feature

maps. In general, our DRNet adaptively encodes the local

context from more resolutions of point clouds, by which

fine-grained output representations benefit point cloud clas-

sification and segmentation tasks.

Algorithm 1: The forward pass pipeline of

Adaptive Dilated Point Grouping

input: feature map PN×c = [p1
T , p2

T , ... , pN
T ]

in c-dimensional space.

parameters: the number of neighbors k, and an

empirical maximum dilation factor dmax.

output: the matrix IN×k, indices of the selected k

neighbors for the point cloud.

for each point cloud do
search for the (k · dmax) candidate neighbors

based on PN×c, get the candidate metric values

EN×(k·dmax) and the indices IN×(k·dmax);

learn the dilation factors DN based on the

metrics EN×(k·dmax), where: di ∈ Z,

di ∈ [1, dmax], DN = [d1, ... , di, ... , dN ]T ;

group the indices IN×k of the k neighbors from

IN×(k·dmax) based on DN ;

end for

3. Approach

CNN-based learning of 3D data has become more in-

tuitive due to the introduction of multi-layer perceptrons

(MLPs) [28] that directly process point clouds. Primarily,

an MLP, M(·), is described as a composite operation of 1-

by-1 convolution with a possible batch normalization [11]

(BN) and an activation (e.g., ReLU) on the feature map.

In addition, recent works [39, 6, 44] craft regional pat-

terns to record more local details via a graph around each

point pi ∈ R
c, based on both the absolute position of

the centroid and relative positions of the neighbors in c-

dimensional feature space. Specifically, the crafted graph

(G) of the centroid pi is formulated as: G(pi) = (pi, pj −
pi); where ∀pj ∈ Ni(pi). Usually, the quality of the in-

formation provided by G(pi) highly depends on the neigh-

bors, ∀pj ∈ Ni(pi), that are found by the grouping method.

Hence, we expect a better grouping method for G(pi).

3.1. Adaptive Dilated Point Grouping

The two popular grouping methods i.e. Ball Query and k-

nearest neighbors (knn) (see Section 1) have shortcomings

(as analyzed in Section 2), and to overcome these issues,

here we propose a novel grouping method named Adaptive

Dilated Point Grouping (ADPG), which is shown in Algo-

rithm 1. ADPG aims to generate the indices of neighbors

IN×k for the points, given a feature map PN×c of the point

cloud and consists of the following three main procedures.

Searching. The first step of ADPG is searching candidate

neighbors for the points. In this paper, we introduce a so-

lution capable of addressing common scales of point cloud

data. We define the pairwise Euclidean distances EN×N

in feature space as our metric, which indicates the point
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density distribution to a certain extent. As for a N × c

size feature map P , the pairwise Euclidean distances are:

EN×N = diag(PPT ) · ~1 + ~1T · diag(PPT )
T
− 2PPT ,

where ~1 means a 1 × N row vector of ones, and diag(·)
forms a N × 1 column vector whose entries are the N diag-

onal elements of a N ×N square matrix.

According to the calculated distances metric, we can eas-

ily identify the k ·dmax candidate nearest neighbors of each

point. In our implementation, we sort the rows of EN×N in

ascending order, and retain the metric values and indices of

the first k ·dmax elements. Therefore, the elements with the

smallest k · dmax values in each row of EN×N are identi-

fied as candidate neighbors for each point. Meanwhile, the

metric values and indices of the searched candidate neigh-

bors are recorded as EN×(k·dmax) and IN×(k·dmax), respec-

tively. Besides, our implementation is also flexible; that is,

the choices for metrics (e.g., density or geometric similar-

ities) and searching techniques (e.g., FLANN [25] for the

sake of efficiency in large-scale point cloud data) can be

easily integrated as needed.

Learning. In order to construct a dilated neighborhood for

each point adaptively, it is necessary to determine a dilation

factor [46] for each point based on known information of

its candidate neighbors. In practice, we learn the dilation

factors based on EN×(k·dmax) and CNN-related operations.

To be specific, we apply an MLP (M) and a sig-

moid function (σ) to the metric values of candidates

EN×(k·dmax), in order to summarize the information of the

point distribution of local areas. Then, a projection function

J (e.g., linear function) can map the values to the expected

numerical scale. Finally, we take a scale function S (e.g.,

round to assign a dilation factor, DN
1, for each point ac-

cording to the summarized information:

DN = S

(

J
(

σ
(

M(EN×(k·dmax))
)

)

)

. (1)

Grouping. As each point has a corresponding dilation

factor, we pick up every di-th index of candidate indices

IN×(k·dmax) to form the selected k neighbors for each

point. Following a behavior similar to [6], we obtain the

final indices of local point groups IN×k.

3.2. Error­minimizing Module

Following the ADPG method, each point gathers a group

of neighbors with a larger receptive field. As stated, we ap-

ply the crafted graph G, i.e. the absolute position of a cen-

troid and relative positions of the neighbors, to encode the

high-dimensional features over each neighborhood. Further

projected by an MLP (with c′ filters), the information of a

local graph centering at pi, is represented as:

fGi
= M

(

G(pi)
)

= M
(

(pi, pj − pi)
)

, (2)

1More implementing details are in the supplementary material.

where ∀pj ∈ ADPG(pi) and fGi
∈ R

c′×k.

Usually, a max-pooling function is applied over the k

neighbors of each crafted local graph to aggregate the lo-

cal context as the centroid’s feature representation. How-

ever, possible bias exists in process: on the one hand, the

local graphs lack geometric regularization from the initial

3D space; and on the other hand, the max-pooled features

only retain prominent outlines while discarding local details

in embedding space. In this case, the Iterative Error Feed-

back (IEF) mechanisms idea helps avoid bias accumulation

during the high-dimensional feature learning process.

Let us assume that the local graph fGi
indeed embeds the

full information about the neighborhood, it would be possi-

ble to restore the input pi through a back-projection process

B(·). Practically, we realize the B(·) operation through a

shared 1-by-k convolution followed by BN and ReLU, over

the local graphs. Intuitively, this operation acts to aggre-

gate the nodes based on learned weights of the edges in the

graph, which implicitly simulates a reverse process of craft-

ing the graph. Therefore, the back-projected feature fBi
is

formulated as: fBi
= B(fGi

); where fBi
∈ R

c.

Consequently, an error feature fEi
is defined as the dif-

ference between the original input pi and back-projected

feature fBi
. In contrast to the methods in [15, 30, 8, 20]

that correct the error by extra computations in the for-

ward pass, we use additional ℓ2 loss to minimize the error,

fEi
= fBi

− pi, during the back-propagation pass:

Ler = ||fEi
||2. (3)

The loss in Equation 3 can constrain the feature learning

during training by forcing the back-projected feature fEi
to

approach the original input pi inside of the module. Fol-

lowing such a regularization, the error and bias in the out-

put representations can be alleviated, especially during the

early stages of training. Meanwhile, compared with the reg-

ular cross-entropy loss for the whole network, each error-

minimizing module’s loss can provide more clues for the

ADPG in corresponding feature space.

3.3. Dense­Resolution Network Architecture

Although the ADPG method and the error-minimizing

module seem promising for local feature learning of point

clouds, we still need a robust network architecture to lever-

age the potential offered by both. The architecture of our

network is presented in Figure 2.

Full-resolution branch. We adopt the idea of basic fully

convolutional architecture as the full-resolution (FR) branch

of our network. The benefits can be retained based on two

aspects; 1) there remains a consistent number of points in

different scales of embedding space during feature learning

progress; 2) it retains the per-point feature without any con-

fusion caused by the numerical approximation in upsam-
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pling. Therefore, we expect this structure to learn compre-

hensive representations for point-wise features.

Specifically, the FR branch consists of the proposed

error-minimizing modules in a cascaded form, which pro-

gressively learn the feature representation of each point

from its adaptive neighborhood formed by ADPG in differ-

ent scales of embedding space. In order to acquire a global

knowledge about the abstract embedding space, the learned

features from different scales are concatenated and aligned

to form the output FFR of the FR branch.

Multi-resolution branch. Meanwhile, there is a limitation

of FFR: it lacks channel-wise clues about semantic/shape-

related information since the FR branch mainly focuses on

point-wise context. To overcome this issue, we capture

additional features from more resolutions of point clouds.

Therefore, we propose the multi-resolution (MR) branch, a

light-weight down/up-sampling structure, to investigate the

lower resolutions of point clouds. Contrary to competing

methods, the propagated features and skip links are densely

connected to enhance the relations between multiple point

cloud resolutions and feature embedding scales. The output

FMR of the MR branch captures thorough channel-wise in-

formation about the point clouds.

Features merging. To leverage the information gathered

from both FR and MR branches, it is necessary to find a

reasonable merging technique for the two feature maps, i.e.

FFR and FMR. Usually, CNNs combine the feature maps

by concatenation, summation, or multiplication. These reg-

ular operations treat the feature maps equally, without tak-

ing their properties into account. Instead, we prefer merging

the FR and MR outputs in a unique manner.

Given the advantages of FR and MR branches that we

analyzed before, FFR is applied as the basis of per-point

feature representation. In addition, the channel-wise infor-

mation of FMR is derived to enhance FFR. Empirically, we

use a max-pooling and an MLP to summarize the knowl-

edge of FMR channels. After a sigmoid activation σ, the

channel-wise enhancement on the per-point context of FFR

can be realized by multiplication. The final output of our

dense-resolution (DR) network follows:

FDR = FFR × σ
(

M
(

max
N

(FMR)
)

)

. (4)

Loss function. Based on the output feature map (FDR),

the fully-connected (FC) layers regress the confidence

scores for all possible categories. In addition to the basic

cross-entropy loss (Lce), the weighted losses of the error-

minimizing modules are incorporated. For the DRNet with

M error-minimizing modules in its FR branch, by apply-

ing Equation 3 and the hyper-parameter wi as weight, the

overall loss is formulated as:

L = Lce +

M
∑

i=1

wi · Leri . (5)

4. Experiments

In this section, our implementation details are provided,

including network parameters, training settings, datasets,

etc. By comparing the experimental results with other state-

of-the-art methods, we analyze performance quantitatively.

Further, we present ablation studies and visualizations to il-

lustrate the properties of our approach.

4.1. Implementation

Network details. The FR branch of our DRNet is a series

of error-minimizing modules extracting features at differ-

ent scales of embedding space: i.e. 64, 128, and 256, as in

Figure 2. Empirically, we adopt k = 20 and dmax = 5
as in [39, 6]. The FR output FFR is an MLP projected

concatenation of the modules’ outputs. For the MR branch,

we apply the widely-used farthest point sampling (FPS) and

feature propagation (FP) [29, 19, 18] for downsampling and

upsampling, respectively. Further, single-layer MLPs are

used for channel alignment together with the mentioned op-

erations. The MR branch starts from the first output of FR

in N size; after that, two lower resolutions: N/4 and N/16,

are investigated through the regular knn and local graph en-

coding as Equation 2. Different from other approaches,

more propagated features and dense skip connections are

employed to enhance the relations between different point

resolutions and feature spaces. Compared with the FR, the

MR branch2 is light-weight due to the fewer scales of em-

bedding space, the limited number of points, and the opera-

tions with fewer learnable weights.

The output FDR is obtained by following Equation 4.

For the classification task, we apply a max-pooling func-

tion and Fully Connected (FC) layers to regress confidence

scores for all possible categories. In terms of the segmen-

tation task, we attach the max-pooled feature to each point

feature of FDR and further predict each point’s semantic

label with FC layers being applied.

For the loss function, empirically, a larger weight is set

for the first error-minimizing module, i.e. w1, since its out-

put affects both branches and constrains the network learn-

ing initially. In contrast, the weights for other modules can

be smaller since they are less critical. Although the addi-

tional loss is involved, cross-entropy loss still contributes

the most to the training2. We implement the project with Py-

Torch and Python; all experiments are conducted on Linux

and GeForce RTX 2080Ti GPUs.3

Training strategy. For classification, Stochastic Gradient

Descent (SGD) [22] with a momentum of 0.9 is adopted

as the optimizer. The learning rate decreases from 0.1 to

0.001 by cosine annealing [22] during the 300 epochs. For

2More information about the implementation is provided in the sup-

plementary material.
3The code and models are available at https://github.com/

ShiQiu0419/DRNet
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overall air bag cap car chair ear guitar knife lamp laptop moto mug pistol rocket skate table

mIoU plane phone bike board

# shapes 16881 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

PointNet [28] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

A-SCN [42] 84.6 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 82.9 96.0 69.2 93.8 82.5 62.9 74.4 80.8

SO-Net [14] 84.6 81.9 83.5 84.8 78.1 90.8 72.2 90.1 83.6 82.3 95.2 69.3 94.2 80.0 51.6 72.1 82.6

PointNet++ [29] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

PCNN [1] 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8

DGCNN [39] 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

P2Sequence [17] 85.2 82.6 81.8 87.5 77.3 90.8 77.1 91.1 86.9 83.9 95.7 70.8 94.6 79.3 58.1 75.2 82.8

SpiderCNN [43] 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8

PointASNL [44] 86.1 84.1 84.7 87.9 79.7 92.2 73.7 91.0 87.2 84.2 95.8 74.4 95.2 81.0 63.0 76.3 83.2

RS-CNN [19] 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6

Ours 86.4 84.3 85.0 88.3 79.5 91.2 79.3 91.8 89.0 85.2 95.7 72.2 94.2 82.0 60.6 76.8 84.2

Table 1. Part segmentation results (mIoU(%)) on the ShapeNet Part dataset.

Figure 3. Examples from the experimental datasets. The upper row

shows the point clouds labeled as Chair from the three datasets,

while the lower row presents Table. Particularly, ScanObjectNN

dataset contains background points, which are in a lighter color.

segmentation, we exploit Adam [13] optimization for 200

epochs of training. The learning rate begins at 0.001 and

gradually decays with a rate of 0.5 after every 20 epochs.

The batch size for both tasks is 32. Besides, training data is

augmented with random scaling and translation; the overall

loss follows Equation 5. Part segmentation is evaluated with

a ten-votes strategy used by recent approaches [28, 29, 19].

Datasets. We test our approach on two main tasks: point

cloud segmentation and classification. The ShapeNet Part

dataset [45] is used to predict the semantic class (part la-

bel) for each point of the object. In addition, the synthetic

ModelNet40 [41] dataset and the real-world ScanObjectNN

[36] dataset are used to identify the category of the object.

Figure 3 presents some examples from the datasets.

• ShapeNet Part. The dataset has 16,881 object point

clouds in 16 categories, where each point is labeled as

one of 50 parts. As the primary dataset for our exper-

iments, we follow the official data split [5]. We in-

put the 3D coordinates of 2048 points for each point

cloud and feed the object label before FC layers dur-

ing training. In terms of the metric for evaluation, we

adopt Intersection-over-Union (i.e. IoU). The IoU of

method input type #points accuracy

PointNet [28] coords 1k 89.2

A-SCN [42] coords 1k 90.0

PointNet++ [29] coords 1k 90.7

SO-Net [14] coords 2k 90.9

PointCNN [16] coords 1k 92.2

PCNN [1] coords 1k 92.3

SpiderCNN [43] coords+norms 1k 92.4

PointConv [40] coords+norms 1k 92.4

P2Sequence [17] coords 1k 92.6

DensePoint [18] coords 1k 92.8

RS-CNN [19] coords 1k 92.9

DGCNN [39] coords 1k 92.9

KP-Conv [35] coords 7k 92.9

PointASNL [44] coords 1k 92.9

Ours coords 1k 93.1

Table 2. Overall classification accuracy (%) on ModelNet40

dataset. (coords: 3D coordinates, norms: surface normal vec-

tors of the points, k:×2
10)

the shape is calculated by the mean value of IoUs of

all parts in that shape, and mIoU (i.e. mean IoU) is the

average of IoUs for all testing shapes.

• ModelNet40. It is a popular dataset because of reg-

ular and clean shapes. There are 12,311 meshes in

40 classes, with 9,843 for training and 2,468 for test-

ing. Corresponding point clouds are generated by uni-

formly sampling from the surfaces, translating to the

origin, and scaling within a unit sphere [28]. In our

case, only the 3D coordinates of 1024 points for each

point cloud have been used.

• ScanObjectNN. This real-world object dataset is re-

cently published. Although it has over 15,000 ob-

jects in only 15 categories, it is practically more chal-

lenging due to the background complexity, object par-

tiality, and different deformation variants. We con-

duct the experiment using its most challenging variant,

PB T50 RS, with background points.
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Figure 4. Examples of the part segmentation results. (DGCNN: [39], RS-CNN: [19])

overall acc. avg class acc. bag bin box cabinet chair desk display door shelf table bed pillow sink sofa toilet

# shapes - - 298 794 406 1344 1585 592 678 892 1084 922 564 405 469 1058 325

3DmFV [2] 63.0 58.1 39.8 62.8 15.0 65.1 84.4 36.0 62.3 85.2 60.6 66.7 51.8 61.9 46.7 72.4 61.2

PointNet [28] 68.2 63.4 36.1 69.8 10.5 62.6 89.0 50.0 73.0 93.8 72.6 67.8 61.8 67.6 64.2 76.7 55.3

SpiderCNN [43] 73.7 69.8 43.4 75.9 12.8 74.2 89.0 65.3 74.5 91.4 78.0 65.9 69.1 80.0 65.8 90.5 70.6

PointNet++ [29] 77.9 75.4 49.4 84.4 31.6 77.4 91.3 74.0 79.4 85.2 72.6 72.6 75.5 81.0 80.8 90.5 85.9

DGCNN [39] 78.1 73.6 49.4 82.4 33.1 83.9 91.8 63.3 77.0 89.0 79.3 77.4 64.5 77.1 75.0 91.4 69.4

PointCNN [16] 78.5 75.1 57.8 82.9 33.1 83.6 92.6 65.3 78.4 84.8 84.2 67.4 80.0 80.0 72.5 91.9 71.8

Ours 80.3 78.0 66.3 81.9 49.6 76.3 91.0 65.3 92.2 91.4 83.8 71.5 79.1 75.2 75.8 91.9 78.8

Table 3. Classification results (%) on ScanObjectNN dataset.

4.2. Results

Segmentation. Table 1 shows the results of related works

reported in overall mIoU, which is the most critical evalua-

tion metric on the ShapeNet Part dataset. On the whole, our

network achieves 86.4% and outperforms other state-of-the-

art algorithms based on similar experimental settings. For

evaluations inside each class, we surpass others in five out

of 16 categories. Especially in categories with a large num-

ber of samples, e.g., airplane, chair, or table, we perform

even better (two out of these three classes) than others. In

Figure 4, we provide some samples of our part segmentation

results comparing with DGCNN [39] and RS-CNN [19].

Classification. Table 2 presents the overall accuracy of the

classification on the synthetic object dataset: ModelNet40.

Specifically, we achieve 93.1% for overall classification ac-

curacy and exceed other state-of-the-art results with similar

input. Essentially, our method performs better than others

using more input points or features.

Table 3 presents our results on the ScanObjectNN

dataset, which contains practical scans of real-world objects

as Figure 3 indicates. To be concrete, both overall accuracy

80.3% and average class accuracy 78.0% of our approach

are significantly higher than all results on its official leader-

board [10]. Typically, we lead in four (bag, box, display,

and sofa) out of the 15 categories. The inference time of

our basic classification model running on a single GeForce

RTX 2080Ti GPU is about 19.2ms.

4.3. Ablation Studies

Visualization of learned dilation factors. Figure 5 illus-

trates the effects of our ADPG method, where the color of

the points corresponds to the learned dilation factor. Intu-

itively, the advantages of ADPG can be observed from two

aspects: Firstly, for each point cloud, ADPG tends to assign

larger dilation factors to points that have relatively sparse

local point distributions (e.g., on corners/boundaries/edges)

because they need larger neighborhoods for more compre-

hensive local feature learning. Secondly, within the cas-

caded structure, ADPG regulates the points’ dilation factors

in deep layers and turns out to have smaller dilation fac-

tors in dense local distribution (e.g., on flat surfaces/central

areas), most probably to constrain the neighborhoods and
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Figure 5. Learned dilation factors by the ADPG method. For each point cloud, ADPG assigns larger dilation factors for the points in sparse

areas. As the network goes deeper, ADPG regulates the dilation factors of the points. (First-row: the learned dilation factors in a shallow

layer of our network. Second-row: in a deep layer.)

model Network ADPG E-M module overall mIoU

0 FR - - 85.2

1 FR - X 85.4

2 FR X X 85.6

3 MR - - 84.9

4 MR X X 85.3

5 DR X X 86.0

Table 4. Ablation study about the effects of different network com-

ponents on ShapeNet Part (%). (FR: Full-Resolution branch

only, MR: Multi-Resolution branch only, DR: Dense-Resolution

Network, ADPG: Adaptive Dilated Point Grouping method, E-M

module: Error-minimizing module for local points.)

avoid outliers. Unlike regular knn/Ball Query/dilated-knn,

which defines a limited and fixed neighborhood for all

points in all layers, our ADPG works adaptively and rea-

sonably as expected.

Effects of components. We conduct an ablation study

about the effects of the network components: the architec-

ture, grouping method, and the error-minimizing module.

We run tests on the ShapeNet Part dataset under the same

settings, and Table 4 presents the results. Comparing model

1&2 to model 0 and model 4 to model 3, we observe that

the error-minimizing module with ADPG applied can sig-

nificantly improve the part segmentation’s network perfor-

mance. Although the multi-resolution branch is not able to

learn the features as comprehensively as a full-resolution

branch does, we can take advantage of both by combining

them as a dense-resolution network (model 5).

Merging the feature maps. Both FR and MR have prop-

erties as mentioned, so we need to find an effective way to

unify the benefits. We test simple ways of merging the fea-

tures of FFR and FMR, i.e. concatenating them in channel-

wise, adding and multiplying them in element-wise. Com-

paring the results of model 2&3&4 to model 0 in Table 5,

model Network Fmer overall mIoU

0 FR FFR 85.6

1 MR FMR 85.3

2 DR Concat(FFR,FMR) 85.7

3 DR FFR + FMR 85.6

4 DR FFR ⊙FMR 85.6

5 DR FDR 86.0

Table 5. Ablation study about the different forms of merged fea-

ture Fmer on ShapeNet Part (%). (FR: Full-Resolution branch

only, MR: Multi-Resolution branch only, DR: Dense-Resolution

Network, FFR: the output of FR, FMR: the output of MR, ⊙:

element-wise multiplication, FDR: merging as in Equation 4.)

we observe that the simple ways of merging may not im-

prove performance. In contrast, channel-wise enhancing of

the FFR using FMR (model 5) can improve a bit because of

the reasons explained in Section 3.3. With ten-votes testing,

the overall mIoU can boost to 86.4%.

5. Conclusion

In this work, we propose a Dense-Resolution Network
for point cloud analysis, which leverages information from
different resolutions of the point clouds. Specifically, the
Adaptive Dilated Point Grouping method is introduced to
realize a flexible point grouping based on the density dis-
tribution. Moreover, an error-minimizing module and cor-
responding loss are presented to capture local informa-
tion and guide the training network. We conduct exper-
iments and provide ablation studies on both point cloud
segmentation and classification benchmarks. The experi-
mental results outperform competing state-of-the-art meth-
ods on ShapeNet Part, ModelNet40, and ScanObjectNN
datasets. The quantitative reports and qualitative visualiza-
tions demonstrate the advantages of our approach.
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