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Abstract

Super-resolution (SR) has traditionally been based on

pairs of high-resolution images (HR) and their low-

resolution (LR) counterparts obtained artificially with bicu-

bic downsampling. However, in real-world SR, there is a

large variety of realistic image degradations and analyti-

cally modeling these realistic degradations can prove quite

difficult. In this work, we propose to handle real-world

SR by splitting this ill-posed problem into two compara-

tively more well-posed steps. First, we train a network to

transform real LR images to the space of bicubically down-

sampled images in a supervised manner, by using both real

LR/HR pairs and synthetic pairs. Second, we take a generic

SR network trained on bicubically downsampled images to

super-resolve the transformed LR image. The first step of

the pipeline addresses the problem by registering the large

variety of degraded images to a common, well understood

space of images. The second step then leverages the already

impressive performance of SR on bicubically downsam-

pled images, sidestepping the issues of end-to-end training

on datasets with many different image degradations. We

demonstrate the effectiveness of our proposed method by

comparing it to recent methods in real-world SR and show

that our proposed approach outperforms the state-of-the-art

works in terms of both qualitative and quantitative results,

as well as results of an extensive user study conducted on

several real image datasets.

1. Introduction

Super resolution is the generally, ill-posed problem of

reconstructing high-resolution (HR) images from their low-

resolution (LR) counterparts. Generally SR methods re-

strict themselves to super-resolving LR images downsam-

pled by a simple and uniform degradations (i.e, bicubic

∗Equal contributions.
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Figure 1. An example SR produced by our system on a real-world

LR image, for which no higher resolution/ground-truth is avail-

able. Our method is compared against the RealSR [7] method, a

state-of-the-art of real SR method trained in a supervised way on

real low-resolution and high-resolution pairs. The low-resolution

image is taken from HR images in the DIV2K validation set [29].

downsampling) [30, 33, 1, 10, 28]. Although the perfor-

mance of these methods on artificially downsampled im-

ages are quite impressive [32, 9], applying these methods

on real-world SR images, with unknown degradations from

cameras, cell-phones, etc. often leads to poor results [7, 22].

The real-world SR problem is then to super-resolve LR im-

ages downsampled by unknown, realistic image degrada-

tions [23].

Recent works try to resemble realistic degradations by

acquisition instead of artificial downsampling, such as hard-

ware binning, where LR corresponds to a coarser grid of

photoreceptors [17], or camera focal length changes, which

changes the apparent size of an object in frame [7]. These

approaches could propose very limited number of physi-

cally real low and high-resolution pairs and their degrada-

tion models are limited to very few acquisition hardwares.
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Original image Estimated kernels from HR to real LR Estimated kernels from HR to bicubic LR 

Figure 2. Downsampling kernels estimated patchwise on a RealSR [7] LR image and the same image bicubically downsampled from

the HR image. Estimations were done using least squares optimization with regularization on the kernel using the LR and HR images,

assuming the standard degradation model of kernel convolution followed by subsampling. We can see that the RealSR LR images are

difficult to estimate with the standard image degradation model.

As shown in [11], correct modeling of the image degra-

dation is crucial for accurate super-resolution. A general,

analytical model for image degradation which is commonly

assumed is y = (x ∗ k) ↓s +N , where y is the LR image,

x is the HR image, ∗ denotes convolution, k is the blur ker-

nel, N is noise, and ↓s denotes downsampling by a factor

s. However, as can be seen in Figure 2, these convolutional

models are only approximations to the true, real degrada-

tions.

Recently, there has been a push to account for more

realistic image degradations through physical generation of

datasets with real LR to HR pairs [7], synthetically gener-

ating real LR to HR pairs through unsupervised learning

or blind kernel estimation [22, 38], and simulating more

complex image degradation models such as in equation 1,

with and without restrictions on k and ↓s [13, 36]. The

pipelines of these approaches generally have the ultimate

goal of training an end-to-end network to take as input

a “real” image and output a SR image. Although these

approaches result in better reconstruction quality, the real

challenge of the real-world LR to HR problem is not

only limited to a lack of real LR and HR pairs; the large

variety of degraded images and the difficulty in accurately

modeling the degradations makes realistic SR even more

ill-posed than SR based on bicubically down-sampled

images [35].

Main idea We propose to address real world SR with

a two-step approach, which we call Real Bicubic Super-

Resolution (RBSR). RBSR generally decomposes the dif-

ficult problem of real world SR into two, sequential sub-

problems: 1- Transformation of the wide variety of real LR

images to a single, tractable LR space. 2- Use of generic,

bicubic SR networks with the transformed LR image as in-

put.

We choose to transform real LR images to the common

space of bicubically downsampled images because of two

main advantages. First, bicubic images are tractably gener-

ated with the standard convolutional model of image degra-

dation, therefore the inverse transform is less ill-posed com-

paring to the cases of arbitrary/unknown degradations. Sec-

ond, we can leverage the already impressive performance of

SR networks trained on bicubically downsampled images,

thanks to the availability of huge SR image datasets using

bicubic kernels (see Figure 1).

In summary, our contributions are as follows:

1. We use a GAN to train a CNN-based image-to-image

translation network, which we call a “bicubic look-

alike generator”, to map the distribution of real LR

images to the easily modeled and well understood dis-

tribution of bicubically downsampled LR images. We

use a SR network with the transformed LR image by

our proposed bicubic look-alike generator as input to

solve the real-world super-resolution problem.

2. To this end, and for the consistency of the bicubic look-

alike generator, we propose a novel copying mecha-

nism, where the network is fed with identical, bicubi-

cally downsampled images as both input and ground-

truth during training; this way, the network loses its

tendency to merely sharpen the input images, as real-

istic low-resolution images usually seem to be much

smoother.

3. We train our bicubic look-alike generator by using

an extended version of perceptual loss, where its fea-

ture extractor is specifically trained for SR task and

on bicubically downsampled images. The proposed

“bicubic perceptual loss” is shown to have less arti-

facts.

4. We demonstrate the effectiveness of the proposed two-

step approach by comparing it to an end-to-end setup,

trained in the same setting. Furthermore, we show that

our proposed approach outperforms the state-of-the-art

works in terms of both qualitative and quantitative re-
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sults, as well as results of an extensive user study con-

ducted on several real image datasets.

In essence, training models on paired datasets of real LR

and HR pairs requires expensive collection of big datasets;

in addition, training a single model on multiple degradations

for SR is ill-posed/vulnerable to instability [35]. Training

on synthetic datasets coming from analytical degradation

models have the benefit of much larger datasets and an eas-

ier task for the network, at the cost of being less realistic.

However, this approach still has the ill-posedness problem

of training on multiple degradations. In RBSR, we try to si-

multaneously keep the added information from realistic LR

images and the impressive performance of SR networks on

single, well-defined degradations.

2. Related Work

The vast majority of prior work for Single image

super-resolution (SISR) focuses on super-resolving low-

resolution images which are artificially generated by bicu-

bic or Gaussian downsampling as the degradation model.

We consider that recent research on addressing real-world

conditions can be broadly categorized into two groups. The

first group proposes to physically generate new, real LR and

HR pairs and/or learn from real LR images in supervised

and unsupervised ways (Section 2.1). The second group

extends the standard bicubic downsampling model, usually

by more complex blur kernels, and generates new, synthetic

LR and HR pairs (Section 2.2).

2.1. RealWorld SR through real data

Some recent works [8, 7] propose to capture real LR/HR

image pairs to train SR models under realistic settings.

However, the amount of such data is limited. The authors

in [7, 8] proposed to generate real, low-resolution images

by taking two pictures of the same scene, with camera pa-

rameters all kept the same, except for a changing camera

focal length. Hence, the image degradation corresponds

to ”zooming” out of a scene. They generate a dataset of

real LR and HR pairs according to this procedure and show

that bicubically trained SR models perform poorly on super-

resolving their dataset. Since this model’s image degrada-

tion can be modeled as convolution with a spatially vary-

ing kernel, they propose to use a kernel prediction network

to super-resolve images. In [22], the authors perform un-

supervised learning to train a generative adversarial net-

work (GAN) to map bicubically downsampled images to

the space of real LR images with two unpaired datasets of

bicubically downsampled images and real LR images. They

then train a second, supervised network to super-resolve

real LR images, using the transformed bicubically down-

sampled images as the training data. In a similar work, [6]

trains a GAN on face datasets, for the specific face SR task,

but their approach relies on unrealistic blur-kernels.

In [2], the authors model image degradation as con-

volution over the whole image with a single kernel, fol-

lowed by downsampling. Given a LR image, they propose

a method to estimate the kernel used to downsample the

image solely from subpatches of the image by leveraging

the self-similarity present in natural images. This is done

by training a GAN, where the generator produces the ker-

nel and the discriminator is trained to distinguish between

crops of the original image and crops which are downsam-

pled from original image using this estimated kernel. This

method relies on the accuracy of the standard convolutional

model of downsampling, which is shown to not hold for Re-

alSR images in Figure 2. Further, the estimation of the ker-

nel and subsequent SR are quite time consuming in compar-

ison to supervised learning based methods; the calculation

of the kernel alone for a 1000× 1000 image can take more

than three minutes on a GTX 1080 TI. In addition, their

method constrains the size of the input images to be ”large

enough” since they need to downsample the input images

during training. In [34], the authors propose an unsuper-

vised cycle-in-cycle GAN, where they create one module

for converting real LR images to denoised, deblurred LR

images and one module for SR using these Clean LR im-

ages. They then tune these networks simultaneously in an

end-to-end fashion, which causes this intermediate repre-

sentation of the LR image to deviate from their initial ob-

jective.

2.2. Real World SR through extended models

In [36], the authors extend the bicubic degradation model

by modeling image degradation as a convolution with an

arbitrary blur kernel, followed by bicubic downsampling.

They embed the super-resolution in an alternating iterative

scheme where analytical deblurring is alternated with ap-

plying a SR network trained on bicubically downsampled

images. Although this method generalizes to arbitrary ker-

nels, one has to provide the kernel and the number of it-

erations as an input to the pipeline. In [13], the authors

extend the bicubic degradation model by modeling image

degradation as a convolution with a Gaussian blur kernel,

followed by bicubic downsampling. They use an iterative

scheme using only neural networks, where at each itera-

tion the pipeline produces both the SR image and an esti-

mate of the corresponding downsampling kernel. In [38],

the authors also model image degradations as convolution

with a blur kernel followed by bicubic downsampling. They

estimate the blur kernel using a pre-existing blind deblur-

ring method on a set of ”real” images which are bicubically

upsampled; they use the same dataset of low quality cell-

phone pictures used in [22]. They then train a GAN to gen-

erate new, realistic blur kernels using the blindly estimated

blur kernels. Finally, they generate a large synthetic dataset
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Figure 3. We propose a two-step pipeline for real world SR. First, we transform real LR images to bicubically downsampled looking images

through our bicubic look-alike generator. We then pass the transformed image as input to a generic SR decoder trained on bicubically

downsampled images.

using these kernels and train an end-to-end network on this

dataset to perform SR. These three methods all rely on an

analytical model for image degradation as well as being re-

liant on restrictive kernels or blind kernel estimation.

3. Methodology

3.1. Overall pipeline

RBSR consists of two steps; first, we use a Convolutional

Neural Network (CNN)-based network, namely the bicubic

look-alike image generator, whose objective is to take as

input the real LR image and transform it into an image of

the same size and content, but which looks as if it had been

downsampled bicubically rather than with a realistic degra-

dation. We call this output the bicubic look-alike image.

Second, we use any generic SR network trained on bicu-

bically downsampled data to take as input the transformed

LR image and output the SR image. Figure 3 shows an

overview of our proposed pipeline. We restrict the upsam-

pling factor to four. In the following subsections, we de-

scribe each component of our pipeline in more details.

3.2. Bicubic lookalike image generator

The bicubic look-alike image generator is a CNN,

trained in a supervised manner. The main objective of this

network is to transform real LR images to bicubic look-alike

images. In this section, we present its architecture in detail.

Then, we introduce a novel perceptual loss used to train it.

Finally, we also introduce a novel copying mechanism used

during training to make this transformation consistent.

3.2.1 Architecture

The architecture of the bicubic look-alike generator is

shown in Figure 4. The generator is a feed-forward

CNN, consisting of convolutional layers and several resid-

ual blocks, which has shown great capability in image-to-

image translation tasks [21]. The real low-resolution im-

age IReal−LR is passed through the first convolutional layer

with a ReLU activation function with a 64 channel out-

put. This output is subsequently passed through 8 residual

blocks. Each block has two convolutional layers with 3× 3
filters and 64 channel feature maps. Each one is followed

by a ReLU activation. By using a long skip connection, the

output of the final residual block is concatenated with the

features of the first convolutional layer. Finally, the result is

filtered by a last convolution layer to get the the 3-channel

bicubic look-alike image (IBicubic−LR).

3.2.2 Loss functions

In the bicubic look-alike generator, we use a loss func-

tion (Ltotal) composed of three terms: 1- Pixel-wise loss

(Lpix.wise), 2- adversarial loss, and 3- our novel bicubic

perceptual loss function (Lbic.perc.). The overall loss func-

tion is given by:

Ltotal = αLpix.wise + βLbic.perc. + γLadv , (1)

where α, β and γ are the corresponding weights of each loss

term used to train our network. In the following, we present

each term in detail:

• Pixel-wise loss. We use the L1 norm of the difference

between predicted and ground-truth images as this has been

shown to improve results compared to the L2 loss [37].

• Adversarial loss. This loss measures how well the

image generator can fool a separate discriminator network,

which originally was proposed to reconstruct more realistic

looking images for different image generation tasks [12, 18,

4, 5]. However, in this work, as we are feeding the discrim-

inator with bicubically downsampled images as the “real

data”, it results in images which are indistinguishable from

bicubically downsampled images. The discriminator net-

work used to calculate the adversarial loss is similar to the

one presented in [18]; it consists of a series of convolutional

layers with the number of channels of the feature maps of

each successive layer increasing by a factor of two from that

of the previous layer, up to 512 feature maps. The result is

1593



R
e

lu
 

C
o

n
v
 

R
e

lu
 

C
o

n
v
 

+

C
o

n
v
 

… 

k9n64s1 

k3n64s1 k3n64s1 

k3n64s1 

+ 

8 residual blocks 

C
o

n
v
 

C
o

n
v
 

C
o

n
v
 

k3n3s1 

k32n3s1 

Real 

LR 

Bicubic 

look-alike 

LR 

Figure 4. Schematic diagram of the bicubic-alike decoder. We train the decoder using our new bicubic perceptual loss, alongside standard

L1 and adversarial losses. In this schema, k, n and s correspond to kernel size, number of feature maps and stride size, respectively.

then passed through two dense layers, and finally, by a sig-

moid activation function. The discriminator classifies the

images as either “bicubically downsampled image” (real)

or “generated image”(fake).

• Bicubic perceptual loss. Perceptual loss functions

[15, 19] tackle the problem of blurred textures caused by

optimization of using per-pixel loss functions and generally

result in more photo-realistic reconstructions. In this work,

we take inspiration from this idea of perceptual similarity

by introducing a novel perceptual loss.

However, instead of using a pre-trained classification

network, e.g. VGG [27] for the high-level feature repre-

sentation, we use a pre-trained SR network trained on bicu-

bically down-sampled LR/HR pairs. In particular, we use

the output of the last residual block of our SR network, pre-

sented in Section 3.3, to map both HR and SR images into

a feature space and calculate their distances. The bicubic

perceptual loss term is formulated as:

Lbic. perc. =
1

Wi,jHi,j

Wi,j
∑

x=1

Hi,j
∑

y=1

(

φSR
k

(

IBicubic−LR
)

−φSR
k

(

IT−LR
)

)2

,

(2)

where Wi,j and Hi,j denote the dimensions of the respec-

tive feature maps. φSR
k indicates the output feature map of

the k-th residual block from the SR decoder and IT−LR de-

notes the transformed LR image. We conjecture that using

a SR feature extractor, which is specifically trained for SR

task and on bicubically down-sampled images, will better

reflect features corresponding to the characteristics of bicu-

bically downsampled images than using a feature extractor

trained for image classification.

In Figure 5, we compare the effect of using the standard

perceptual loss which uses a pre-trained classification net-

work versus our bicubic perceptual loss. Note that the stan-

dard perceptual loss introduces artifacts in the transformed

LR image which are avoided by the bicubic perceptual loss.

Further, we see that using the bicubic perceptual loss pro-

duces sharper edges as compared to using just the L1 loss.

3.2.3 Copying mechanism

Bicubically downsampled images are in general seem to be

much sharper than realistic low-resolution images, there-

fore, training network by real LR images gives it this ten-

dency to merely sharpen the input images instead of learn-

ing bicubic characteristics. To address this issue, we want

the network to be consistent and apply minimal sharpening

to already sharp images. To this end, we utilize a novel

copying mechanism, where the network is periodically fed

with identical, bicubically downsampled images as both in-

put and output during training. This is done in order to pre-

vent the network from just learning to sharpen images, as

this can cause oversharpening or amplification of artifacts.

In Figure 6 we compare the outputs of the network

trained with and without the copying mechanism. We can

see clearly that training without the copying mechanism re-

sults in severe over-sharpening of the output image.

3.3. SR generator

The second step of our pipeline is to feed the output of

our bicubic-like image generator as the input to any SR net-

work trained on bicubically downsampled images. For sim-

(a) (b) (c) 

(d) (e) 

(a) (b) (c) 

(d) (e) 

Figure 5. The effectiveness of using bicubic perceptual loss: (a)

HR image, (b) Only L1 loss, (c) perceptual loss, (d) bicubic per-

ceptual loss, and (e) bicubic perceptual loss + adversarial loss. Red

boxes show how using bicubic perceptual loss (c) decreases arti-

facts comparing to using conventional perceptual losses (d), while

still producing sharper edges comparing to only using L1 loss.
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Figure 6. Example images generated without (a) and with (b) the

copying mechanism during training. We can clearly see that with-

out the copying mechanism, resulting images suffer from over-

sharpening and artifact amplification.

plicity, we use a network based on EDSR [20]. The EDSR

architecture is composed of a series of residual blocks book-

ended by convolutional layers. Crucially, batch normaliza-

tion layers are removed from these blocks for computational

efficiency and artifact reduction. For simplicity, as well as

decreasing training/inference time, we only use 16 resid-

ual blocks, as compared to the 32 residual blocks used in

EDSR. This generator is trained on DIV2K training images

(track 1: bicubically downsampled images and HR pairs)

and by using the L1 loss function. We refer the reader to

the supplementary material for more details about the net-

work architecture.

3.4. Training parameters

Bicubic look-alike generator For the training data, as in-

put, we use 400 RealSR [7] and 400 DIV2K Track 2 [29]

LR images. The RealSR dataset contains real LR-HR pairs,

captured by adjusting the focal length of a camera and tak-

ing pictures from the same scene. Track 2 images are down-

sampled using unknown kernels. As the desired output is

the bicubic look-alike image, we use the bicubically down-

sampled RealSR and the bicubically downsampled DIV2K

(track 1) images as the ground truth for the training in-

puts. In addition, as described in Section 3.2.3, we add

400 bicubically downsampled images from DIV2K, iden-

tical for both input and ground-truth, to make the generator

consistent and avoid oversharpening or artifact amplifica-

tion. We use the same 400 bicubically downsampled im-

ages from DIV2K as the real input of the discriminator. At

each epoch, we randomly cropped the training images into

128 × 128 patches. The mini-batch size in all the experi-

ments was set to 16. The training was done in two steps;

first, the SR decoder was pre-trained for 1000 epochs with

only the L1 pixel-wise loss function. Then the proposed

bicubic perceptual loss function, as well as the adversarial

loss, were added and the training continued for 3000 more

epochs. The weights of the L1 loss, bicubic perceptual loss

and adversarial loss function (α, β and γ) were set to 1.0,

3.0, and 1.0 respectively. The Adam optimizer [16] was

used during both steps. The learning rate was set to 1×10−4

and then decayed by a factor of 10 every 800 epochs. We

also alternately optimized the discriminator with similar pa-

rameters to those proposed by [18].

SR generator The SR decoder is also trained in a single

step for 4000 epochs and using the L1 loss function. For the

training data, we only use track 1 images of DIV2K, which

consists of 800 pairs of bicubically downsampled LR and

HR images. Similar to the training of the bicubic look-alike

generator, the Adam optimizer was used for the optimiza-

tion process. The learning rate was set to 1×10−3 and then

decayed by a factor of 10 every 1000 epochs.

End-to-end baseline To investigate the effectiveness of

RBSR, which super-resolves a given input in two steps, we

also fine-tune the EDSR architecture with the same datasets

used to train the bicubic look-alike generator. This dataset

consists of 400 RealSR and 400 DIV2K Track 2 LR and

HR pairs. We further noticed that the inclusion of 400 bicu-

bically downsampled LR and HR pairs in this dataset adds

more robustness to the performance. In order to keep the

same number of parameters as in the RBSR pipeline, we

increase the number of residual blocks of this end-to-end

generator to 24. The training parameters used for this base-

line is similar to the ones used in [20].

4. Experimental results

In this section, we compare RBSR to several SOTA al-

gorithms (CVPR 2019, ICCV 2019) in real-world SR both

qualitatively and quantitatively. We show standard distor-

tion metrics for the datasets with ground truth, and we

show a comprehensive user study conducted over six im-

age datasets with varying image quality and degradations.

In all cases, we use an upsampling factor of four.

We emphasize that the distortion metrics are not directly

correlated to the perceptual quality as judged by human

raters [3, 18, 26, 24, 31, 25]; the super-resolved images

could have higher errors in terms of the PSNR and SSIM

metrics, but still generate more appealing images. More-

over, the RealSR images represent only a limited group of

realistic images from Nikon and Canon cameras. Therefore,

we validate the effectiveness of our approach by qualitative

comparisons and by an extensive user study in the following

sections.

4.1. Test images

4.1.1 Lack of ground-truth in real-world SR

One of the main challenges of real-world SR is the lack of

real low and high resolutions pairs, for both training and

testing. As mentioned previously, most of the known bench-

marks in super-resolution had no choice but using a known

kernel to create a counterpart with lower resolution. To

the best of our knowledge RealSR [7] is the only dataset

with real images of the same scenes with different resolu-

tions: their LR and HR images are generated by taking two
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Figure 7. Qualitative results of ×4 SR on a subset of the DIV2k [29] (Rows 1-2), RealSR HR [7] (Rows 3-4), TV Streams (Row 5), and

DPED cell-phone images [14] (Row 6). Results from left to right: bicubic, EDSR [20] fine-tuned with real LR and HR pairs, DPSR [36],

RealSR [7], and RBSR (ours). Please note that no ground-truth is available for these images. More results can be seen in the supplementary

material. Zoom in for the best view.

camera pictures of the same scene, but changing the focal

length of the camera between the two pictures. Hence, both

are real images, but with the RealSR LR being degraded

with the degradation from changing the focal length of the

camera (zooming out). DIV2K Unknown kernel LR im-

ages [29] is another attempt to create pairs of real low and

high-resolutions images. They generate synthetically real

low and high resolution images by using unknown/random

degradation operators.

4.1.2 Images without ground-truth

In addition to RealSR LR and DIV2K Unknown kernel

datasets, we also evaluate our method on four datasets of

real images, without having any ground-truth as it is the

main focus of real-world SR task: 1- RealSR [7] HR test

images, 2- DIV2K HR [29] validation images (real), 3-

DPED [14] Mobile Phone images, 4- TV Stream images

(unknown, depending on the original content of the TV).

The DPED Mobile Phone dataset is a dataset of real im-

ages where cell-phones were used to take pictures of same

scenes. The TV stream images are decoded images from

an actual TV channel stream at HD (1920 × 1080) reso-

lution; our acquisition algorithm captured one image every

ten minutes over a period of two days, to ensure that our
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Figure 8. Results of the user study comprising forty one people, comparing EDSR [20], fine-tuned with real LR and HR pairs, DPSR [36],

RealSR [7], and RBSR (ours), on six different datasets: DIV2K HR [29], RealSR [7] HR, RealSR LR, TV Stream images, DPED [14]

Mobile Phone images, and DIV2K Unknown Kernel LR.

these test images cover different types of content. We note

that no information is available about their type of degra-

dations, as the original resolutions of the contents before

streaming are unknown. Further, we note that we only have

the ground-truth high-resolution images for the DIV2K Un-

known Kernels images and the RealSR LR images.

4.2. Quantitative results

In this work, calculating distortion metrics such as PSNR

and SSIM is not possible for test images that truly reflect the

real-world problem (original images from smartphones, TV

streams, etc.), as in real cases the downsampling operator is

not known and therefore no ground-truth is available. Re-

alSR [7] is the only dataset with physically produced high

and low-resolution image pairs. Readers can refer to our

supplementary material A to find PSNR, SSIM and per-

ception index (PI) metric evaluated by using this dataset.

4.3. Qualitative comparison

For the qualitative comparison, we compare the follow-

ing real world SR algorithms: 1- RBSR (Ours), 2- EDSR-

real: the EDSR [20] network trained end-to-end on the

same data/settings as RBSR, 3- The pretrained RealSR net-

work [7], and 4- The pre-trained DPSR network with de-

fault settings for real-world SR [36]. We compare with the

end-to-end EDSR network in order to show the efficacy of

splitting the problem into two steps. We compare to RealSR

and DPSR as they are two of the most recent state-of-the-art

algorithms. We use their pre-trained models along with the

default settings for real images they provide1,2. In Figure 7,

we show qualitative results on a random subset of the image

datasets described in the previous sections.

4.4. User study

We also conducted a user study comprising forty one

people in order to gauge the perceptual image quality of SR

images using the image datasets described in the previous

section. We chose five images randomly from each dataset,

with thirty total images. For each image, the users were

1https://github.com/csjcai/RealSR
2https://github.com/cszn/DPSR

shown four SR versions of the image, each corresponding to

the real-world SR algorithms being compared. Users were

asked to select which SR image felt more realistic and ap-

pealing. The images were shown to users in a randomized

manner. As the datasets reflect a wide range of image qual-

ity, etc., we show the evaluations of the algorithms for each

dataset separately. Our metric of evaluation for the algo-

rithms is the percent of votes won. We show the results of

the user study in Figure 8. We find that RBSR won the

largest percent of votes over all six image datasets individu-

ally. RBSR decisively won the largest percentage of votes,

by a margin of 10 to 55% from the second ranked algo-

rithm, on the DIV2K HR, the RealSR-HR, the RealSR-LR,

and the TV stream image datasets. The second place algo-

rithm on these datasets alternated from RealSR, DPSR, and

EDSR-Real, and RealSR respectively. We note that on the

RealSR-LR dataset, for which the RealSR algorithm is tai-

lored and trained, RBSR and EDSR-Real are the first and

second place. This shows the efficacy of both the two step

approach of RBSR and introducing bicubically downsam-

pled images into the training dataset. On the DPED dataset,

RBSR won by a small margin over DPSR.

5. Conclusion

In this work, we have shown that the challenges of super

resolution on realistic images can be partly alleviated by de-

composing the SR pipeline into two sub-problems. First, is

the conversion of real LR images to bicubic look-alike im-

ages using our novel copying mechanism and bicubic per-

ceptual loss. Second, is the super-resolution of bicubically

downsampled images. Each sub-problem addresses a dif-

ferent aspect of the real-world SR problem. Converting real

low-resolution images to bicubic look-alike images allows

us to handle and model the variety of realistic image degra-

dations. The super-resolution of bicubically downsampled

images allows for the application of state-of-the-art super-

resolution models, which have achieved impressive results

on images with well defined degradations. We show that our

approach (RBSR) outperforms the SOTA in real-world SR

both qualitatively and quantitatively using a comprehensive

user study over a variety of real image datasets.
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