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Abstract

Wearable cameras allow to collect images and videos of

humans interacting with the world. While human-object in-

teractions have been thoroughly investigated in third person

vision, the problem has been understudied in egocentric set-

tings and in industrial scenarios. To fill this gap, we intro-

duce MECCANO, the first dataset of egocentric videos to

study human-object interactions in industrial-like settings.

MECCANO has been acquired by 20 participants who were

asked to build a motorbike model, for which they had to

interact with tiny objects and tools. The dataset has been

explicitly labeled for the task of recognizing human-object

interactions from an egocentric perspective. Specifically,

each interaction has been labeled both temporally (with ac-

tion segments) and spatially (with active object bounding

boxes). With the proposed dataset, we investigate four dif-

ferent tasks including 1) action recognition, 2) active ob-

ject detection, 3) active object recognition and 4) egocen-

tric human-object interaction detection, which is a revisited

version of the standard human-object interaction detection

task. Baseline results show that the MECCANO dataset

is a challenging benchmark to study egocentric human-

object interactions in industrial-like scenarios. We publicy

release the dataset at https://iplab.dmi.unict.

it/MECCANO/.

1. Introduction

Being able to analyze human behavior from egocentric

observations has many potential applications related to the

recent development of wearable devices [1, 2, 3] which

range from improving the personal safety of workers in a

factory [10] to providing assistance to the visitors of a mu-

Figure 1. Toy model built by subjects interacting with 2 tools, 49

components and the instructions booklet. Better seen on screen.

seum [22, 49, 11]. In particular, with the rapid growth of

interest in wearable devices in industrial scenarios, recog-

nizing human-object interactions can be useful to prevent

safety hazards, implement energy saving policies and issue

notifications about actions that may be missed in a produc-

tion pipeline [55].

In recent years, progress has been made in many

research areas related to human behavior understanding,

such as action recognition [23, 54, 25, 66, 34, 39], object

detection [27, 26, 51, 50] and human-object interaction

detection [28, 31, 52, 43]. These advances have been

possible thanks to the availability of large-scale datasets

[35, 40, 13, 37, 31, 8] which have been curated and often

associated with dedicated challenges. In the egocentric

vision domain, in particular, previous investigations have

considered the contexts of kitchens [13, 37, 17], as well as

daily living activity at home and in offices [45, 57, 16, 44].

While these contexts provide interesting test-beds to

study user behavior in general, egocentric human-object
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Figure 2. Examples of Human-Object Interactions in third person

vision (first row) and first person vision (second row)1

interactions have not been previously studied in industrial

environments such as factories, building sites, mechanical

workshops, etc. This is mainly due to the fact that data

acquisition in industrial domains is difficult because of

privacy issues and the need to protect industrial secrets.

In this paper, we present MECCANO, the first dataset

of egocentric videos to study human-object interactions in

industrial-like settings. To overcome the limitations related

to data collection in industry, we resort to an industrial-like

scenario in which subjects are asked to build a toy model of

a motorbike using different components and tools (see Fig-

ure 1). Similarly to an industrial scenario, the subjects in-

teract with tools such as a screwdriver and a wrench, as well

as with tiny objects such as screws and bolts while execut-

ing a task involving sequential actions (e.g., take wrench,

tighten bolt, put wrench). Despite the fact that this sce-

nario is a simplification of what can be found in real indus-

trial settings, it is still fairly complex, as our experiments

show. MECCANO was collected by 20 different partic-

ipants in two countries (Italy and United Kingdom). We

densely annotated the acquired videos with temporal labels

to indicate the start and end times of each human-object in-

teraction, and with bounding boxes around the active ob-

jects involved in the interactions. We hope that the pro-

posed dataset will encourage research in this challenging

domain. The dataset is publicly released at the following

link: https://iplab.dmi.unict.it/MECCANO/.

We show that the proposed dataset can be used to study

four fundamental tasks related to the understanding of

human-object interactions: 1) Action Recognition, 2) Ac-

tive Object Detection, 3) Active Object Recognition and

4) Egocentric Human-Object Interaction Detection. While

past works have already investigated the tasks of action

recognition [13, 37, 41, 56], active object detection [46],

and active object recognition [13] in the context of egocen-

tric vision, Human-Object Interaction (HOI) detection has

been generally studied in the context of third person vision

[31, 28, 47, 9, 67, 38, 63]. Since we believe that modelling

actions both semantically and spatially is fundamental for

egocentric vision applications, we instantiate the Human-

Object Interaction detection task in the context of the pro-

posed dataset.

HOI detection consists in detecting the occurrence of

human-object interactions, localizing both the humans tak-

ing part in the action and the interacted objects. HOI detec-

tion also aims to understand the relationships between hu-

mans and objects, which is usually described with a verb.

Possible examples of HOIs are “talk on the cell phone”

or “hold a fresbee”. HOI detection models mostly con-

sider one single object involved in the interaction [31, 30,

28, 65, 9]. Hence, an interaction is generally defined as a

triplet in the form <human, verb, object>, where the hu-

man is the subject of the action specified by a verb and an

object. Sample images related to human-object interactions

in a third-person scenario are shown in Figure 2-top. We

define Egocentric Human-Object Interaction (EHOI) detec-

tion as the task of producing <verb, objects> pairs describ-

ing the interaction observed from the egocentric point of

view. Note that in EHOI, the human interacting with the

objects is always the camera wearer, while one or more ob-

jects can be involved simultaneously in the interaction. The

goal of EHOI detection is to infer the verb and noun classes,

and to localize each active object involved in the interac-

tion. Figure 2-bottom reports some examples of Egocentric

Human-Object Interactions.

We perform experiments with baseline approaches to

tackle the four considered tasks. Results suggest that the

proposed dataset is a challenging benchmark for under-

standing egocentric human-object interactions in industrial-

like settings. In sum, the contributions of this work are

as follows: 1) we present MECCANO, a new challenging

egocentric dataset to study human-object interactions in an

industrial-like domain; 2) we instantiate the HOI definition

in the context of egocentric vision (EHOI); 3) we show that

the current state-of-the-art approaches achieve limited per-

formance, which suggests that the proposed dataset is an in-

teresting benchmark for studying egocentric human-object

interactions in industrial-like domains.

2. Related Work

Datasets for Human Behavior Understanding Pre-

vious works have proposed datasets to tackle the task of

Human-Object Interaction (HOI) detection. Among the

most notable datasets, we can mention V-COCO [31],

which adds 26 verb labels to the 80 objects of COCO [40],

HICO-Det [8], labeled with 117 verbs and 80 objects, HOI-

A [38], which focuses on 10 verbs and 11 objects indicat-

1Images in the first row were taken from the COCO dataset [40] while

those in the second row belong to the MECCANO dataset.
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Dataset Settings EGO? Video? Tasks Year Frames Sequences AVG. video duration Action classes Object classes Object BBs Participants

MECCANO Industrial-like X X EHOI, AR, AOD, AOR 2020 299,376 20 20.79 min 61 20 64,349 20

EPIC-KITCHENS [13] Kitchens X X AR, AOR 2018 11,5M 432 7.64 min 125 352 454,255 32

EGTEA Gaze+ [37] Kitchens X X AR 2018 2,4M 86 0.05 min 106 0 0 32

THU-READ [57] Daily activties X X AR 2017 343,626 1920 7.44 min 40 0 0 8

ADL [46] Daily activities X X AR, AOR 2012 1,0M 20 30.0 min 32 42 137,780 20

CMU [17] Kitchens X X AR 2009 200,000 16 15.0 min 31 0 0 16

Something-Something [29] General X X AR, HOI 2017 5,2 M 108,499 0.07 min 174 N/A 318,572 N/A

Kinetics [6] General X X AR 2017 N/A 455,000 0.17 min 700 0 0 N/A

ActivityNet [19] Daily activites X X AR 2015 91,6 M 19,994 2.55 min 200 N/A N/A N/A

HOI-A [38] General X X HOI, AOR 2020 38,668 N/A N/A 10 11 60,438 N/A

HICO-DET [8] General X X HOI, AOR 2018 47,776 N/A N/A 117 80 256,672 N/A

V-COCO [31] General X X HOI, OD 2015 10,346 N/A N/A 26 80 N/A N/A

Table 1. Comparative overview of relevant datasets. HOI: HOI Detection. EHOI: EHOI Detection. AR: Action Recognition. AOD: Active

Object Detection. AOR: Active Object Recognition. OD: Object Detection.

ing actions dangerous while driving. Other works have pro-

posed datasets for action recognition from video. Among

these, ActivityNet [19] is a large-scale dataset composed of

videos depicting 203 activities that are relevant to how hu-

mans spend their time in their daily lives, Kinetics [33, 6] is

a dataset containing 700 human action classes, Something-

Something [29] includes low-level concepts to represent

simple everyday aspects of the world. Previous works

also proposed datasets of egocentric videos. Among these

datasets, EPIC-Kitchens [13, 15, 14] focuses on unscripted

activities in kitchens, EGTEA Gaze+ [37] contains videos

paired with gaze information collected from participants

cooking different recipes in a kitchen, CMU [17] is a multi-

modal dataset of egocentric videos including RGB, audio

and motion capture information, ADL [46] contains ego-

centric videos of subjects performing daily activities, THU-

READ [57] contains RGB-D videos of subjects perform-

ing daily-life actions in different scenarios. Table 1 com-

pares the aforementioned datasets with respect to the pro-

posed dataset. MECCANO is the first dataset of egocentric

videos collected in an industrial-like domain and annotated

to perform EHOI Detection. It is worth noting that pre-

vious egocentric datasets have considered scenarios related

to kitchens, offices, and daily-life activities and that they

have generally tackled the action recognition task rather

than EHOI detection.

Action Recognition Action recognition from video has

been thoroughly investigated especially in the third person

vision domain. Classic works [36, 12] relied on motion-

based features such as optical flow and space-time features.

Early deep learning works fused processing of RGB and op-

tical flow features with two-stream networks [54, 25, 62],

3D ConvNets are commonly used to encode both spatial

and temporal dimensions [58, 59, 7], long-term filtering

and pooling has focused on representing actions consid-

ering their full temporal extent [61, 25, 62, 66, 66, 39].

Other works separately factor convolutions into separate 2D

spatial and 1D temporal filters [24, 60, 64, 48]. Among

recent works, Slow-Fast networks [23] avoid using pre-

computed optical flow and encodes motion into a “fast”

pathway (which operates at a high frame rate) and simul-

taneously a “slow” pathway which captures semantics (op-

erating at a low frame rate). We asses the performance of

state-of-the-art action recognition methods on the proposed

dataset considering SlowFast networks [23], I3D [7] and 2D

CNNs as baselines.

HOI Detection Previous works have investigated HOI

detection mainly from a third person vision point of view.

The authors of [31] proposed a method to detect people per-

forming actions able to localize the objects involved in the

interactions on still images. The authors of [28] proposed a

human-centric approach based on a three-branch architec-

ture (InteractNet) instantiated according to the definition of

HOI in terms of a <human, verb, object> triplet. Some

works [47, 9, 67] explored HOI detection using graph con-

volutional neural networks after detecting humans and ob-

jects in the scene. Recent works [38, 63] represented the

relationship between both humans and objects as the in-

termediate point which connects the center of the human

and object bounding boxes. The aforementioned works ad-

dressed the problem of HOI detection in the third person

vision domain. In this work, we look at the task of HOI de-

tection from an egocentric perspective considering the pro-

posed MECCANO dataset.

EHOI Detection EHOI detection is understudied due

to the limited availability of egocentric datasets labelled for

this task. While some previous datasets such as EPIC-

KITCHENS [13, 14] and ADL [46] have been labeled

with bounding box annotations, these datasets have not

been explicitly labeled for the EHOI detection task indi-

cating relationships between labeled objects and actions,

hence preventing the development of EHOI detection ap-

proaches. Some related studies have modeled the relations

between entities for interaction recognition as object affor-

dances [42, 43, 21]. Other works tackled tasks related to

EHOI detection proposing hand-centric methods [5, 4, 52].

Despite these related works have considered human-object

interaction from an egocentric point of view, the EHOI de-

tection task has not yet been defined or studied systemati-

cally in past works. With this paper we aim at providing a

definition of the task, a suitable benchmark dataset, as well

as an initial evaluation of baseline approaches.
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Figure 3. Examples of data acquired by the 20 different participants in two countries (Italy, United Kingdom).
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Figure 4. Statistics of the 20 participants.

3. MECCANO Dataset

3.1. Data Collection

The MECCANO dataset has been acquired in an

industrial-like scenario in which subjects built a toy model

of a motorbike (see Figure 1). The motorbike is composed

of 49 components with different shapes and sizes belong-

ing to 19 classes. In our settings, the components A054

and A051 of Figure 1 have been grouped under the “screw”

class, whereas A053, A057 and A077 have been grouped

under the “washers” class. As a result, we have 16 compo-

nent classes2. Note that multiple instances of each class are

necessary to build the model. In addition, 2 tools, a screw-

driver and a wrench, are available to facilitate the assembly

of the toy model. The subjects can use the instruction book-

let to understand how to build the toy model following the

sequential instructions.

For the data collection, the 49 components related to the

considered 16 classes, the 2 tools and the instruction booklet

have been placed on a table to simulate an industrial-like en-

vironment. Objects of the same component class have been

grouped and placed in a heap, and heaps have been placed

randomly (see Figure 3). Other objects not related to the toy

model were present in the scene (i.e., clutter background).

We have considered two types of table: a light-colored table

and a dark one. The dataset has been acquired by 20 differ-

ent subjects in 2 countries (Italy and United Kingdom) be-

2See supplementary material for more details.
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Figure 5. Long-tail distribution of verbs classes.

tween May 2019 and January 2020. Participants were from

8 different nationalities with ages between 18 and 55. Fig-

ure 4 reports some statistics about participants. We asked

participants to sit and build the model of the motorbike. No

other particular instruction was given to the participants,

who were free to use all the objects placed in the table as

well as the instruction booklet. Some examples of the cap-

tured data are reported in Figure 3.

Data was captured using an Intel RealSense SR300 de-

vice which has been mounted on the head of the participant

with an headset. The headset was adjusted to control the

point of view of the camera with respect to the different

heights and postures of the participants, in order to have

the hands located approximately in the middle of the scene

to be acquired. Videos were recorded at a resolution of

1920x1080 pixels and with a framerate of 12fps. Each

video corresponds to a complete assembly of the toy

model starting from the 49 pieces placed on the table.

The average duration of the captured videos is 21.14min,

with the longest one being 35.45min and the shortest one

being 9.23min.

3.2. Data Annotation

We annotated the MECCANO dataset in two stages. In

the first stage, we temporally annotated the occurrences of

all human-object interactions indicating their start and end

times, as well as a verb describing the interaction. In the

second stage, we annotated the active objects with bounding

boxes for each temporal segment.

Stage 1: Temporal Annotations We considered 12 dif-
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Figure 6. Example of two overlapping temporal annotations along with the associated verbs.
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Figure 7. Example of bounding box annotations for active objects (first row) and occluded active objects (second row).

ferent verbs which describe the actions performed by the

participants: take, put, check, browse, plug, pull, align,

screw, unscrew, tighten, loosen and fit. As shown in Fig-

ure 5, the distribution of verb classes of the labeled samples

in our dataset follows a long-tail distribution, which sug-

gests that the taxonomy captures the complexity of the con-

sidered scenario. Since a participant can perform multiple

actions simultaneously, we allowed the annotated segments

to overlap (see Figure 6). In particular, in the MECCANO

dataset there are 1401 segments (15.82 %) which overlap

with at least another segment. We consider the start time

of a segment as the timestamp in which the hand touches

an object, changing its state from passive to active. The

only exception is for the verb check, in which case the user

doesn’t need to touch an object to perform an interaction.

In this case, we annotated the start time when it is obvious

from the video sequence that the user is looking at the ob-

ject (see Figure 6). With this procedure, we annotated 8857
video segments.

Stage 2: Active Object Bounding Box Annotations

We considered 20 object classes which include the 16
classes categorizing the 49 components, the two tools

(screwdriver and wrench), the instructions booklet and a

partial model class. The latter object class represents as-

sembled components of the toy model which are not yet

complete (e.g., a screw and a bolt fixed on a bar which have

not yet been assembled with the rest of the model3). For

3See the supplementary material for examples of partial model.

each temporal segment, we annotated the active objects in

frames sampled every 0.2 seconds. Each active object an-

notation consists in a (class, x, y, w, h) tuple, where class

represents the class of the object and (x, y, w, h) defines a

bounding box around the object. We annotated multiple ob-

jects when they were active simultaneously (see Figure 7 -

first row). Moreover, if an active object is occluded, even

just in a few frames, we annotated it with a (class, x, y) tu-

ple, specifying the class of the object and its estimated 2D

position. An example of occluded active object annotation

is reported in the second row of Figure 7. With this proce-

dure, we labeled a total of 64349 frames.

Action Annotations Starting from the temporal anno-

tations, we defined 61 action classes4. Each action is com-

posed by a verb and one or more objects, for example “align

screwdriver to screw” in which the verb is align and the

objects are screwdriver and screw. Depending on the verb

and objects involved in the interaction, each temporal seg-

ment has been associated to one of the 61 considered action

classes. Figure 8 shows the list of the 61 action classes,

which follow a long-tail distribution.

EHOI Annotations Let O = {o1, o2, ..., on} and V =
{v1, v2, ..., vm} be the sets of objects and verbs respectively.

We define an Egocentric Human-Object Interaction e as:

e = (vh, {o1, o2, ..., oi}) (1)

where vh ∈ V is the verb characterizing the interac-

4See the supplementary material for details on action class selection.
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Split #Videos Duration (min) % #EHOIs Segments Bounding Boxes Country (U.K/Italy) Table (Light/Dark)

Train 11 236.47 55% 5057 37386 6/5 6/5

Val 2 46.57 10% 977 6983 1/1 1/1

Test 7 134.93 35% 2824 19980 4/3 4/3

Table 2. Statistics of the three splits: Train, Validation and Test.

Figure 8. Distribution of action instances in the MECCANO dataset.

tion and (o1, o2, ..., oi) ⊆ O represent the active objects

involved in the interaction. Given the previous definition,

we considered all the observed combinations of verbs and

objects to represent EHOIs performed by the participants

during the acquisition (see examples in Figure 2-bottom).

Each EHOI annotation is hence composed of a verb annota-

tion and the active object bounding boxes. The MECCANO

dataset is the first dataset of egocentric videos explicitly an-

notated for the EHOI detection task.

4. Benchmarks and Baseline Results

The MECCANO dataset is suitable to study a variety of

tasks, considering the challenging industrial-like scenario in

which it was acquired. In this paper, we consider four tasks

for which we provide baseline results: 1) Action Recogni-

tion, 2) Active Object Detection, 3) Active Object Recogni-

tion and 4) Egocentric Human-Object Interaction (EHOI)

Detection. While some of these tasks have been considered

in previous works, none of them has been studied in indus-

trial scenarios from the egocentric perspective. Moreover, it

is worth noting that the EHOI Detection task has never been

treated in previous works. We split the dataset into three

subsets (Training, Validation and Test) designed to balance

the different types of desks (light, dark) and countries in

which the videos have been acquired (IT, U.K.). Table 2 re-

ports some statistics about the three splits, such as the num-

ber of videos, the total duration (in seconds), the number of

temporally annotated EHOIs and the number of bounding

box annotations.

4.1. Action Recognition

Task: Action Recognition consists in determining the

action performed by the camera wearer from an egocentric

video segment. Specifically, let Ca = {c1, c2, ..., cn} be the

set of action classes and let Ai = [tsi , tei ] be a video seg-

ment, where tsi and tei are the start and the end times of the

action respectively. The aim is to assign the correct action

class ci ∈ Ca to the segment Ai.

Evaluation Measures: We evaluate action recognition us-

ing Top-1 and Top-5 accuracy computed on the whole test

set. As class-aware measures, we report class-mean preci-

sion, recall and F1-score.

Baselines: We considered 2D CNNs as implemented in

the PySlowFast library [20] (C2D), I3D [7] and SlowFast

[23] networks, which are state-of-the-art methods for ac-

tion recognition. In particular, for all baselines we used

the PySlowFast implementation based on a ResNet-50 [32]

backbone pre-trained on Kinetics [33]. See supplementary

material for implementation details.

Results: Table 3 reports the results obtained by the base-

lines for the action recognition task. All baselines obtained

similar performance in terms of Top-1 and Top-5 accuracy

with SlowFast networks achieving slightly better perfor-

mance. Interestingly, performance gaps are more consistent

when we consider precision, recall and F1 scores, which is

particularly relevant given the long-tailed distribution of ac-

tions in the proposed dataset (see Figure 8). Note that, in

our benchmark, SlowFast obtained the best results with a

Top-1 accuracy of 47.82 and an F1-score of 41.05. See sup-

plementary material for qualitative results. In general, the

results suggest that action recognition with the MECCANO

dataset is challenging and offers a new scenario to compare

action recognition algorithms.

4.2. Active Object Detection

Task: The aim of the Active Object Detection task is

to detect all the active objects involved in EHOIs. Let

Oact = {o1, o2, ..., on} be the set of active objects in the
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Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall Avg Class F 1-score

C2D [20] 41.92 71.95 37.6 38.76 36.49

I3D [7] 42.51 72.35 40.04 40.42 38.88

SlowFast [23] 42.85 72.47 42.11 41.48 41.05

Table 3. Baseline results for the action recognition task.

Method AP (IoU >0.5)

Hand Object Detector [52] 11.17%

Hand Object Detector [52] (Avg dist.) 11.10%

Hand Object Detector [52] (All dist) 11.34%

Hand Object Detector [52] + Objs re-training 20.18%

Hand Object Detector [52] + Objs re-training (Avg dist.) 33.33%

Hand Object Detector [52] + Objs re-training (All dist.) 38.14%

Table 4. Baseline results for the active object detection task.

image. The goal is to detect with a bounding box each ac-

tive object oi ∈ Oact.

Evaluation Measures: As evaluation measure, we use Av-

erage Precision (AP), which is used in standard object de-

tection benchmarks. We set the IoU threshold equal to 0.5
in our experiments.

Baseline: We considered the Hand-Object Detector pro-

posed in [52]. The model has been designed to detect

hands and objects when they are in contact. This archi-

tecture is based on Faster-RCNN [51] and predicts a box

around the visible human hands, as well as boxes around

the objects the hands are in contact with and a link between

them. We used the Hand-Object Detector [52] pretrained on

EPIC-Kitchens [13], EGTEA [37] and CharadesEGO [53]

as provided by authors [52]. The model has been trained

to recognize hands and to detect the active objects regard-

less their class. Hence, it should generalize to others do-

mains. With default parameters, the Hand-Object Detector

can find at most two active objects in contact with hands.

Since our dataset tends to contain more active objects in

a single EHOI (up to 7), we consider two variants of this

model by changing the threshold on the distance between

hands and detected objects. In the first variant, the thresh-

old is set to the average distance between hands and active

objects on the MECCANO dataset. We named this vari-

ant “Avg distance”. In the second variant, we removed the

thresholding operation and considered all detected objects

as active objects. We named this variant “All objects”. We

further adapted the Hand-Object Detector [52] re-training

the Faster-RCNN component to detect all active objects of

the MECCANO dataset. See supplementary material for

implementation details.

Results: Table 4 shows the results obtained by the active

object detection task baselines. The results highlight that

the Hand-Object Detector [52] is not able to generalize to

a domain different than the one on which it was trained.

All the three variants of the Hand-Object Detector using

the original object detector obtained an AP approximately

equal to 11% (first three rows of Table 4). Re-training the

object detector on the MECCANO dataset allowed to im-

prove performance by significant margins. In particular, us-

ing the standard distance threshold value, we obtained an

AP of 20.18%. If we consider the average distance as the

threshold to discriminate active and passive objects, we ob-

tain an AP of 33.33%. Removing the distance threshold

(last row of Table 4), allows to outperform all the previous

results obtaining an AP equal to 38.14%. This suggests that

adapting the general object detector to the challenging do-

main of the proposed dataset is key to performance. Indeed,

training the object detector to detect only active objects in

the scene already allows to obtain reasonable results, while

there still space for improvement.

4.3. Active Object Recognition

Task: The task consists in detecting and recognizing

the active objects involved in EHOIs considering the 20
object classes of the MECCANO dataset. Formally, let

Oact = {o1, o2, ..., on} be the set of active objects in the

image and let Co = {c1, c2, ..., cm} be the set of object

classes. The task consists in detecting objects oi ∈ Oact

and assigning them the correct class label c ∈ Co.

Evaluation Measures: We use mAP [18] with threshold on

IoU equal to 0.5 for the evaluations.

Baseline: As a baseline, we used a standard Faster-RCNN

[51] object detector. For each image the object detector pre-

dicts (x, y, w, h, class) tuples which represent the object

bounding boxes and the associated classes. See supplemen-

tary material for implementation details.

Results: Table 5 reports the results obtained with the base-

line in the Active Object Recognition task. We report the

AP values for each class considering all the videos belong-

ing to the test set of the MECCANO dataset. The last col-

umn shows the average of the AP values for each class and

the last row reports the mAP value for the test set. The

mAP was computed as the average of the mAP values ob-

tained in each test video. AP values in the last column show

that large objects are easier to recognize (e.g. instruction

booklet: 46.48%; screwdriver: 60.50%; tire: 58.91%; rim:

50.35%). Performance suggests that the proposed dataset is

challenging due to the presence of small objects. We leave

the investigation of more specific approaches to active ob-

ject detection to future studies.

4.4. EHOI Detection

Task: The goal is to determine egocentric human-object

interactions (EHOI) in each image. Given the definition of

EHOIs as <verb, objects> pairs (see Equation 1), meth-

ods should detect and recognize all the active objects in the

scene, as well as the verb describing the action performed
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ID Class AP (per class)

0 instruction booklet 46.18%

1 gray angled perforated bar 09.79%

2 partial model 36.40%

3 white angled perforated bar 30.48%

4 wrench 10.77%

5 screwdriver 60.50%

6 gray perforated bar 30.83%

7 wheels axle 10.86%

8 red angled perforated bar 07.57%

9 red perforated bar 22.74%

10 rod 15.98%

11 handlebar 32.67%

12 screw 38.96%

13 tire 58.91%

14 rim 50.35%

15 washer 30.92%

16 red perforated junction bar 19.80%

17 red 4 perforated junction bar 40.82%

18 bolt 23.44%

19 roller 16.02%

mAP 30.39%

Table 5. Baseline results for the active object recognition task.

by the human.

Evaluation Measures: Following [31, 28], we use the

“role AP” as an evaluation measure. Formally, a detected

EHOI is considered as a true positive if 1) the predicted

object bounding box has a IoU of 0.5 or higher with re-

spect to a ground truth annotation and 2) the predicted verb

matches with the ground truth. Note that only the active

object bounding box location (not the correct class) is con-

sidered in this measure. Moreover, we used different values

of IoU (e.g., 0.5, 0.3 and 0.1) to compute the “role AP”.

Baseline: We adopted three baselines for the EHOI detec-

tion task. The first one is based on InteractNet [28], which

is composed by three branches: 1) the “human-branch” to

detect the humans in the scene, 2) the “object-branch” to de-

tect the objects and 3) the “interaction-branch’ which pre-

dicts the verb of the interaction focusing on the humans and

objects appearance. The second one is an extension of In-

teractNet which also uses context features derived from the

whole input frame to help the “interaction-branch” in verb

prediction. The last baseline is based on the combination of

a SlowFast network [20] trained to predict the verb of the

EHOI considering the spatial and temporal dimensions, and

Faster-RCNN [51] which detects and recognizes all active

objects in the frame. See supplementary material for imple-

mentation details.

Results: Table 6 reports the results obtained by the base-

lines on the test set for the EHOI detection task. The

InteractNet method obtains low performance on this task

with a mAP role of 4.92%. Its extension with context fea-

tures, slightly improves the performance with a mAP role

of 8.45%, whereas SlowFast network with Faster-RCNN

achieved best results with a mAP equal to 25.93%. The

results highlight that current state-of-the-art approaches de-

veloped for the analysis of still images in third person sce-

narios are unable to detect EHOIs in the proposed dataset,

which is likely due to the presence of multiple tiny ob-

mAP role

Model IoU ≥ 0.5 IoU ≥ 0.3 IoU ≥ 0.1

InteractNet [28] 04.92% 05.30% 05.72%

InteractNet [28] + Context 08.45% 09.01% 09.45%

SlowFast [23] + Faster-RCNN [51] 25.93% 28.04% 29.65%

Table 6. Baseline results for the EHOI detection task.

Figure 9. Qualitative results for the EHOI detection task.

jects involved simultaneously in the EHOI and to the ac-

tions performed. On the contrary, adding the ability to pro-

cess video clips with SlowFast allows for significant perfor-

mance boosts. Figure 9 shows qualitative results obtained

with the SlowFast+Faster-RCNN baseline. Note that in the

second example the method correctly predicted all the ob-

jects involved simultaneously in the EHOI. Despite promis-

ing performance of the suggested baseline, the proposed

EHOI detection task needs more investigation due to the

challenging nature of the considered industrial-like domain.

5. Conclusion

We proposed MECCANO, the first dataset to study ego-

centric human-object interactions (EHOIs) in an industrial-

like scenario. We publicly release the dataset with both tem-

poral (action segments) and spatial (active object bound-

ing boxes) annotations considering a taxonomy of 12 verbs,

20 nouns and 61 unique actions. In addition, we defined

the Egocentric Human-Object Interaction (EHOI) detection

task and performed baseline experiments to show the po-

tential of the proposed dataset on four challenging tasks:

action recognition, active object detection, active object

recognition and EHOI detection. Future works will explore

approaches for improved performance on this challenging

data.
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