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Abstract

We propose SSA2D, a simple yet effective end-to-end

deep network for actor-action detection in videos. The ex-

isting methods take a top-down approach based on region-

proposals (RPN), where the action is estimated based on

the detected proposals followed by post-processing such as

non-maximal suppression. While effective in terms of per-

formance, these methods pose limitations in scalability for

dense video scenes with a high memory requirement for

thousands of proposals. We propose to solve this problem

from a different perspective where we don’t need any pro-

posals. SSA2D is a unified network, which performs pixel

level joint actor-action detection in a single-shot, where

every pixel of the detected actor is assigned an action la-

bel. SSA2D has two main advantages: 1) It is a fully con-

volutional network which does not require any proposals

and post-processing making it memory as well as time ef-

ficient, 2) It is easily scalable to dense video scenes as its

memory requirement is independent of the number of ac-

tors present in the scene. We evaluate the proposed method

on the Actor-Action dataset (A2D) and Video Object Re-

lation (VidOR) dataset, demonstrating its effectiveness in

multiple actors and action detection in a video. SSA2D

is 11x faster during inference with comparable (sometimes

better) performance and fewer network parameters when

compared with the prior works. Code available at https:

//github.com/aayushjr/ssa2d

1. Introduction

Actor-action detection in videos is a challenging prob-

lem where the goal is to detect all the actors in the video

and determine which different actions they are performing.

One natural solution to this problem is to perform object

detection and identify all the actors and classify those de-

tected actors for corresponding actions. Motivated by this,

Figure 1. A comparative analysis of SSA2D with existing meth-

ods in terms of speed and performance. We observe that SSA2D is

faster with comparable performance. The x-axis represents infer-

ence speed in frames per second and the y-axis represents the mean

pixel-wise intersection over union score for joint actor-action de-

tection. (RGB+OF - Using both RGB and optical flow).

existing methods utilize region proposal (RPN) [29] based

approach [6, 17], where they first detect proposal for objects

and use them for action detection.

Region proposal and ROI pooling based methods [29,

10] have been shown to be extremely successful for ob-

ject detection in images. The approach usually involves

detection of thousands of proposals followed by a post-

processing cleanup using non-maximal suppression. In

videos, we have an additional time dimension, and detecting

proposals for every frame can be memory intensive. There-

fore, the existing methods [6, 17] relying upon RPN ap-

proach can perform actor-action detection only on single

frame at a time. Also, with multiple actors and multiple ac-

tions per actor in a scene, these approaches become com-

plex and inefficient as thousands of region proposals per

frame are required for training. Due to these limitations,

such networks have to be trained in multiple stages [6],

leading to an increase in the training and inference time.
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Single shot detection methods [23, 33, 27, 28] overcome

such region proposal limitations, but they don’t translate

well for video actor-action detection.

In this work, we present an alternative approach which

is simple yet effective and overcomes these limitations. We

propose SSA2D, a novel end-to-end deep network which

does not require proposals and performs single shot actor-

action detection in videos. SSA2D is an encoder-decoder

based unified network, which utilizes spatio-temporal con-

textual information between objects and their surrounding

pixels for joint detection of multiple objects and activities

in multiple input video frames at once. In RPN based ap-

proach, ROI-Pooling [29] is used to extract object focused

features for each proposal and therefore it leads to a higher

memory consumption with increase in number of objects

in the scene. In contrast, we propose Single-Shot Attentive

Masking (SSA-Masking), which utilize a spatio-temporal

unified mask (STU-Mask) for all the objects to perform fea-

ture filtering at once. This unified masking makes the pro-

posed approach much more efficient for dense video scenes.

A prior knowledge of actor presence provides crucial in-

formation regarding the performed action. A joint training

of actor and action detection allows us to utilize actor-prior

(A-Prior) to assist in action detection. We propose actor-

prior infusion (AP-Infusion), which make use of spatio-

temporal actor features as actor-priors. We demonstrate that

AP-Infusion helps in improving performance of action de-

tection as well as actor detection. Apart from this, SSA2D

utilize atrous convolutions [3] and feature pyramid network

[22], which we adapt for videos, to address the issue of mul-

tiple scales of actors present in a scene. SSA2D is jointly

trained end-to-end for three objectives, actor detection, ac-

tion detection, and STU-Mask, with the help of a combi-

nation of pixel-wise cross-entropy loss and a generalized

dice-loss [32], which we extend for videos as Generalized

3D Dice Loss to balance the foreground and the background

pixels in videos.

The proposed SSA2D model has several advantages over

existing methods: 1) It requires fewer network parameters

making it memory efficient, 2) It has faster inference and

also requires less training time, 3) The memory require-

ment of SSA2D does not depend upon the number of actors

present in the video, and therefore it does not have any scal-

ability issues for dense scenes, and finally 4) SSA2D can

perform spatio-temporal actor-action detection on multiple

input video frames at once making it more efficient when

compared with existing approaches which can perform de-

tection only on single frame at a time. We make the follow-

ing contributions in this work:

• We present SSA2D, a novel end-to-end network, to

perform pixel-wise detection of actors and actions in

videos. SSA2D is trained jointly to detect multiple ac-

tors and their actions simultaneously, while not relying

on region proposals or any external post-processing.

• We propose SSA-Masking, which utilize unified

spatio-temporal mask for selective feature extraction

of multiple actors at once. In contrast to ROI-Pooling,

it is much more efficient for dense video scenes.

• We propose the use of actor-prior for spatio-temporal

pixel-wise action detection with the help of spatio-

temporal actor features, leading to an improved per-

formance of both action as well as actor detection in

joint learning.

We perform extensive experiments on A2D and VidOR

dataset and demonstrate SSA2D to be efficient as well as

effective for joint actor-action detection in videos. The pro-

posed method is significantly efficient in inference (∼11x

faster for RGB and ∼6x faster for RGB+optical-flow) as

well as in training (2x faster than state-of-the-art) with

fewer network parameters and yet achieve performance

comparable (sometimes even better) to the prior works.

2. Related work

2.1. Human action detection in videos

Action detection in videos require spatio-temporal lo-

calizations of actors in each frame which is then used for

classification. Extending the image classification models

[29, 27, 28, 23, 11], prior CNN based works detect humans

in each frame and combine them temporally to form action

tubes while classifying at clip level [41, 25, 40, 21], lever-

aging existing classification techniques from [1, 12, 16, 26,

36, 34, 31, 35]. [16] uses RPN based approach to detect hu-

mans in each frame and then forms action tubes by stitch-

ing them together, followed by Tube of Interest (TOI) pool-

ing and action classification. [15] does TOI pooling based

on foreground segmentation map from an encoder-decoder

based network. [9] uses RPN along with transformer based

attention map that detects and classifies actions. [7] uses a

3D capsule based CNN, where the authors apply routing-

by-agreement algorithm to capture various action represen-

tations, leading to localize actions and classify them at the

same time. Although prior works show great improvements

on action detection in videos, they are limited by complex

region proposal network coupled with region pooling or can

only detect and classify single actor per video, creating a

challenge to adapt it to denser real-life scenarios.

2.2. Actor and action detection in videos

Actor-action detection problem is related to identifying

the actors and their corresponding actions in a given clip,

where both semantic localization and classification is re-

quired. The authors in [38] proposed the A2D dataset,
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Figure 2. Overview of the proposed method for pixel-wise actor-action detection showing the overall SSA2D architecture. The 3D con-

volution based encoder network extracts features which are used in three separate branches for actor, action, and STU-Mask detection.

The action detection branch use AP-Infusion to utilize actor-priors and SSA-Masking to focus on activity regions in the video. All three

branches use a decoder network which has similar architecture, however the weights are not shared among these tasks.

a large scale benchmark dataset to study actor-action de-

tection problem. An early approach of adaptive group-

ing of segments during inference improves segmentation

in A2D [37]. [39] proposed weakly supervised method and

train the model using only video-level tags. A two-stage

model was proposed by [18], where objects are detected

first and their bounding box are refined for segmentation

outputs. [8, 24] use sentence priors to detect actor-actions

in videos. Authors in [17] propose a joint end-to-end

model which uses two-stream input (RGB + optical flow) to

classify object regions and perform segmentation on them.

Conceptually based on [13], they generate semantic features

and use RPN to segment and classify actor-action pairs. [6]

use similar approach and propose segmentation based re-

gion proposal and pooling to detect actor and action classes.

They apply a region pooling based fully convolutional seg-

mentation network for their actor segmentation, followed

by 2D ResNet-101 [14] for action classification. Although

prior works show great improvements on joint actor-action

classification, they are limited by expensive region proposal

and pooling which increases the approach’s complexity.

3. Proposed method

Given a video V ∈ R
T×H×W×3 as input, SSA2D jointly

predicts actor detection ActorD ∈ R
T×H×W×Cactor and

action detection ActionD ∈ R
T×H×W×Caction . Here, T is

the number of frames in the input clip, H is the height and

W is the width of the video frames, Cactor is total number

of actor classes, and Caction is the total number of action

categories. In addition to these two, SSA2D also predicts

a spatio-temporal mask STUMask ∈ R
T×H×W×2, which

is used for SSA-Masking. SSA2D consists of an encoder

network E, and three separate branches for actor, action,

and STU-Mask detection. Each task utilize a decoder net-

work (D), which has similar architecture for all the three

branches. An overview of SSA2D is shown in Figure 2.

3.1. Encoder network

Understanding and extracting relevant features both spa-

tially and temporally is crucial in learning a video’s actor-

action relations. We utilize a 3D convolution based encoder

E that extracts actor and action related feature volume fenc
from a given input video clip V ∈ R

T×H×W×3. The net-

work takes a video clip as input with [T ×H×W ×3] with

T frames at a resolution of H×W and outputs a feature vol-

ume fenc ∈ R
T
4
×

H
16

×
W
16 as video encodings. We use I3D [1]

model as our encoder where we adapt the network by con-

trolling the pooling strides (more details in supplementary).

This encoder can use any state-of-the art 3D convolution

network.

3.2. Decoder network

The spatio-temporal features fenc extracted using the en-

coder network E needs to be decoded into a larger fine-

grained resolution for jointly detecting the actors and ac-

tions. The decoder network D takes fenc as input and per-

forms a series of 3D deconvolution [42] and upsampling

operations to get the desired resolution for fine-grained

pixel-wise detection. We upsample the encoded features to

[T
2
×

H
4
×

W
4

] as a final resolution to reduce parameters.

We add skip connections from the encoder network to ev-
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ery deconvolution layer to preserve the suppressed features

during downsampling. Adapting multi-scale object feature

learning techniques from images, we extend atrous convo-

lutions [3, 4] and feature pyramid network [22, 20] to 3D

architecture for videos. Atrous convolutions helps encode

multi-scale contextual information around each pixel while

feature pyramid helps preserve features of smaller objects.

The same decoder architecture D is used in all the three

branches, however, the network parameters are not shared

as these branches solve different tasks. The final output

from all the branches is upsampled to match the resolution

of the input video with the help of linear interpolation. A

detailed architecture of D is shown in Figure 2 and more

details are provided in the supplementary.

3.3. Actor detection

For pixel-wise actor detection, the actor detection branch

utilizes encoded video features fenc and learns pixel-wise

Cap actor prior (A-prior ∈ R
T×H×W×Cap ) with the help

of a decoder network Dactor. A final 3D convolution layer

takes the learned A-Prior and predicts CActor channels for

each pixel (CActor being the total number of actors present

in the dataset). A Softmax activation is applied across actor

channels for each pixel location as each pixel will corre-

spond to only one of the actors. This gives us ActorD for

pixel-wise actor detection in the input video. The scores

in each channel corresponds to one of the actor class and

indicates its presence in that spatio-temporal location.

3.4. Action detection

The action detection branch Action takes the spatio-

temporal features fenc from the encoder network E as input

and uses the decoder architecture Daction from section 3.2

to learn action relevant feature maps fa for action detection.

As each actor’s interaction with surrounding objects is de-

cisive in inferring its actions, the actor detection branch will

have more meaningful features corresponding to each actor.

However, it is also important to focus only on the spatio-

temporal region where the action is occurring. To address

these issues, we propose Actor Prior Infusion (AP-Infusion)

and Single-Shot Attentive Masking (SSA-Masking), which

allow the network to filter and learn meaningful interaction

between the detected actors for action detection.

Actor Prior Infusion (AP-Infusion) The Actor Prior In-

fusion (AP-Infusion) provides additional information to the

action detection network in form of latent actor represen-

tations. This is done by integrating A-priors with action

related features, adding more actor focused contextual in-

formation and helps in action detection. As shown in Fig-

ure 2, the A-priors fap are integrated with action features

fa from the decoder network in Action branch as fact =
Conv3D(< fa, fap >), where Conv3D is 3D convolution

operation and <> represented feature concatenation. We

also experimented with feature addition and observed simi-

lar performance.

Single-Shot Attentive Masking (SSA-Masking): In-

stead of generating proposal boxes from external net-

works [29] or using all possible region boxes [27], we

use single-shot attentive masking for feature filtering. A

fine-grained spatio-temporal region is helpful to filter and

improve the coarse actor-action detection results. To

get this spatio-temporal mask, the features fenc from

the encoder network E are passed to a decoder network

DSTU−Mask which predicts pixel-wise scores STU −

Mask ∈ R
T×H×W×2 for each spatio-temporal location in

the input video. Each pixel’s score in the STU-Mask indi-

cates whether it is relevant to the action or not. The network

learns to identify potential actor regions through the STU-

Mask. This mask from the DSTU−Mask is used as spatio-

temporal unified mask fmask ∈ R
T×H×W×1 to filter the

spatio-temporal features for action detection.

The action features fact augmented with actor-priors are

filtered using SSA-Masking. The augmented features fact
are integrated with the STU-Mask [f ′

act = fact ⊙ fmask]

to get the filtered features f ′

act. The filtered features f ′

act

are integrated back with the original action features fact
[f ′′

act =< f ′

act, fact >] to keep both action as well as con-

textual background features for an effective learning. With

this masking, forward pass only learns detection of use-

ful feature regions while backward pass has minimal gra-

dient update for unrelated regions. Furthermore, the SSA-

Masking can be done on the whole frame in a single-shot,

removing the need for extracting multiple region proposal

boxes and performing ROI/TOI pooling. The masking can

be done within the network, making this an end-to-end ar-

chitecture. During training, we use the ground truth STU-

Mask. While testing, we extract the DSTU−Mask detection

results and pass that as the STU-Mask within the network.

Finally, the output feature from SSA-Masking is used to pre-

dict ActionD with CAction channels using 3D convolution,

where each channel corresponds to one action class. Since

each pixel is evaluated individually, it can be formulated to

have multi-labels and multi-class predictions.

3.5. Objective function

The proposed network is trained end-to-end with joint

learning of three tasks: actor detection, action detection,

and STU-Mask detection. Since we predict pixel-wise maps

for each branch, we have to consider the large imbalance

in active and non-active pixels, with fewer active pixels for

sparse scenes. This imbalance is handled using ratio loss for

the scene. In case of image segmentation, this can be com-

puted as a ratio of foreground pixels to background using

the Generalized Dice Loss [32]. We extended it to videos as
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Generalized 3D Dice Loss with the following formulation:

LDL = 1−
2
∑C

c=1

∑N

i=1
pci ∗ p̂ci∑C

c=1
(
∑N

i=1
p2ci +

∑N

i=1
p̂ci

2 + ǫ)
(1)

where the dice coefficient score is computed per class C

of given task, N is total number of pixels in segmentation

map of a video clip, probability pci ∈ (0, 1) is the ground-

truth segmentation map, and p̂ci ∈ (0, 1) is the network’s

predicted segmentation map probability.

The actor detection loss is defined as the negative log-

likelihood of the ground truth class and is computed as cat-

egorical cross-entropy per pixel. For Cactor set of actor

classes, the actor detection head generates Cactor segmen-

tation maps, where each pixel’s ground truth actor class is

x and predicted actor class is x̂. The loss is calculated for

each pixel across all classes and then averaged over all pix-

els, which gives us the following loss formulation:

LACT OR = [−
1

N

N∑

i=1

Cactor∑

j=1

(xi,j)log(x̂i,j)] + LDL. (2)

Action detection is also defined similarly to actor detec-

tion, with Caction segmentation maps generated. For each

pixel’s ground truth action class y an action class ŷ is pre-

dicted, and the loss is:

LACT ION = [−
1

N

N∑

i=1

Caction∑

j=1

(yi,j)log(ŷi,j)] + LDL. (3)

We look at the STU-Mask detection task as a binary seg-

mentation task, where all the actor pixels are considered as

positive and all others as negative. The loss is computed us-

ing binary cross-entropy in combination with the dice loss:

LM = [−
1

N

N∑

i=1

pilog(p̂i)− (1− pi)log(1− p̂i)] + LDL,

(4)

where p̂i is the prediction and pi is the ground-truth. The

total loss is a combination of these losses and is defined as:

L = LACT OR + LACT ION + LM. (5)

3.6. Implementation and training details

We implement the proposed method in Keras [5] with

Tensorflow backend. The encoder block uses I3D [1] pre-

trained on Kinetics-400. We input a video clip of tempo-

ral resolution (T) of 16 frames and spatial resolution 224

x 224. The final output of the encoder network is 4 x 14

x 14, which we then upsample to 8 x 112 x 112 for STU-

Mask detection branch and 8 x 56 x 56 for actor and action

detection branch. For the RGB + optical flow approach, we

perform two stream implementation where two encoders are

used for each input type. The encoders share some of the fi-

nal layers to reduce network size, and skip connections are

passed from both streams. Since our network does not have

any fully connected layers or an extra region proposal net-

work, the network has fewer number of parameters and can

be trained end-to-end in a single stage.

Optimization We use Adam optimizer [19] with an initial

learning rate of 1e-4 and finetune at a rate of 1e-5. For our

joint training task, we can fit an effective batch size of 14

clips per iteration. The model is trained for 5 epochs with

initial learning rate and fine-tuned for another 6 epochs.

Joint training We train all three branches together with

the loss weights assigned based on class distribution per

task. For the A2D dataset, STU-Mask detection is given the

weight of 0.3, while both actor and action detection task is

given weights of 1.3 (based on per class pixel distribution).

STU-Mask We input the STU-Mask of size 4 x 56 x 56

for the action detection task, which helps to increase focus

on the related pixels. For training, we use all actor regions

from ground truth as the STU-Mask. During inference, we

use the STU-Mask predicted by the STU-Mask branch.

4. Experiments

4.1. Datasets

A2D dataset: A2D [38] is the first video dataset with

multiple actor classes and action classes in the same clip

along with semantic labels. It provides pixel-level seman-

tic labels of 3-5 frames for each video and is the only

joint actor-action segmentation benchmark reported in prior

works [38, 37, 18, 17]. The dataset consists of 3,782

YouTube videos, consisting of 7 actor classes performing

one of the 9 action classes. A total of 43 actor-action pairs

are valid and used for joint actor-action segmentation task.

Both pixel level and bounding box annotation per actor-

action pair are provided in this dataset.

VidOR dataset: We also evaluate our method on the Vi-

dOR dataset [30] which contains 10,000 videos with 80 ob-

ject categories and 42 action predicates with bounding box

annotations. Although it has more videos for training, the

dataset is more challenging as it has a wide range of objects

with a skewed distribution where 92% of objects are from

only 30 categories. Each action is part of a triplet and con-

sists of a subject and an object, with the subject performing

the action. Thus, action detection using object and its sur-

rounding context is more meaningful.

4.2. Metric

Following the evaluation protocols from [37] and [17],

we measure average per-class accuracy (ave), global pixel
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Input Method Actor Action Joint (A,A) Time (ms)

glo ave mIoU glo ave mIoU glo ave mIoU per frame

GPM + TSP [37] 85.2 58.3 33.4 85.3 60.5 32.0 84.2 43.3 19.9 -

GPM + GBH [37] 84.9 61.2 33.3 84.8 59.4 31.9 83.8 43.9 19.9 -

RGB Chen et al. [2]* 91.3 49.16 49.2 87.44 35.12 38.7 87.1 43.06 26.7 -

Ji et al. [17] 93.7 79.5 66.5 86.3 60.4 36.8 87.8 46.2 29.4 -

Dang et al. [6] 95.0 85.5 67.0 92.9 68.8 48.1 92.5 51.5 34.5 750

SSA2D (Ours) 96.1 79.4 66.8 94.4 66.2 46.5 93.8 49.3 34.6 67

TSMT + GBH [18] 85.8 72.9 42.7 84.6 61.4 35.5 83.9 48.0 24.9 -

RGB TSMT + SM [18] 90.6 73.7 49.5 89.3 60.5 42.2 88.7 47.5 29.7 -

+ Gavrilyuk et al. [8]† 92.8 71.4 53.7 92.5 69.3 49.4 91.7 52.4 34.8 -

OF Ji et al. [17] 94.5 79.1 66.4 92.6 62.9 46.3 92.5 51.4 36.9 350**

Dang et al. [6] 95.3 86.0 68.1 93.4 70.7 51.1 93.0 56.4 38.6 1100

SSA2D (Ours) 96.2 80.1 67.5 94.9 69.1 51.3 95.0 54.7 39.5 180

Table 1. Quantitative comparison of SSA2D on A2D dataset with prior approaches using RGB and RGB + optical flow as input, reporting

average per-class accuracy (ave), global pixel accuracy (glo) and mean pixel Intersection-over-Union (mIoU) for each task. † Uses

sentence priors. *Uses weakly-supervised training. ** Is time adjusted for same hardware setting by correspondence with authors.

Dataset Method Actor Action Joint (A,A)

glo ave mIoU glo ave mIoU glo ave mIoU

A2D Full (RGB only) 96.2 80.1 67.5 94.4 66.2 46.5 93.8 49.3 34.6

A2D w/o Actor-Prior 96.1 79.1 65.7 93.9 61.5 40.9 93.4 46.3 32.1

A2D w/o SSA-Masking 96.1 79.9 67.2 94.6 63.9 43.6 93.7 48.2 33.8

A2D w/o atrous convolutions 92.4 76.4 62 94.1 62.3 41.6 92.8 45.2 31.7

A2D w/o multi-scale 96.0 79.8 66.5 94.2 63.8 43.1 93.6 47.9 33.1

VidOR Full (RGB only) 72.2 7.6 5.1 66.8 33.2 7.9 41.7 15.7 2.1

(54.1) (20.5) (12.5) (70.2) (40.8) (11.7) (44.2) (18.8) (5.1)

VidOR w/o Actor-Prior 71.1 7.1 4.1 61.8 28.3 5.9 37.7 12.1 1.1

VidOR w/o SSA-Masking 71.8 7.1 4.3 65.4 31.7 7.1 39.2 15.2 1.8

VidOR w/o atrous convolutions 71.5 6.4 3.4 63.1 30.8 6.2 38.3 14.4 1.3

VidOR w/o multi-scale 71.2 6.1 3.1 61.7 29.5 6.0 37.8 14.1 1.1

Table 2. Ablation study of various components of SSA2D and their effect on actor-action detection on A2D and VidOR dataset. We

report scores on average per-class accuracy (ave), global pixel accuracy (glo) and mean pixel Intersection-over-Union (mIoU). Values

in bracket represent scores for the 20 most frequent classes.

Figure 3. Per actor-action category average accuracy score for A2D. The orange bars show results for RGB modality and blue bar for

combined RGB and Optical Flow. We observe that on average, most of the classes benefit from having extra optical flow information.

accuracy (glo) and mean pixel Intersection-over-Union

(mIoU) as evaluation metrics. Accuracy is the percent of

pixels with correct label prediction, where (glo) is com-

puted over all pixels and (ave) is first computed per class

and then averaged. Since background covers a large area

and most models are biased towards background, mIoU is

the most representative metric for correct pixel prediction

over all classes [18]. We report results for actor, action and
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joint actor-action detection for (ave), (glo) and (mIoU)
metrics for a fair comparison with existing methods.

4.3. Results

The performance of SSA2D on A2D is shown in Ta-

ble 1. Using only RGB stream, SSA2D gives improved joint

actor-action mIoU with significant reduction in inference

time (∼11x faster). This demonstrates that the network’s

joint training is able to learn action features based on actors

while computing video level detection faster than previous

methods. Moreover, using RGB+OF input we observe that

the network gives improved mIoU scores on action and joint

task as expected, demonstrating that our approach general-

izes to different types on input modalities. We also analyze

per class performance and the scores are shown for both of

our RGB model and RGB+OF model in Figure 3. We ob-

serve that the proposed method can detect most classes ac-

curately in RGB model and the scores are further increased

with additional flow information.

We report the performance of proposed method on Vi-

dOR dataset in Table 2. We evaluate the model on same

evaluation metrics as used for the A2D dataset. Due to its

long tail distribution, the dataset suffers from large data un-

balance. As such, even when our network performs well

on those classes, the average accuracy and mean IoU scores

drop due to tail classes with fewer training samples.

Qualitative evaluation: Figure 4 and 5 show qualitative

results for actor-action detection. We observe that the pro-

posed method can predict reasonable detections for most of

the cases. Figure 6 shows that the network predicts cor-

rectly even though ground truth annotation is missing la-

bels. The network is able to generalize and learn effec-

tive actor-action features to predict the missing labels. The

last column shows the network detecting a hard sample cor-

rectly. Even though the cat blends with the background, it

is well segmented and detected as cat-jumping class. Using

3D convolution on videos where the object is better visi-

ble in other frames, detection improves in such challenging

frames as features is evaluated together for the entire video.

4.4. Ablation Studies

We further validate the importance of different compo-

nents proposed in our model through ablation experiments.

Since our contribution is agnostic to input type, we evaluate

all variations against the full RGB only model in Table 2.

Actor Prior Infusion (AP-Infusion): One of the key

components in improving action detection in our model is

the use of actor prior for inferring activities. The A-prior

coming from actor detection branch provides contextual in-

formation regarding all actors around each pixel. It is rea-

sonable to have an understanding of the actors involved in

order to better judge the actions happening. While [11]

shows that using pair-wise actor features helps improve ac-

tion classification in images, our AP-Infusion approach uses

all of the involved actor’s features together because of the

pixel-level detection. We train our model without using the

AP-Infusion to evaluate its effectiveness. As seen in Full

and w/o Actor-prior models of Table 2, A-prior provides

a significant gain in the action detection task (∼ 6% im-

provement in mIoU for A2D) and subsequently increases

the scores for all other tasks. Since we perform a joint train-

ing, we also observe the decrease of scores for actor detec-

tion task when feedback from the AP-Infusion block is not

present.

SSA-Masking: SSA-Masking is used in action detection

task to filter and enhance focus on action regions for pixel-

wise detection. This reduces the surplus background noise

and helps in a faster convergence. Our motivation to use

the STU-Mask is to provide emphasis on features related to

actors while filtering out excess background data. In RPN

based methods, ROI-Pooling play the role of feature filter-

ing. However, pooling is performed for each proposal inde-

pendently making it computationally expensive. We use a

unified mask for all the actors in the scene for this filtering

making SSA2D more efficient. SSA-Masking enables the

network to focus more on the actor pixels while suppressing

the background pixels, which leads to an improved network

performance for action detection (∼ 3% increase in mIoU

for A2D) and also provides a faster network convergence

(∼3x).

4.5. Comparative analysis

Figure 1 shows a comparative view of our method along

with [17, 37, 6] in terms of performance and speed. Com-

pared to [6], our training does not use weights pre-trained

on segmentation task and trains the decoders from scratch,

while [6] uses pre-trained weights on segmentation tasks.

We observe that our method performs significantly better

compared to [17, 37] in all evaluation metrics as seen in Ta-

ble 1. We see that despite fast inference time for [17], it

under-performs and has a larger model. Furthermore, our

quantitative scores are similar or slightly better than pre-

vious state of the art method [6] and has significantly bet-

ter inference time(∼11x). This large gap in inference time

makes our approach better suited for actor-action detection

in videos as compared to all prior works.

Network parameters: Another key aspect of the pro-

posed method is the smaller network size (35M params for

RGB and 55M params for RGB+OF) compared to [6, 17]

(44M params for RGB and 88M params for RGB+OF).

Compared to prior works, SSA2D has reduced network

size which relates to the overall efficiency and performance

speed. The memory-efficient reduced network also enables

end-to-end training for all tasks simultaneously as com-

pared to multi-stage training [6], which is time consuming.
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Figure 4. Qualitative results of our method on A2D dataset. The first row shows the input key frame, second row shows the ground truth

with annotation labels and third row shows our joint actor-action detection result with predicted labels.

Figure 5. Qualitative results of our method on ViDOR dataset. The

top, middle and bottom row represents input key frame, ground

truth and our joint actor-action predictions with label respectively.

Figure 6. Qualitative analysis of some success cases where the net-

work predicts better than the ground truth. The top, middle and

bottom row represents input key frame, ground truth and our joint

actor-action detection predictions with label respectively. The net-

work correctly predicts labels for actions which are not annotated

in the ground truth but present in the clip.

Running time: A crucial difference between SSA2D and

prior works is that previous works rely on RPN as an aux-

iliary task during training to obtain actor regions for ROI

pooling. Our method uses end-to-end pixel-wise detection

and jointly trains actor-action tasks on pixel level while

keeping the implementation efficient and effective. For a

fair evaluation, we evaluate the time taken to perform the

evaluations on a single core of an Intel Xeon 2.3GHz CPU

using a single NVidia Tesla K80 GPU [6]. During infer-

ence, our system takes 180 ms per frame with the RGB +

OF model, while it takes only 67 ms per frame for single

stream RGB model. [6] report computational time of 1100
ms per frame for their full system with optical flow, with

around 350 ms being used for optical flow estimation.

5. Conclusions

We propose SSA2D, a simple yet effective approach for

single-shot actor-action detection in videos. We demon-

strate that actor-action detection in videos can be performed

without relying on region proposal network where thou-

sand of proposals are required making it in-efficient for

dense video scenes. We evaluate the proposed approach on

A2D and VidOR datasets and achieve comparable (some-

times even better) performance when compared with prior

works. The proposed model can be efficiently trained (2x

faster) with a fast inference (∼11x faster for RGB and ∼6x

faster for RGB+optical-flow) with fewer network parame-

ters when compared with best performing prior works.
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