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Figure 1: Various 2D object detection representations on fisheye camera images. (a) Standard Box, (b) Oriented Box, (c) Curved Box,

(d) Ellipse, (e) 4-sided Polygon and (f) 24-sided Polygon.

Abstract

Object detection is a comprehensively studied problem

in autonomous driving. However, it has been relatively

less explored in the case of fisheye cameras. The standard

bounding box fails in fisheye cameras due to the strong ra-

dial distortion, particularly in the image’s periphery. We

explore better representations like oriented bounding box,

ellipse, and generic polygon for object detection in fisheye

images in this work. We use the IoU metric to compare

these representations using accurate instance segmentation

ground truth. We design a novel curved bounding box model

that has optimal properties for fisheye distortion models.

We also design a curvature adaptive perimeter sampling

method for obtaining polygon vertices, improving relative

mAP score by 4.9% compared to uniform sampling. Over-

all, the proposed polygon model improves mIoU relative ac-

curacy by 40.3%. It is the first detailed study on object de-

tection on fisheye cameras for autonomous driving scenar-

ios to the best of our knowledge. The dataset1 comprising

of 10,000 images along with all the object representations

ground truth will be made public to encourage further re-

search. We summarize our work in a short video with qual-

itative results at https://youtu.be/iLkOzvJpL-A.

1This dataset is an extension of our WoodScape dataset [32].

1. Introduction

Typically, automotive systems are equipped with a multi-

camera network to cover all the field of view and range

[9]. Four surround-view fisheye cameras are typically part

of this sensor suite, as illustrated in Figure 2. We can ac-

complish a dense 360° near field perception with the em-

ployment of four surround-view fisheye cameras, making

them suitable for automated parking, low-speed maneuver-

ing, and emergency braking [8]. The wide field of view of

the fisheye image comes with the side effect of strong ra-

dial distortion. Objects at different angles from the optical

axis look quite different, making the object detection task a

challenge. A common practice is to rectify distortions in the

image using a fourth order polynomial [32] model or unified

camera model [14]. However, undistortion comes with re-

sampling distortion artifacts, especially at the periphery. In

particular, the negative impact on computer vision due to

the introduction of spurious frequency components is un-

derstood [21]. In addition, other more minor impacts in-

clude reduced field of view and non-rectangular image due

to invalid pixels. Although semantic segmentation is an eas-

ier solution on fisheye images, object detection annotation

costs are much lower [26]. In general, there is limited work

on fisheye perception [18, 31, 29, 16, 23, 17].

We can broadly classify the state-of-the-art object detec-

tion methods based on deep learning into two types: two-
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stage detectors and single-stage detectors. Agarwal et al. [1]

provides a detailed survey of current object detection meth-

ods and its challenges. Relatively, fisheye camera object de-

tection is a much harder problem. The rectangular bounding

box fails to be a good representation due to the massive dis-

tortion in the scene. As demonstrated in Figure 1 (a), the

size of the standard bounding box is almost double the size

of the object of interest inside it. Instance segmentation can

help obtain accurate object contours. However, it is a differ-

ent task which is computationally complex and more expen-

sive to annotate. It also typically needs a bounding box es-

timation step. There is relatively less work on object detec-

tion for fisheye or closely related omnidirectional cameras.

One of the main issues is the lack of a useful dataset, par-

ticularly for autonomous driving scenarios. The recent fish-

eye object detection paper FisheyeDet [19] emphasizes the

lack of a useful dataset, and they create a simulated fisheye

dataset by applying distortions to the Pascal VOC dataset

[6]. FisheyeDet makes use of a 4-sided polygon represen-

tation aided by distortion shape matching. SphereNet [3]

and its variants [22, 27, 12] formulate CNNs on spherical

surfaces. However, fisheye images do not follow spheri-

cal projection models, as seen by non-uniform distortion in

horizontal and vertical directions.

Our objective is to present a more detailed study of var-

ious techniques for fisheye object detection in autonomous

driving scenes. Our main contributions include:

• Exploration of seven different object representations

for fisheye object detection.

• Design of novel representations for fisheye images, in-

cluding the curved box and adaptive step polygon.

• Public release of a dataset of 10,000 images with an-

notations for all the object representations.

• Implementation and empirical study of FisheyeYOLO

baseline, which can output different representations.

2. Object Representations

2.1. Adaptation of Box representations

Standard Box Representation The rectangular bound-

ing box is the most common representation for object de-

tection. They are aligned to the pixel grid axes, which

makes them efficient to be regressed using a machine learn-

ing model. They are represented by four parameters (x̂, ŷ,

ŵ, ĥ), namely the box center, width and height. It has the

advantage of simplified, low-cost annotation. It works in

most cases, but it may capture a large non-object area within

the box for complex shapes. It is particularly the case for

fisheye distorted images, as shown in Figure 1 (a).

Oriented Box Representation The oriented box is a sim-

ple extension of the standard box with an additional param-

eter θ̂ to capture the rotation angle of the box. It is also

referred to as a titled or rotated box. Lienhart et al. [20]

front

left

right

rear

Figure 2: Illustration of four fisheye camera images (locations

in the car are marked with green circles) forming the surround-

view camera network. Wide field of view of 190◦ and strong radial

distortion can be observed.

adapted Viola-Jones object detection framework to output

rotated boxes. It is also commonly used in lidar top-view

object detection methods [7]. The orientation ground-truth

range spans the range of (-90°to +90°) where this rotation

angle is defined with respect to the x-axis. For this study,

we used instance segmentation contours to estimate the op-

timally oriented box as a minimum enclosing rectangle.

Ellipse Representation Ellipse is closely related to an

oriented box and can be represented using the same param-

eter set. Width and height parameters represent the major

and minor axis of the ellipse. In contrast to an oriented

box, the ellipse has a smaller area at the edge, and thus it

is better for representing overlapping objects as shown for

the objects at the left end in Figure 1. It may also help fit

some objects like vehicles better than a box. We created

our ground truth by fitting a minimum enclosing ellipse to

the ground truth instance segmentation contours. In paral-

lel work, Ellipse R-CNN [4] used ellipse representation for

objects instead of boxes.

2.2. Distortion aware representation

This subsection aims to derive an optimal representation

of objects undergoing radial distortion in fisheye images as-

suming a rectangular box is optimal for pinhole cameras. In

the pinhole camera with no distortion, a straight line in the

scene is imaged as a straight line in the image. A straight

line in the scene is imaged as a curved segment in the image

for a fisheye image. The specific type of fisheye distortion

determines the nature of the curved segment. The fisheye

cameras from the dataset we used are well represented and

calibrated using a 4th order polynomial model for the fish-

eye distortion [32]. The author’s are aware that there have

been many developments in fisheye camera models over the

past few decades, e.g. [13, 2, 15]. In this section, we con-

sider the fourth order polynomial model and the division

model only. The reason is that the fourth order polynomial

model is provided by the data set that we use, and we exam-

ine the division model to understand if the use of circular
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Figure 3: Approximation of 4th order radial distortion model

by division model. (a) shows the division model fit to the 4th order

polynomial model. Note that the two are almost indistinguishable.

(b) shows the residual error per field angle.

arcs is valid under such fisheye projections.

In this case, the projection of a line on to the image can

be described parametrically with complicated polynomial

curves. Let us consider a much simpler model for the mo-

ment - a first-order polynomial (or equidistant) model of a

fisheye camera. i.e. r′ = aθ, where r′ is the radius on the

image plane, and θ is the angle of the incident ray against

the optical axis. If we consider the parametric equation P(t)
of a line in 3D Euclidean space:

P(t) = Dt+Q (1)

where D = [Dx, Dy, Dz] is the direction vector of the line

and Q = [Qx, Qy, Qz] is a point through which the line

passes. Hughes et al. [10] have shown that the projection

on to a fisheye camera that adheres to equidistant distortion

is described by:

p′(t) =

[

Dxt+Qx

Dyt+Qy

]

|p′(t)|

|p(t)|
(2)

where

|p′(t)|

|p(t)|
=

a arctan
(

dxy(t)
Dzt+Qz

)

dxy(t)
(3)

dxy(t) =
√

(Dxt+Qx)2 + (Dyt+Qy)2 (4)

p(t) is the projected line in a pinhole camera, and p′(t) is

the distorted image of the line in a fisheye camera.

This is a complex description of a straight line’s pro-

jection, especially considering we have ignored all but the

first-order polynomial term. Therefore, it is highly desirable

to describe straight lines’ projection using a more straight-

forward geometric shape. Bräuer-Burchardt and Voss [2]

show that if the first-order division model can accurately

describe the fisheye distortion, then we may use circles in

the image to model the projected straight lines. As a note,

the division model is generalised in [25], though it loses

the property of straight line to circular arc projection. We

should then consider how well the division model fits with

the 4th order polynomial model. In [10], the authors adapt

Figure 4: Top: Illustration of fisheye distortion of projection of

an open cube. A 4th-degree polynomial model radial distortion.

We can visually notice that box matures to a curved box, and it

is justified theoretically in Section 2.2. Bottom: We propose the

Curved Bounding Box using a circle with an arbitrary center and

radius, as illustrated. It captures the radial distortion and obtains

a better footpoint. The center of the circle can be equivalently

reparameterized using the object center (x̂, ŷ).

the division model slightly to include an additional scaling

factor and prove that this does not impact the projection of

line to a circle. They show that the division model is a cor-

rect replacement for the equidistant fisheye model. Here we

repeat this test but compare the division model to the 4th or-

der polynomial. The results are shown in Figure 3. As can

be seen, the division model can map to the 4th order poly-

nomial with a maximum of less than 1-pixel error. While

this may not be accurate enough for applications in which

sub-pixel error is desirable, it is sufficient for bounding box

accuracy.

Therefore, we propose a novel curved bounding box rep-

resentation using circular arcs. Figure 4 (top) provides a
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Figure 5: Generic Polygon Representations. Left: Uniform angular sampling where the intersection of the polygon with the radial line

is represented by one parameter per point (r). Middle: Uniform contour sampling using L2 distance. It can be parameterized in polar

co-ordinates using 3 parameters (r, θ, α). α denotes the number of polygon vertices within the sector, and it may be used to simplify the

training. Alternatively, 2 parameters (x,y) can be used, as shown in the figure on the right. Right: Variable step contour sampling. It is

shown that the straight line in the bottom has less number of points than curved points such as the wheel. This representation allows to

maximize the utilization of vertices according to local curvature.

visual justification of circular arcs. We illustrate an open

cube’s projection with grid lines where the straight lines be-

come circular arcs after projection. Figure 4 (bottom) il-

lustrates the details of the curved bounding box. The blue

line represents the axis, and the white lines intersect with

the circles creating starting and ending points of the poly-

gon. This representation allows two sides of the box to be

curved, giving the flexibility to adapt to image distortion in

fisheye cameras. It can also specialize in an oriented bound-

ing box when there is no distortion for the objects near the

principal point.

We create an automatic process to generate the repre-

sentation that takes an object contour as an input. First,

we generate an oriented box from the output contour. We

choose a point that lies on the oriented box’s axis line to

represent a circle center. From the center, we create two

circles intersecting with the corner points of the bounding

box. We construct the polygon based on the two circles

and the intersection points. To find the best circle center,

we iterate over the axis line and choose the circle center,

which forms a polygon with the minimum IoU with the in-

stance mask. The output polygon can be represented by 6

parameters, namely, (c1, c2, r1, r2, θ1, θ2) representing the

circle center, two radii and angles of the start and end points

of the polygon relative to the horizontal x-axis. By simple

algebraic manipulation, we can re-parameterize the curved

box using the object center (x̂, ŷ) following a typical box

representation instead of the center of the circle.

2.3. Generic Polygon Representations

Polygon is a generic representation for any arbitrary

shape and is typically used even, for instance segmentation

annotation. Thus polygon output can be seen as a coarse

segmentation. We discuss two standard representations of a

polygon and propose a novel extension that improves accu-

racy.

Uniform Angular Sampling Our polar representation is

quite similar to PolarMask [30] and PolyYOLO [11] ap-

proaches. As illustrated in Figure 5 (left), the full angle

range of 360° is split into N equal parts where N is the

number of polygon vertices. Each polygon vertex is rep-

resented by the radial distance r from the centroid of the

object. Uniform angular sampling removes the need for en-

coding θ parameter. Polygon is finally represented by object

center (x̂, ŷ) and {ri}.

Uniform Perimeter Sampling In this representation, we

divide the perimeter of the object contour equally to create

N vertices. Thus the polygon is represented by a set of ver-

tices {(xi, yi)} using the centroid of the object as the origin.

PolyYOLO [11] showed that it is better to learn polar rep-

resentation of the vertices {(ri, θi)} instead. They define a

parameter α to denote the presence or absence of a vertex

in a sector, as shown in Figure 5 (middle). We extend this

parameter to be the count of vertices in the sector.

Curvature-adaptive Perimeter Sampling The original

curve in the object contour between two vertices gets ap-

proximated by a straight line in the polygon. For regions of

high curvature, this is not a good approximation. Thus, we

propose an adaptive sampling based on the curvature of the

local contour. We distribute the vertices non-uniformly in

order to represent the object contour best. Figure 5 (right)

shows the effectiveness of this approach, where a larger

number of vertices are used for higher curvature regions

than straight lines, which can be represented by lesser ver-

tices. We adopt the algorithm in [28] to detect the dominant

points in a given curved shape, which best represents the

object. Then we reduce the set of points using the algo-

rithm in [5] to get the most representative simplified curves.
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This way, our polygon has dense points on the curved parts

and sparse points on the straight parts, which maximize the

utilization of the predefined number of points per contour.

3. FisheyeYOLO network

We adapt YOLOv3 [24] model to output different repre-

sentations discussed in Section 2. We call this FisheyeY-

OLO, as illustrated in Figure 6. Our baseline bounding

box model is the same as YOLOv3 [24], except the Dark-

net53 encoder is replaced with ResNet18 encoder. Simi-

lar to YOLOv3, object detection is performed at multiple

scales. For each grid in each scale, object width (ŵ), height

(ĥ), object center coordinates (x̂, ŷ) and object class is in-

ferred. Finally, a non-maximum suppression is used to filter

out the low confidence detections. Instead of using L2 loss

for categorical and objectness classification, we used stan-

dard categorical cross-entropy and binary entropy losses,

respectively. The final loss is a combination of sub-losses,

as illustrated below:

Lxy = λcoord

S2

∑

i=0

B
∑

j=0

l
obj
ij [(xi − x̂

i
)2 + (yi − ŷ

i
)2] (5)

Lwh = λcoord

S2

∑

i=0

B
∑

j=0

l
obj
ij [(

√
wi −

√

ŵ
i
)2 + (

√

hi −
√

ĥ
i
)2]

(6)

Lobj = −
S2

∑

i=0

B
∑

j=0

[Cilog(Ĉi
)] (7)

Lclass = −
S2

∑

i=0

l
obj
ij

∑

c=classes

[ci,j log(p(ĉi,j ))] (8)

Ltotal = Lxy + Lwh + Lobj + Lclass (9)

where height and width are predicted as offsets from pre-

computed anchor boxes.

In the case of oriented box or ellipse prediction, we de-

fine an additional loss function based on ellipse angle or

orientation of the box. The loss function for oriented box

and ellipse is:

Lorn =

S2

∑

i=0

B
∑

j=0

lobjij [θi − θ̂
i
]2 (10)

Ltotal = Lxy + Lwh + Lobj + Lclass + Lorn (11)

where Ltotal, is the total loss minimized for oriented box

regression. In case of curved box, Lwh is replaced by Lcods

in equation (13).

We also explored methods of learning orientation as a

classification problem instead of a regression problem. One

motivation is due to discontinuity of angles at 90° due to

wrapping around of angles. In this scenario, we discretized

the orientation into 18 bins, where each bin represents a

Figure 6: FisheyeYOLO is an extension of YOLOv3 which can

output different output representations discussed in Section 2.

range of 10°with a tolerance of +-5°. To further improve our

prediction, we design an IoU loss function that guides the

model to minimize the difference in the area of the predicted

box and the ground truth box. We compute the area of the

predicted and ground truth rectangles and apply regression

loss on those values. This loss maximizes the overlapping

area between the prediction and the ground truth by improv-

ing the overall results. The IoU loss is,

LIoU = λcoord

S2

∑

i=0

B
∑

j=0

lobjij [(ai − â
i
)2] (12)

where a represents the area of the representation at hand.

We report all the results related to these experiments in Ta-

ble 3.

The polar polygon regression loss is,

Lcods =
S2

∑

i=0

N
∑

j=0

α̂ij [(ri,j − r̂
i,j
)2 + (θi,j − θ̂

i,j
)2] (13)

Lmask = −

S2

∑

i=0

N
∑

j=0

αij log(α̂ij) (14)

Ltotal = Lxy + Lobj + Lclass + Lcods + Lmask (15)

where N corresponds to the number of sampling points,

each point is sampled with a step size of 360/N angle in

polar coordinates, as shown in Figure 5. Our polar loss

is similar to PolyYOLO [11], where each polygon point is

(in red) is represented using three parameters r, θ, and α.

Hence the total required parameters for N sampling points

are 3×N . The same is presented in Figure 5 (middle).
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# Vertices 4 12 24 36 60 120

mIoU 85 85.3 86.6 91.8 94.2 98.4

Table 1: Analysis of the number of polygon vertices for repre-

senting the objects contour. mIoU is calculated between the ap-

proximated polygon and ground truth instance segmentation mask.

In Cartesian representation, we regress over two param-

eters (x̂, ŷ) for each polygon point. We further improve

our predictions by adding our IoU loss function, which

minimizes the area between the prediction and ground

truth. We refer to both loss functions as localization loss

LLocalization. Our combined loss for Cartesian polygon

predictions is:

Ltotal = LClass + LObj + LLocalization (16)

where LObj and LClass are inherited from YoloV3 loss

functions. According to the representation at hand, we per-

form the non-maximum suppression. We generate the pre-

dictions for all the representations; filter out the low confi-

dence objects—computation of IoU of the output polygon

with the list of outputs where high-IoU objects are filtered

out.

4. Experimental Results

4.1. Dataset and Evaluation Metrics

Our dataset comprises of 10,000 images sampled

roughly equally from the four views. The dataset comprises

4 classes, namely vehicles, pedestrians, bicyclists, and mo-

torcyclists. Vehicles further have sub-classes, namely cars

and large vehicles (trucks/buses). The images are in RGB

format with 1MPx resolution and 190° horizontal FOV. The

dataset is captured in several European countries and the

USA. For our experiments, we used only the vehicles’ class.

We divide our dataset into 60-10-30 split and train all the

models using the same setting. More details are discussed

in our WoodScape Dataset paper [32].

The objective of this work is to study various representa-

tions of fisheye object detection. Conventional object de-

tection algorithms evaluate their predictions against their

ground-truth, which is usually a bounding box. Unlike con-

ventional evaluation, our first objective is to provide better

representation than a conventional bounding box. There-

fore, we first evaluate our representations against the most

accurate representation of the object, the ground-truth in-

stance segmentation mask. We report mIoU between a rep-

resentation and the ground-truth instance mask.

Additionally, we qualitatively evaluate the representa-

tions in obtaining object intersection with the ground (foot-

point). This is critical as it helps localize the object in

the map and provide more accurate vehicle trajectory plan-

ning. Finally, we report model speed in terms of frames-

per-second (fps) as we focus on real-time performance. The

Representation mIoU mIoU
No. of

params

Front Rear Left Right

Standard Box 53.7 47.9 60.6 43.2 51.35 4

Curved Box 53.7 48.6 63.5 44.2 52.5 6

Oriented Box 55 50.2 64.8 45.9 53.9 5

Ellipse 56.5 51.7 66.5 47.5 55.5 5

4-sided Polygon (uniform) 70.7 70.6 70.2 69.6 70.2 8

24-sided Polygon (uniform) 85 84.9 83.9 83.8 84.4 48

24-sided Polygon (adaptive) 87.2 87 86.2 86.1 86.6 48

Table 2: Evaluation of representation capacity of various rep-

resentations. We estimate the best fit for each representation us-

ing ground truth instance segmentation and then compute mIoU to

evaluate capacity. We also list the number of parameters used for

each representation to provide comparison of complexity.

distortion is higher in side cameras compared to front and

rear cameras. Thus, we provide our evaluation on each cam-

era separately. To simplify our baseline, we only evaluate

on vehicles class although four classes are available in the

dataset.

4.2. Results Analysis

4.2.1 Number of Polygon Points

Polygon is a more generic representation of complex object

shapes that arise in fisheye images. We perform a study to

understand the effect of the number of vertices parameter in

a polygon. We use a uniform perimeter sampling method

to vary the number of vertices and compare the IoU using

instance segmentation as ground truth. The results are tab-

ulated in Table 1. A 24-sided polygon seems to provide

a reasonable trade-off between the number of parameters

and accuracy. Although a 120-sided polygon provides 8%

higher ground truth, it will be difficult to learn this represen-

tation and it will produce noisy overfitting. For the quanti-

tative experiments, we fix the number of vertices to be 24 to

represent each object. We observe no significant difference

in fps due to increasing the number of vertices where our

models run at 56 fps on a standard NVIDIA TitanX GPU. It

is due to the utilization of YoloV3 [24] architecture, which

performs the prediction at each grid cell in a parallel man-

ner.

4.2.2 Evaluation of Representation Capacity

Table 2 compares the performance of different represen-

tations using its ground truth fit relative to instance seg-

mentation ground truth. This empirical metric is used to

demonstrate the maximum performance a representation

can achieve regardless of the model complexity. As ex-

pected, a 24-sided polygon achieves the highest mIou show-

ing that it has the best representation capacity. Our proposed

curvature-adaptive polygon achieves a 2.2% improvement

over uniform sampling polygon with the same vertices.

Polygon annotation is relatively more expensive to collect,
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Representation mAP

Oriented Box

Orientation regression 39

Orientation classification 40.6

Orientation classification + IoU loss 41.9

24-sided Polygon

Uniform Angular 55.6

Uniform Perimeter 55.4

Adaptive Perimeter 58.1

Table 3: Ablation study of parameters in oriented bounding

box and 24-point polygon representation. Angle classification

and our added IoU loss provide a significant improvement of mAP

score relative to a standard baseline. Proposed variable step poly-

gon representation provides significant improvement of 2.7%.

and it increases model complexity. Thus it is still interesting

to consider more simpler bounding box representations.

Compared to standard box representation, oriented box

representation is approximately 2.5-4% efficient for the side

cameras and 1.3-2.3% for front cameras. Ellipse improves

the efficiency further by an additional 2% for side cameras

and 1-2% in front cameras. Our curved box achieves a

1.15% improvement over the standard box. However, it is

slightly less than an oriented box due to the constraint that

two circular sides of the box share the same circle center,

which adds some area inside the polygon, decreasing the

IoU. In addition, curvature is not modelled for the horizon-

tal edges of the box. In future work, we plan to explore

these extensions to obtain a more optimal curved bounding

box and leverage the convergence of circular arcs at vanish-

ing points.

The current simple version of curved box has the advan-

tage of getting a tight bottom edge, capturing the footpoint

for estimating the object’s 3D location. The object’s foot-

point is captured almost entirely, as observed in qualitative

results, especially for the side cameras where distortion is

maximized. Compared to polygon representation, curved-

box representation has low annotation cost due to fewer rep-

resentation points, which saves annotation effort.

4.2.3 Quantitative Results

Table 3 shows our studies on the methods to predict the ori-

entation of the box or the ellipse efficiently. First, we train

a model to regress over the box and its orientation, as speci-

fied in equation (11). In the second experiment, orientation

prediction is addressed as a classification problem instead of

regression as a possible solution to the discontinuity prob-

lem. We divide the orientation range of 180° into 18 bins,

where each bin represents 10°, making this an 18 class clas-

sification problem. During the inference, an acceptable er-

ror of +-5 degrees for each box is considered. Using this

classification strategy, we improve performance by 1.6%.

We are formulating orientation of box or ellipse prediction

Representation IoU mIoU

Front Rear Left Right

YoloV3 32.5 32.1 34.2 27.8 31.6

Curved Box 33 32.7 35.4 28 32.3

Oriented Box 33.9 33.5 37.2 30.1 33.6

Ellipse 35.4 35.4 40.4 30.5 35.4

24-sided Polygon 44.4 46.8 44.7 42.7 44.65

Table 4: Quantitative results of proposed model on different

representations on our dataset. The experiments are performed

on the best performing model according to Table 2 and Table 3.

as a classification model with IoU loss found to be supe-

rior in performance compared to direct regression. This has

a 2.9% improvement in accuracy. Hence we use this model

as a standard representation for oriented box and ellipse pre-

diction when comparing with other representations.

Table 4 demonstrates our prediction results on our pro-

posed representations. Compared to the standard bounding

box approach, the proposed oriented box and ellipse models

improved mIoU score on the test set by 2%, 1.8% respec-

tively. Ellipse prediction provides slightly better accuracy

than the oriented box as it has higher immunity to occlu-

sions with other objects in the scene due to the absence of

corners, and it is demonstrated in Figure 7.

4.2.4 Qualitative Results

Figure 7 shows a visual evaluation of our proposed repre-

sentations. Results show that the ellipse provides a decent

easy-to-learn representation with a minimum number of pa-

rameters and minimum occlusion with the background ob-

jects compared to the oriented box representation. Unlike

boxes, it allows a minimal representation for the object due

to the absence of corners, which avoids incorrect occlusion

with free parking slots, for instance, as shown in Figure 7

(Bottom). Polygon representation provides higher accuracy

in terms of IoU with instance mask. A four-point model

provides high accuracy predictions with small objects as 4

points are sufficient to represent. As the dataset has signifi-

cant small objects that helped this representation to demon-

strate good accuracy, and the same is shown in Tables 2 and

3. Visually, large objects cannot be represented by a quadri-

lateral, as illustrated in Figure 7. A higher number of sam-

pling points on the polygon results in higher performance.

However, the predicted masks are still prone to deformation

due to minor errors in each point’s localization.

5. Conclusion

In this paper, we studied various representations of fish-

eye object detection. At a high level, we can split them into

bounding box extensions and generic polygon representa-

tions. We explored oriented bounding box, ellipse, and de-

signed a curved bounding box with optimal fisheye distor-

tion properties. We proposed a curvature adaptive sampling
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Figure 7: Qualitative results of the proposed model outputting different representations. Rows represent front, left, right, and rear

camera images, respectively. From left to right: Standard box, Oriented box, Ellipse, Curved box, 4-point polygon. 24-point polygon.

method for polygon representations, which improves signif-

icantly over uniform sampling methods. Overall, the pro-

posed models improve the relative mIoU accuracy signifi-

cantly by 40% compared to a YOLOv3 baseline. We con-

sider our method to be a baseline for further research into

this area. We will make the dataset with ground truth an-

notation for various representations publicly available. We

hope this encourages further research in this area leading to

mature object detection on raw fisheye imagery.
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