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Abstract

Lensless imaging is a new, emerging modality where im-

age sensors utilize optical elements in front of the sensor to

perform multiplexed imaging. There have been several re-

cent papers to reconstruct images from lensless imagers, in-

cluding methods that utilize deep learning for state-of-the-

art performance. However, many of these methods require

explicit knowledge of the optical element, such as the point

spread function, or learn the reconstruction mapping for a

single fixed PSF. In this paper, we explore a neural network

architecture that performs joint image reconstruction and

PSF estimation to robustly recover images captured with

multiple PSFs from different cameras. Using adversarial

learning, this approach achieves improved reconstruction

results that do not require explicit knowledge of the PSF

at test-time and shows an added improvement in the recon-

struction model’s ability to generalize to variations in the

camera’s PSF. This allows lensless cameras to be utilized

in a wider range of applications that require multiple cam-

eras without the need to explicitly train a separate model

for each new camera.

1. Introduction

As imaging has become ubiquitous, there has been in-

creased emphasis on reduced size, weight, power, and cost

for cameras. While camera size and weight has reduced

drastically over the past decade, it is still limited by the

size/weight of optical components, namely the lens. In

computational imaging research, lensless camera technol-

ogy has been recently shown to be a promising solution for

low size, weight, and cost [4, 39, 2, 14]. Without a lens,

cameras can be reduced to consume a nearly flat form-factor

to enable computer vision in small-scale robotics, embed-

ded in wearable and Internet-of-Things applications, and

even enable potential uses in biomedical microscopy.

Lensless cameras indirectly capture information from a

scene by multiplexing light rays onto the sensor, and then

reconstructing the image by solving an inverse problem.

This multiplexing is done using various optical elements

such as coded apertures, diffusers, or diffraction gratings. In

previous research, lensless reconstructions have been shown

to be near visual quality of lensed images using both opti-

mization and machine learning methods [7]. Lensless cam-

eras have also shown potential in 3D microscopy[26, 1] and

depth estimation [44], thus augmenting imaging beyond tra-

ditional photography applications. Finally, lensless images

without reconstruction are not visually identifying for hu-

man observers, and thus may have applications for privacy

and security [42, 9].

However, lensless cameras have not yet been seen as a

viable alternative to traditional cameras in many applica-

tions due to some specific limitations. Reconstruction of

the scene image requires calibration to account for the opti-

cal element which performs light multiplexing onto the sen-

sor, typically the point-spread-function (PSF) of the optical

system. This calibration is sensor-specific, and most recon-

struction algorithms to-date require this information in or-

der to recover the scene. This need for calibration informa-

tion limits the robustness of these reconstruction algorithms

in practice for lensless cameras.

In this paper, we propose lensless camera reconstruc-

tion which does not require calibration of the point-spread-

function (PSF) for a given optical element. Our neural net-

work architecture performs joint image reconstruction and

PSF estimation, and achieves comparable to state-of-the-art

reconstruction performance while generalizing to multiple

PSFs corresponding to multiple lensless cameras. We uti-

lize a GAN-based deep neural network architecture, and es-

timate the PSF from a lensless input image to perform re-

construction without the need for calibration using a prior

learned from training data. Our experimental results vali-

dates our network performance without calibration PSF data

at test time along with low latency. This includes testing

on a difficult, varying PSF dataset of lensless video from

multiple lensless cameras collected from a prototype hard-

ware setup. We hope this work shows the first steps toward

calibration-free and robust lensless imaging in the future.
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Figure 1: Network Architecture: Our lensless image reconstruction pipeline consisting of generative adversarial networks

for image reconstruction and point spread function (PSF) estimation. In addition to regular and adversarial loss functions, a

perceptual loss and a self-supervised consistency loss with respect to the forward imaging model is incorporated.

2. Related work

Lensless Cameras: The first lensless cameras are actu-

ally the oldest camera technology: pinhole cameras from

classical times. While classical pinholes suffer from low-

light throughput, the principle of coded aperture via mul-

tiple pinholes has been used extensively in astronomy and

scientific imaging [12, 10]. Coded aperture cameras have

been developed using mask patterns [27, 40] or diffrac-

tion gratings [18] to perform light field-based applications

such as post-capture refocusing and novel view synthesis.

Another parallel track of lensless imaging utilizes spatial

light modulators and compressive sensing to recover im-

ages, commonly known as single-pixel cameras [13, 20].

In this paper, we are primarily concerned with lensless

cameras which feature an optical element above the sensor

to replace the lens, and typically these optical elements are

thin and scalable to a small size [39, 4, 2, 14]. FlatCam [4]

implements a coded mask with transparent and opaque fea-

tures that multiplex light from the scene to cause unique

mask shadows on the sensor. This concept has been ex-

tended for microscopy applications [1] as well as capturing

both images and depth information [19, 44]. Since ampli-

tude masks lose some light efficiency, newer designs have

featured phase masks [6, 43] for improved performance.

Diffraction gratings [14, 15] and Fresnel plates [37] have

also been used to achieve small form factors. Finally, Dif-

fuserCam utilizes a diffusion layer as the mask [2]. Images

for the system are captured in a diffused pattern on the im-

age sensor from which the scene can be recovered using an

algorithm with the appropriately calibrated PSF image. In

our paper, we build off the diffusion mask-based lensless

camera and aim to improve reconstruction quality for this

style of lensless cameras.

Lensless Image Reconstruction: Most of the cameras

presented above utilize optimization algorithms to solve the

inverse problem and recover back the original image of the

scene, typically with a variation on either alternating di-

rection method of multipliers (ADMM) [8] or some regu-

larized ℓ1 [5] or total variation regularization [33], where

are adapted for lensless imaging [4, 2]. These optimization

algorithms have the advantage of being data-agnostic, and

thus have wide generality compared to networks, but as it-

erative methods suffer from computational inefficiency.

Recently deep learning has shown superior performance

at lensless image reconstruction and other vision tasks. A

ResNet architecture was used to construct images from bare

sensor measurements in [34]. This model performs fairly

well for reconstructions, but is limited to images captured

at close distances which allows for high intensity features

of the image on the sensor. Other deep learning for lensless

optics works have been presented for glass diffusers [28],

scattering media [29], and spatial light modulators [35]. For

vision applications, FlatCam was able to expand to utilize

deep learning to incorporate facial recognition on lensless

captured images with several object detection and classifi-

cation Convolution Neural Networks [38].

The two works most closest to our approach are Khan

et al. [24] and Monakhova et al. [30]. In [24], recon-
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struction on FlatCam images was achieved using genera-

tive adversarial networks and perceptual loss, and did not

require a PSF at test time similar to our network. This pa-

per achieves state-of-the-art reconstruction results, however

it is designed specifically for the mask patterns of Flatcam,

and is trained for only a single PSF. In contrast, our method

can handle multiple PSFs at test-time through our PSF esti-

mation sub-network.

In [30], a series of neural networks to perform unrolled

ADMM optimization with learnable parameters coupled

with (optional) U-Net denoisers was presented and evalu-

ated on DiffuserCam images. This paper is the state-of-the-

art at the moment and we utilize this for our comparison for

experimental results. However, the method requires pro-

viding a PSF obtained via calibration to output high quality

reconstructions. Our paper implements a GAN-based archi-

tecture instead to show that high reconstruction quality can

be achieved without the need for a calibration PSF image,

while also incorporating the ability to estimate the PSF in

our architecture.

3. Approach

Forward Imaging Model: Our problem definition for

lensless imaging formulates measurements from a lensless

camera as a linear model. Namely, our forward model is

that the captured lensless image Ilensless is governed by the

following convolution:

Ilensless = I ∗ PSF, (1)

where I is the true spatial image, and PSF is the point

spread function of the optical element for the lensless cam-

era. Note that this model is valid based on Fourier optics

assuming Fraunhofer diffraction [17]. Thus we wish to re-

cover I from Ilensless, which is a deconvolution problem.

However, the difficulty of our particular problem is that the

PSF is also unknown, and needs to be estimated at the

same time as I .

Network Architecture: As noted in the section before,

deep learning has become the state-of-the-art in lensless im-

age reconstruction. In this paper, we describe our approach

to building a network architecture for both image recon-

struction and blind point spread function (PSF) estimation.

Our full architecture is displayed in Figure 1, and will be

explicated in this section below. Besides the usual mean-

squared error loss on both image and PSF ground truths,

we also utilize adversarial, perceptual, and a forward model

consistency losses to help augment the performance of the

network. In Section 4, we discuss our network implementa-

tion and training details, and demonstrate the results of our

experiments in Section 5.

The basic building block for the network architecture is

the U-Net [32] that forms the backbone of most image re-

construction architectures. We utilize a ten layer network

(five encoding and five decoding convolution layers) with

skip connections to help propagate high frequency informa-

tion from the input image through the network. As we do

not have a prior PSF information from calibration, we uti-

lize two U-Net architectures: one for generating an estimate

of the image reconstruction and one for the PSF estimate.

These are labeled as generator networks in Figure 1 as they

will form the basis for generative adversarial networks de-

scribed later in this section to improve performance.

We train these networks using mean-squared error

(MSE) by finding the loss between the reconstructed im-

age and the ground truth image, and a ℓ1 loss for the PSF

estimation:

LMSE(I, Î) = ||I − Î||2
2
, (2)

L1(PSF, ˆPSF ) = ||PSF − ˆPSF ||1,

where I is the ground truth image, Î is the generator esti-

mated output image, PSF is the ground truth point spread

function, and ˆPSF is the generator estimated PSF. Note

that the calibrated PSF is required at training, but will not

be required at test time for the network. We found that the

ℓ1 norm was necessary for the PSF estimation rather than

ℓ2 especially for multiple PSFs, because otherwise the net-

work would converge to an average PSF rather than learning

to estimate the individual PSFs. For the image reconstruc-

tion, while MSE alone can get us most of way to the ground

truth image, using it as the sole loss function still results

in slightly blurred features in the output. We note that skip

connections, while useful in general for preserving high fre-

quency connections, are not as effective in lensless image

reconstructions as the original images have significant blur,

but still manage to help improve the performance empiri-

cally of the reconstruction.

Perceptual Loss: Since the image reconstruction han-

dled by the network is ill-posed, particularly without known

PSF information, we require additional losses to help im-

prove performance. Similar to [24], we implement a per-

ceptual loss [22] to help improve the visual fidelity of our

reconstructions. Using a pre-trained VGG-16 network, we

extract features φ(I) of an image and compute the following

perceptual loss:

Lpercep(I, Î) = ||φ(I)− φ(Î)||2
2
. (3)

In training, we first train with only the MSE loss first for

some epochs before adding in the perceptual loss (as well

as the adversarial and consistency loss described below).

We delay training for the perceptual loss so that the MSE

can converge to an initial reconstruction with low frequency

color information, and so that the perceptual loss does not

overpower the MSE loss in favor of higher perceptual fea-

ture accuracy.
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Adversarial Learning: Even using MSE + perceptual

loss, our network did not achieve compelling lensless im-

age reconstruction. This is probably due to the difficulty of

estimating both the PSF and the reconstructed image simul-

taneously. Recently, adversarial losses have been shown to

achieve photorealistic results via generative adversarial net-

works (GANs) [16]. GANs have enabled high visual fidelity

in image synthesis and reconstruction tasks across computer

vision. In particular, GANs were recently shown in [24] to

work well for lensless image reconstruction. We also utilize

GANs, however as opposed to [24], we do not first perform

a preliminary reconstruction and then use GANs to clean the

estimate in the second stage. Rather, we utilize adversarial

learning for both the reconstruction and the PSF estimation

simultaneously for a one-shot reconstruction at test time.

In Figure 1, we utilize a five convolutional layer discrim-

inator for both the image and PSF generators. We utilize

the Wasserstein GAN loss [3] for our loss function. We also

perform delayed training with the adversarial loss to allow

the network to first converge with MSE before adding in

adversarial, perceptual, and consistency losses.

Model Consistency: Finally, as our problem differs

from other lensless image reconstruction tasks in requiring

blind PSF estimation, we also develop a custom loss func-

tion to check the forward model’s consistency. Similar to

the Reblur2Deblur [11] for motion deblurring, we utilize

the following consistency loss that is semi-supervised:

Lconsistency = ||Ilensless − ˆPSF ∗ Î||2, (4)

where we take the outputs from the image and PSF genera-

tors, convolve them, and compare the result to the original

blurred lensless input.

4. Implementation

Dataset: We utilize the DiffuserCam dataset by Mon-

akhova et al. [30] for our comparative experiments. The

dataset consists of 25000 images (24000 training, 1000 test

images) from the MirFlickr dataset [21] that were displayed

on a monitor and captured using both a regular camera as

well as diffuser-based lensless camera, co-axially aligned

via a beam-splitter. Both cameras utilized a Basler Dart

(daA1920-30uc) sensor captured natively at 1920 × 1080
resolution, but then downsampled, flipped and cropped to

380 × 210 resolution to mitigate moire fringes from the

screen on the lensed camera and ensure the monitor was

covering the full field of view of the camera [30]. To cre-

ate the simulated multiple PSF images from this dataset, we

create 20 PSFs by randomly permuting sections of the orig-

inal PSF area. We then use each PSF and convolve it with

the ground truth data for 20 different variations of the orig-

inal dataset with different PSFs used.

Network Architecture: For the generator network ar-

chitecture, we use five encoding layers, five decoding lay-

ers and a convolution layer in the center and output. Skip

connections are also used to transfer high-level features to

the decoding layers. Each encoding layer uses two convo-

lution layers and then performs batch normalization and a

ReLU activation function. Each decoding layer uses an up-

sampled output from the previous layer and concatenates it

with the corresponding encoding layer output before using

three convolution layers. A kernel size, k, of 3 × 3 is used

for all layers except the output layer and a stride, s, of 1 is

used for all layers.

For the discriminator architecture, we use four convolu-

tion layers with batch normalization and the LeakyReLU

activation function and an output layer that uses a Sigmoid

activation function. Each layer uses a kernel size of 4 × 4
and a stride of 2 except the output layer that uses a stride

of 1. Please refer to the supplemental material for details

about the layer parameters for each sub-network.

Training Details: While training, we use a batch size of

20 images per iteration. This takes roughly 20 − 30 min-

utes per epoch on 24000 training images. A lower batch

size can also be used in case of memory constraints, but

will result in slower training. We utilize a cyclic learn-

ing rate for the generator networks while training as shown

in [36]. We set the step size of 2 epochs and train with

cycle lengths in multiples of 4 epochs, and the minimum

and maximum learning rates used were λ = 1e − 7 and

λ = 5e − 3 respectively. While this style of learning rate

scheduling results in oscillations in the training loss, the

process trains much quicker than most other methods and

assists with avoiding over-fitting into a particular local min-

ima in the loss gradient. The discriminator’s learning rate

was fixed at λ = 2e− 4. For the generator’s loss functions,

after pre-training with only LMSE , we assign weights to

LMSE , Ladv , Lpercep, and Lconsistency of λMSE = 1.0,

λadv = 0.001, λpercep = 0.7, and λconsistency = 0 − 0.4.

This allowed the MSE loss to be dominant while still gain-

ing desired contributions from the other losses. For the ad-

versarial loss in particular, several values were attempted

ranging from 0.001 to 0.5, to determine 0.001 as the best in

our case. Finally, the Adam optimizer [25] was used with

the cyclic learning rate scheduler to train the entire network.

The hardware used to train and evaluate the model uses

an Intel Xeon W octa-core CPU with 64GB RAM and an

Nvidia RTX 2080Ti GPU. All code to train and evaluate

this model was done using Python 3 and utilized the Py-

Torch framework for machine learning functionality. All

code, datasets, and trained models will be made available

after review via Github.

Baselines and Metrics: To compare our network per-

formance, we compare against several baseline methods for

lensless reconstruction. The first is the alternating direction

method of multipliers (ADMM) which solves the optimiza-

tion problem [8]: argminx||y−Ax||2+λ||x||1 where x is the
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estimated image, A is the PSF (written in matrix form), and

y is the lensless image. Our second baseline is a U-Net ar-

chitecture [32] trained using the exact same architecture as

our generator network. The final set of baselines are the Le-

ADMM networks from [30] which is an unrolled ADMM

algorithm with learnable parameters followed by an (op-

tional) U-Net denoiser. Note that all the baselines require

knowledge of the PSF from calibration to work, while our

method performs on-par or slightly better than these tech-

niques without the need for calibration at test-time.

Evaluating the quality of lensless image reconstruction

is difficult, as both peak signal-to-noise ratio (PSNR) and

SSIM [41] do not capture well the visual fidelity of an im-

age with respect to human perception. For the sake of our

paper, we decided to report both PSNR and SSIM, but we

encourage the reader to look carefully at qualitative results

to determine which reconstructions they prefer. Of course,

these metrics and qualitative results can vary from image to

image and dataset to dataset, but we believe general trends

or observations can be gleaned from our experiments.

Real Hardware Setup: We also capture a real video

dataset to capture lensless images using multiple PSFs in

the lab. This dataset consists of videos captured using a

Panasonic Lumix G85 mirrorless camera with a micro 4/3
sensor. Shown in Figure 2, the diffuser is attached to the

camera using a lens mount adapter with the diffusion layer

taped to the back of the adapter, closest to the sensor with

black electrical tape. A rectangular aperture, similar to Dif-

fuserCam [2], is also created using the black electrical tape.

The collected lensless video dataset uses the DAVIS dataset

sequences as the ground truth and is recorded with the lens-

less camera through a monitor. The videos are recorded in

1920 × 1080 resolution, but downsampled to 480 × 270 to

address moire fringes of the monitor. The final video dataset

consists of 120 sequences with a total of 8,460 frames for

the train set and 30 sequences with a total of 2,000 frames

for the test set. Three different real PSFs were used for this

dataset.

Figure 2: Hardware Setup: On the left, we show our cus-

tom lensless camera consisting of a Panasonic Lumix G85

mirrorless camera and diffusion layer attached with a lens

mount adapter. On the right is our imaging setup with dis-

play monitor for capturing video.

5. Experimental Results

In this section, we present the results of our experiments,

including both comparative studies with other methods on

the DiffuserCam dataset [30] with simulated multiple PSF

data as well as validation of our method for real multiple

PSF data from a hardware prototype in the lab. We also

test our method’s robustness to additive noise, and analyze

computational speed at inference.

DiffuserCam Results: In Table 1, we show the results of

our model on the DiffuserCam dataset [30] as compared to

our baselines. Note that our method has state-of-the-art per-

formance on-par with Le-ADMM-U for image reconstruc-

tion (slightly lower for SSIM but slightly higher for PSNR).

Further, our network has the fastest computation time at

inference with 0.32 seconds, a 5× improvement over Le-

ADMM-U. Also our method does not require knowledge

of the PSF at test-time but estimates it implicitly from the

data, and thus achieving superior performance without cali-

bration information.

Model Comparison

Model SSIM PSNR (dB) CPU Time (sec)

ADMM 0.47 11.97 36.38

Le-ADMM 0.51 11.89 1.26

Le-ADMM-S 0.59 14.61 4.22

Le-ADMM-U 0.77 20.46 1.62

U-NET 0.67 17.42 0.34

Ours 0.73 20.56 0.32

Table 1: Single PSF Image Reconstruction Results:

Comparison of reconstruction quality as well as the compu-

tational time for network inference at test time on the Dif-

fuserCam dataset [30]. Note that our model achieves state-

of-the-art performance on-par with Le-ADMM-U, while

also having the advantage of being the fastest network (0.32

seconds).

As we noted that PSNR and SSIM do not always track

with perceptually better visual reconstructions. Therefore

we also show qualitative reconstructions for this dataset in

Figure 3. As we can see, our method visually reconstructs

the lensless images fairly close to state-of-the-art meth-

ods, improving the quality over ADMM and UNet methods

while being able to generalize for PSF variations. While

the reconstructions are plausible, we note that there is a

drop in visual quality for some images. We consider this to

be the trade-off in our method between visual fidelity and

generalizing to multiple PSFs. This seems to suggest that
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(a) Ground Truth (b) Ours (c) Le-ADMM-U (d) UNet (e) ADMM

Figure 3: Comparison on DiffuserCam dataset [30]: Reconstruction output of sample images from different models for

the DiffuserCam dataset (with the original single PSF). Note that our model performs on-par with the state-of-the-art Le-

ADMM-U model.

calibration-free lensless images can be as good as having

knowledge of the PSF for deep learning reconstruction.

Noise Ablation Study: We observed that none of the

models are designed to robustly handle sensor noise that is

not seen during training. Simulating even a tiny amount

of maximum Gaussian noise σ2 = 0.005 led to significant

degradation in SSIM and PSNR scores as seen in Figure 4.

This speaks to the brittleness of these models with respect to

their training data. To overcome this, we show that further

training our model for about 100 epochs with images con-

taining varying additional noise helps overcome this sen-

sitivity to unseen noise at test-time and improve network

performance. This is a useful strategy that can be used for

all lensless reconstruction networks.

Generalizing to Multiple PSFs: One of the main char-

acteristics of a diffusion-based lensless camera is that the

mask’s PSF are random caustic patterns. While this works

well for solving the inverse problem for lensless cameras, it

is limited by the need for PSF calibration which is unique

to each individual diffusion mask. With vast improvement

in reconstruction quality using DNNs, this further begs the

question of whether it would be a feasible implementation

to train a unique model for each camera or diffusion mask to

Figure 4: Noise: Ablative study of model performance

with respect to additive Gaussian noise. Notice how even

an extremely small amount of noise (σ2 = 0.005) results

in degradation of performance for all methods. However,

specifically training our model with noise results in more

robust performance.
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(a) Lensless Image (b) PSF Estimate (c) PSF Target (d) Reconstruction (e) Image Target

Figure 5: Multiple PSF Reconstruction: We display the PSF estimated as well as the reconstructed images for three different

simulated PSFs on the DiffuserCam dataset [30]. Our method is able to generalize and reconstruct multiple PSFs, although

the quality of the reconstruction is missing some high frequency information. However, the resulting reconstructions are

uniform in quality across the three different PSFs. This shows the potential for generalization of our network for multiple

lensless camera without training a separate model for each one.

(a) Lensless Image (b) PSF Estimate (c) PSF Target (d) Reconstruction (e) Image Target

Figure 6: Blind Deconvolution Reconstruction: We display results from a blind deconvolution method in [31], which

struggles to estimate the PSF or the image correctly. Blind deconvolution methods traditionally work well for estimating

motion blur or more structured optical blur PSFs as opposed to the randomness of a diffusion PSF.

be used. Being able to generalize a single trained model to

reconstruct for variations in the PSF will further help make

lensless cameras more usable as reconstruction quality con-

tinues to improve towards photo-realistic quality.

Our results for training for multiple PSFs are shown in

Figure 5 and give us promising results for both estimat-

ing the PSF and reconstructing the corresponding image.

We see that the resulting PSF estimations are overall very

close to the target PSF, with very slight deviations. These

estimated PSFs are still useful for the network to perform

image reconstruction including learning variations in the

PSF through the self-supervised consistency loss. Quan-

titatively, we report an average PSNR of 35.24 dB and an

average SSIM value of 0.812 for PSF estimation on our syn-

thetic dataset.

The resulting image reconstructions show the ability for

the generator to perform reconstruction for the different

PSF, although with a drop in output quality when compared

to the single PSF trained network. This may be an expected

trade-off for output quality versus generalizability. Keeping

in mind that the lensless data used for this section was simu-

lated by performing the forward model convolution and true

PSF variations from different masks can prove to be a much

harder problem as shown with real captured data.

Comparison with Blind Deconvolution: Our image re-

construction problem is also very similar to the problem of

blind deconvolution typically found in motion or image de-

blurring tasks, where an unknown blur kernel has been con-

volved across the image. However, we note that the blur

kernels for motion or image blur are typically more struc-

tured and less random as lensless camera PSFs. Neverthe-

less, we utilize a blind deconvolution method [31] for our

task in Figure 6. As you can see, the blind deconvolution

method does not adequately reconstruct either the PSF or

image as compared to our network architecture results.

Real Hardware Prototype Results: We also attempt to

perform reconstruction on our own captured video dataset

with three PSF variations, shown in Figure 7. While the

results are not quite the same reconstruction quality as the

DiffuserCam dataset, we can still see recovered regions that
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(a) Lensless Image (b) ADMM (c) Reconstruction (d) Target (e) Actual PSF

Figure 7: Real Data with Multiple PSFs: Example reconstructions of real image data captured with three different PSFs

are shown in (c). For comparison, the ADMM algorithm, with the known PSFs, reconstructed the images in column (b).

Reconstruction performance across both methods was not as visually pleasing, primarily due to the real PSFs (shown in (e))

quality in captured caustics. Despite this limitation, the network is still able to invert the measurements to achieve plausible

reconstructions at higher fidelity than ADMM.

resemble the target image. For comparison, we also show

the results of the ADMM algorithm on our real data, which

performed worse than our network even when given the ac-

tual PSF at reconstruction time.

Trying to reconstruct for our captured dataset proved to

be a much more challenging task. We hypothesize that this

is primarily due to the diffusion layer used and the result-

ing PSF of each dataset. The DiffuserCam dataset utilizes

a very small angle optical diffuser which results in more

sparce and spread out caustics [2, 30], while our diffu-

sion layer uses a plastic polyethylene terephthalate (PET)

layer, commonly used for anti-static bags. The diffusion

caused by this material, while still random, has a much

larger spread of light with more dense caustics as seen in

the figure. Even with this limitation, analysis for the trained

model on the captured test set resulted in an average PSNR

of 19.88 dB and and an average SSIM of 0.6769. While

this is comparable to some of the better models compared

in Table 1, we believe these metrics may not be the best

comparisons for the perceptual quality of the reconstructed

images as seen from the image results. It remains an avenue

of future research to quantify which PSFs and their caustic

patterns are ideal for lensless image reconstruction.

6. Conclusion

In this paper, we proposed a method for lensless im-

age reconstruction that can generalize across varying point

spread functions (PSFs) corresponding to different cam-

eras. This allows our model to train and perform reconstruc-

tion without the need for any PSF calibration and does not

simply learn parameters to a single PSF. This is achieved

through a combination of adversarial training, PSF estima-

tion, and a cycle consistency loss. We verify this approach

on the DiffuserCam dataset, a simulated multi-PSF dataset,

as well as our own captured video dataset. We show that

our network achieves performance on-par with state-of-the-

art methods without requiring PSF information at test-time,

and with low computational latency. However, we point out

challenges underlying the robustness of lensless image re-

construction including sensitivity to added noise and depen-

dence on high quality caustics in the PSF as demonstrated

in our real hardware prototype experiments. Despite these

challenges, our network is able to achieve plausible visual

reconstruction.

There are many avenues for future work to make lens-

less imaging more robust. This includes improving PSF

estimation or using unsupervised or self-supervised tech-

inques only so that calibration is not needed even during

training. Our images, while at modest resolutions, are not

yet reconstructed at full 1080p resolution, and techniques

such as progressive GANs may help here [23]. Finally in

addition to single frame reconstruction, lensless video re-

construction is another opportunity for deep learning tech-

niques in general.
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