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Abstract

Codec Avatars are a recent class of learned, photore-

alistic face models that accurately represent the geome-

try and texture of a person in 3D (i.e., for virtual real-

ity), and are almost indistinguishable from video [28]. In

this paper we describe the first approach to animate these

parametric models in real-time which could be deployed

on commodity virtual reality hardware using audio and/or

eye tracking. Our goal is to display expressive conver-

sations between individuals that exhibit important social

signals such as laughter and excitement solely from la-

tent cues in our lossy input signals. To this end we col-

lected over 5 hours of high frame rate 3D face scans across

three participants including traditional neutral speech as

well as expressive and conversational speech. We investi-

gate a multimodal fusion approach that dynamically identi-

fies which sensor encoding should animate which parts of

the face at any time. See the supplemental video which

demonstrates our ability to generate full face motion far be-

yond the typically neutral lip articulations seen in compet-

ing work: https://research.fb.com/videos/audio-and-gaze-

driven-facial-animation-of-codec-avatars/

1. Introduction

Advances in representing photorealistic avatars have

greatly improved in recent years [32, 14, 5, 28, 29], how-

ever, the ability to animate these avatars in real-time for

augmented or virtual reality (AR/VR) applications remains

limited [45, 16]. The state of the art in driving these avatars

requires a lengthy user-specific setup process [28], cus-

tom hardware configurations not amenable to commercial

AR/VR, and/or a team of technical artists mapping facial

motions from a single user to their own avatar [32, 14]. With

ideal, sensor-heavy inputs (i.e. cameras pointed clearly at

the face) these approaches can accurately display a user’s

facial expressions, but even at best expressive speech tends

to be poorly represented [45]. In this work we investigate
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Figure 1. Our Multimodal VAE-based model predicts facial coef-

ficients that animate a photorealistic “Codec” avatar model using

only audio and gaze as input. Face images are renders from coef-

ficients generated by our model.

an approach for driving a photorealistic model only using

sensors that can be obtained with commodity hardware. Mi-

crophones are available on all VR headsets and eye tracking

is available on several developer-focused AR/VR devices.1

Recent audio-driven facial animation efforts have suf-

fered from a severe lack of data that often consist of only

minutes worth of high quality facial capture [12, 21]. One

goal of this work was to investigate what kind of data is

necessary for expressive audio-focused animation. To this

end we collected over 5 hours of expressive, dyadic conver-

sations across three people which were processed using the

capture pipeline in [28] with paired audio, gaze, and facial

coefficients per-timestep. This allows us to investigate the

impact of training on different data subsets, understand how

diverse data actually needs to be, and understand if our input

modalities, and the corresponding models, are sufficient for

achieving plausibly accurate expressive facial animation.

Multimodal fusion is a challenging problem, especially

when using lossy input modalities such as audio and gaze,

because there is not enough signal in either modality to ac-

curately predict a facial expression. While there are clear

correlations between speech and lip shapes there may not

be any indication of when someone smiles, raises their eye-

brows, or when they open their mouth to preempt another

speaker. Likewise, gaze direction has a clear effect on the

eyes but it is unclear how gaze affects the lower face motion.

1e.g., Vive Pro, Magic Leap One, & Qualcomm VR Dev Kit
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Standard fusion approaches tend to produce more muted fa-

cial motions where each input modality plays a more fixed

role, e.g. gaze only affects the eyes and audio affects the

lower face. We describe a simple-yet-effective approach for

dynamically updating how the model attends to each sensor

to jointly encode correlations such as how motion from eye

tracking features affect expressions like smiling.

Contributions. Our main contributions are summarized as:

(a) This is the first paper to provide an extensive study on

the variety of expressivity data (e.g., excited conver-

sations, descriptive tasks) required to animate natural

facial motion for photorealistic avatars only from au-

dio or from audio and eye tracking.

(b) We are the first to demonstrate a real-time solution for

this problem using non-linear, photorealistic full-face

models of geometry and texture. Note this is harder

than geometry-alone [12, 21] due to non-linearities in

texture-based tongue motions and lip articulations.

(c) We discuss a fundamental issue with deep multimodal

models where the network effectively learns to ignore

one modality. To overcome, we describe a set of learn-

ing techniques and show that this improves perfor-

mance when paired with our dynamic, per-parameter

multimodal fusion model, cf . Section 5.1.

At run-time our input is synced audio and gaze and output

is a vector of facial coefficients for an avatar. We suggest

viewing the supplemental video before reading this paper.

2. Related Work

Recent audio-driven animation efforts approaches have

focused on driving lip articulations [37, 35, 48], full-face

geometry [21, 15, 18, 8], and holistic video approaches [10,

47, 34]. Our work focuses on geometry and texture-based

full-face animation. We find encoding dynamic changes in

texture is critical for realistic lip and tongue motion.

Lower-face Synthesis. Taylor et al. [37] and Suwajanakorn

et al. [35] generate lower-face animation (offline) by tak-

ing low level audio features (Phoneme-based in [37] and

MFCCs in [35]) and predicting a set of coefficients corre-

sponding to 2D Active Appearance Models. Results from

Taylor et al. [37] are reasonable for neutral speech but lack

nuanced facial motion or non-neutral expression. Suwa-

janakorn et al. [35] provide compelling videos of former

President Barack Obama speaking, however, upper face ex-

pression comes from reference video and is not predicted.

Zhou et al. (VisemeNet) [48] show how data-driven ap-

proaches – using one hour of lower-face landmark data –

can be used to drive a set of artist-friendly visemes and jaw

and lip (JALI) controls. While they improve lip articula-

tion over their previous JALI model [13], they do not show

expression such as smiles, smirks, or non-speech. In [31],

visemes and infrared eye images are used to animate the

lower face of an artist-created avatar. As other viseme-

based approaches, the approach struggles to generate ex-

pressive animations.

3D Geometry. Karras et al. [21] use 3-5 minutes of tracked

3D geometry, per actor, to generate expressive speech ani-

mation using linear predictive coding (LPC) audio features.

While generating full-face animation is much harder than

lower-only, there is relatively poor lip closure and substan-

tial eyebrow swim. Similarly, Cudeiro et al. [12] collected

around 3 minutes of speech for each of the 12 participants

which they mapped to a learned FLAME [25] geometry

model. They achieved good lip closure but because their

captures all consisted of neutral speech the results are very

monotone. Liu et al. [27] use audio to overcome limita-

tions if the lips are visually occluded but fail to predict ac-

curate lip shapes from audio only. Greenwood et al. [18]

and Eskimez et al. [15] also look at full face animation but

only predict sparse landmark-based marker positions which

hide a lot of nuance included in high fidelity photorealis-

tic avatars. A key limitation in many of these approaches

is that they rely on phoneme- or phoneme-like approaches,

which inherently remove stylistic cues important for expres-

sive speech.

Image-based Animation. There has been recent interest in

animating frontal face images using data in-the-wild (i.e.,

[10, 42, 34, 43]). Typically these GAN-based papers take a

single image and generate a video as if the person is speak-

ing. While impressive, they could not be used for our class

of VR use cases which assume parametric models of the

face. Brand [7] did some of the earliest work in this area, far

pre-dating GANs, by computing trajectories on a manifold

of possible facial motions. Chung et al. [10] generate full-

face animation using cropped frontal images using videos

in-the-wild. While their approach is inherently photoreal-

istic, their model seemingly only animates the lower face.

Recent work by Vougioukas et al. [42], Song et al. [34],

and Zhou et al. [47] have used GANs to add or improve

quality of full-face expression for frontal face images.

Traditional Audio-driven Animation. Existing audio-

driven approaches generate reasonable quality lip anima-

tions on low-fidelity stylized avatars [20, 1]. Solutions

rely on artist-defined lip shape models (visemes) and as-

sume a mapping between phonemes and lip articulations.

Extensions to the viseme model look uncanny when ap-

plied to photorealistic avatars, in part because of their in-

ability to distinguish between expressions (i.e., talking in

an excited versus sad manner) [38, 36, 13, 48]. Photo-

realistic avatars are frequently built on learned non-linear

representations that cannot be combined with artist-created

sculpts [28, 37, 21].

Other early work in this area [41, 11] demonstrated

audio-driven animation on photorealistic avatars such as

with active appearance models. Cao et al. [41] shows com-
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pelling expressive animation but is based on a motion graph

that requires offline post-processing to time-warp and blend

motion snippets. Cosker et al. [11] also works offline by

synthesizing a coherent texture map and stitching together

different regions of the face.

Multimodal and Time-series Modeling. We build upon

foundational work on variational autoencoders (VAEs) [23,

40, 19] and temporal convolutional networks (TCNs) [39,

24, 3]. Our approach uses the idea of learning a shared

latent space among different modalities, which has been

explored previously [30, 26, 22, 46]. Unlike [30] our ap-

proach does not need explicit regularization of the latent

space by an adversarial loss and unlike [26] ours learns a

direct mapping from input to target modalities instead of

learning a style/domain transfer. While other approaches

assume independence of the modalities [46], our formu-

lation can cope with statistical dependence of modalities.

See [4] for an overview on multimodal modeling. Our ap-

proach attempts to overcome the following phenomenon:

with high-capacity multimodal models it is easy to overfit

to one modality and thereby ignore another, which has also

been investigated in two recent preprints [44, 33]. Wang

et al. [44] describe an approach that identifies when each

modality starts to overfit – using a held-out set – and intro-

duces gradient blending to prevent one modality from domi-

nating the prediction. A preprint by Shi et al. [33] describes

a Mixture of Experts VAE similar to ours except they as-

sume that each input modality should provide overlapping

information: i.e., averaging modality-specific predictions

provides a good estimate. In our case audio and gaze are

complementary and thus we dynamically, per latent param-

eter, identify how each modality should be combined based

on available signals at the time.

3. Multimodal VAE

Our goal is to generate realistic facial motion corre-

sponding to a photorealistic 3D avatar using only audio and

gaze as input. We use the deep appearance model of Lom-

bardi et al. [28] and denote a sequence of facial coefficients

as f = (f1, . . . , fT ) for all T time steps. Each vector of co-

efficients ft ∈ R
Df is decoded into a mesh and texture map

using the facial decoder proposed in [28]. We assume cor-

responding audio and gaze input features a = (a1, . . . , aT )
and g = (g1, . . . , gT ) where at ∈ R

Da , gt ∈ R
Dg . Audio

features, gaze, and facial coefficients are sampled at 100 Hz.

A straightforward approach, and one that we use as a

baseline, is to train a TCN-based regressor that takes in a

sequence of audio and gaze features and simply predicts

the facial coefficients for each time-step. This is similar

to what is done in [12] but applied to both of our modali-

ties. We show that this approach does not handle nuanced

and complementary interactions between each input modal-

ity, such as correlations between eye gaze and smiles or
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Figure 2. Our Multimodal VAE architecture. Given k input modal-

ities m1, . . . ,mk (k = 2 for audio and gaze in our case), k en-

coders compute an embedding Zmi
for each modality. A mixture

encoder outputs a weight for each modality which is then used

to compute the shared latent embedding ZM. A set of decoders

reconstruct all input modalities and facial coefficients f from ZM.

speech and blinking. We propose an alternative approach

using a specially structured VAE that learns a shared map-

ping across sensor types and facial configurations, as shown

in Figure 2. This model has modality-specific encoders,

modality-specific decoders, a facial coefficient decoder, and

a mixture encoder that determines how to combine infor-

mation from each modality. At training time, we force

the model to not only predict facial coefficients from audio

and gaze input but also to reconstruct both input modali-

ties. This strategy forces the model to focus on eyes and

mouth movement and improves the fidelity of the avatar.

At test-time we only need the encoders and facial coeffi-

cient decoder, however, we find that reconstructing the in-

put modalities at training time improves our model’s ability

to generalize to unseen data.

3.1. The Model

We start by setting notation and describing the standard

VAE [23] and then extend it to our multimodal VAE.

Preliminaries. Consider a VAE that maps input x to a la-

tent space Zx, i.e. the VAE learns an encoder q(Zx|x) and

decoder p(x|Zx) that maximize the evidence lower bound,

ELBOx = EZx
[log p(x|Zx)]−KL[q(Zx|x)||p(Zx)] (1)

with KL[·] denoting the Kullback-Leibler divergence. As

in [23], we assume the latent prior p(Zx) is an isotropic

Gaussian with unit variance and the encoder q(Zx|x) mod-

els a Gaussian distribution with mean µx and diagonal co-

variances σ2

x
. Optimizing the decoder p with the ℓ2-loss,

the maximization of the ELBO is equivalent to minimizing

the loss

Lx = ‖x− x̂‖2 +KL[q(Zx|x)||p(Zx)], (2)
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where x̂ is the input reconstructed from the latent embed-

ding Zx, i.e. the output of the decoder p. The KL term

can be seen as a regularizer on the latent space, pushing it

towards an isotropic Gaussian. Note that optimizing the re-

construction error using the ℓ2 loss ‖x − x̂‖2 corresponds

to maximizing p(x|Zx), assuming the distribution to be an

isotropic Gaussian with mean x̂.

Multimodal VAE. We formulate an alternative VAE archi-

tecture, depicted in Figure 2, that encodes multiple input

modalities mi ∈ M (i = 1, . . . , k) into a shared latent

space ZM using a mixture of per-modality embeddings.

The decoder should be able to reconstruct all input modal-

ities from this shared latent space, such that the model is

forced to maintain sufficiently detailed information about

the input modalities in the shared latent space. The multi-

modal loss is then L = Lrec + LKL, where

Lrec =
∑

m∈M

‖m− m̂‖2, (3)

LKL = KL
[

q(ZM|m1, . . . ,mM ∈ M)||p(ZM)
]

. (4)

The latent embedding ZM depends on all input modali-

ties and is regularized towards an isotropic Gaussian prior

p(ZM).
Our input modalities are audio features a and gaze fea-

tures g, i.e. M = {a,g}. At run-time our goal is to predict

a set of facial coefficients, so we add an additional decoder

that is optimized to predict the facial coefficients from the

joint audio and gaze embedding ZM, see Figure 2 for an

illustration. Formally, the reconstruction loss from Equa-

tion (3) then becomes

Lrec = ‖f − f̂‖2 +
∑

m∈M

‖m− m̂‖2, (5)

i.e. all input modalities and the facial coefficients are recon-

structed from the shared latent embedding ZM.

Joint Embedding of Audio and Gaze. Our fusion ap-

proach, illustrated in Figure 2, takes an arbitrary set of M

modalities mi ∈ M using predicted mean and standard de-

viation µm and σm for each input modality m such that

Zm ∼ N (µm, σ2

m
), (6)

where µm, σ2

m
∈ R

L with L being the dimensionality of the

latent space. A separate “mixture” encoder predicts mixing

coefficients πm for each modality. πm is a vector containing

a mixture weight for each component of the latent space

and is generated using a softmax layer so each element is

positive and sums to one across modalities:
∑

m
πm,d = 1

for each coefficient d. The shared embedding ZM is defined

as a weighted sum of the latent random variables Zm of

each individual modality,

ZM =
∑

m∈M

πm ⊙ Zm, (7)

where ⊙ is the Hadamard product. Then,

ZM ∼ N
(

∑

m∈M

πm ⊙ µm,
∑

m∈M

π2

m
⊙ σ2

m

)

. (8)

During training, we regularize the joint embedding ZM to

follow an isotropic Gaussian prior using the KL divergence.

This approach was designed with two properties in mind.

First, each modality should be disentangled within the latent

space such that, if necessary, each modality can simultane-

ously drive a different part of the face. For example, if a

user speaks while darting their eyes around, the audio com-

ponent should help determine the mouth shapes and the eye

gaze should determine the eye shapes and upper face ex-

pressions. This suggests that the mixing weights should be

defined on a per-coefficient basis such that audio can drive

speech-related mouth shapes while eye gaze simultaneously

drives eye and upper face shapes. Second, at each point

in time the model should be able to dynamically identify

which modality is more useful for animating certain facial

expressions. When a user is talking then the audio should

drive the lip shapes, however, if there is silence then corre-

lations with eye gaze may help indicate other facial expres-

sions, such as smiling. Similarly, if there is a substantial

amount of background noise in the audio the model should

learn to ignore this signal without explicitly affecting the

gaze signal. We achieve this by introducing a weighting

function that outputs the weights πm, updated at each time-

step, to determine the importance of each modality for each

latent coefficient.

Implications of the model formulation. In contrast to a

conventional regression model, this multimodal VAE has

several advantages. First, reconstructing the original in-

put modalities along with the facial coefficients forces the

model to maintain detailed information about both audio

and gaze in the shared latent embedding. We find this re-

sults in more accurate lip closure and eye movement of the

avatar. Second, the shared and weighted latent space pro-

vides some interpretability. More precisely, the model can

explicitly decide on the importance of each modality de-

pending on the temporal context. Third, the VAE formu-

lation with the Kullback-Leibler loss on the latent space is

more robust against noise and improves the overall qual-

ity of the model. An empirical evaluation in Section 5.1

shows the improvements of our proposed multimodal VAE

over a conventional regression baseline and ours without the

Kullback-Leibler loss.

3.2. Network Architecture

Our encoders and decoders are simple temporal convo-

lutional networks (TCNs) [24] with skip connections. Each

branch consists of one 1 × 1 convolution to resize the di-

mensionality of the input (per-frame) to a fixed number of

44



Figure 3. Left: facial landmarks used for evaluation. Right: gaze

features are pupil coordinates in a normalized coordinate system

defined by the eye corners and iris diameter.

channels (e.g., c = 128), a stack of temporal convolutions,2

and a set of output 1× 1 convolutions for generating µ and

σ (for encoders) or a single output for each decoder. Leaky

ReLU activations with leakage coefficient 0.2 are used af-

ter each convolution and skip connections are used between

every set of stacked convolutions. The TCN is identical for

each modality with the only difference that the first layer

maps from the dimensionality of the modality to 128 chan-

nels.

4. Experimental Setup

Data. We captured 5 hours of high-density 3D scans of

three subjects from different ethnic backgrounds and gen-

der using a multi-camera capture system. Figure 1 shows

images of all three subjects. Tracked 3D meshes, a tracked

deep active appearance model, and head pose were ex-

tracted in a similar manner as described in Lombardi et

al. [28]. The subjects performed different types of tasks

during the capture that comprised a wide variety of facial

expressions and social interactions, e.g. reading sentences,

describing images, summarizing videos, trivia games, and

conversations with another person. For perspective, [21]

and [12] used 3 - 5 minutes of 3D data per person. A frame-

level deep face model was trained following [28] on a 45
minute subset of the data for each subject. Using the re-

sulting appearance encoder, each frame is then mapped to

a 256-dimensional vector of facial coefficients. Later, the

avatar is rendered using this appearance model which gen-

erates texture and geometry from our predicted facial coef-

ficients, cf . Figure 1. Two tasks are held out per subject for

evaluation which corresponds to roughly 25 minutes of test

data each. The remaining data is used for training. The eval-

uation sequences are (a) a conversational task containing a

variety of natural expressions such as laughter and smiles

and (b) an image description task with mostly neutral facial

expression and a stronger focus on lip synchronization.

Audio Features. We extract 80-dimensional mel spectro-

grams from the raw 16kHz wave signal using the torchaudio

pyTorch package. This feature extractor computes a spec-

trogram using a short-time Fourier transform (STFT) every

2We use 5 layers per stack with kernel length=5 frames and

dilation=2l for layer l.

10ms over a 50ms Hanning window and warps the result-

ing 2, 048 frequency bins at each timeframe onto an 80-

dimensional feature vector using the Mel-scale. Mel spec-

trograms are widely used in tasks such as speech recogni-

tion [9] and audio-visual speech processing [2].

Gaze Features. We compute 2D gaze coordinates for each

pupil using a normalized coordinate system as shown in

Figure 3 (right). The left and right corners of the eye are de-

fined as coordinates (−1, 0) and (1, 0), and the perpendicu-

lar axis is scaled using the radius of the iris. This represen-

tation is invariant to scaling, translation, and rotation within

the image plane. The pupil coordinates were extracted from

a frontal view of each user but conceptually this information

could also be extracted from a gaze tracker in a VR headset.

We upsample the gaze features to 100Hz to match the audio

feature rate.

Evaluation Metrics. Subtle facial cues are difficult to

quantify but have a huge influence on human perception.

While we find the metrics described below to be informa-

tive, ultimately we recommend viewing the video in the

supplemental material for subjective evaluation.

For quantitative evaluation we render both the ground

truth 3D avatar reconstructions and the generated avatars as

videos with a resolution of 960×640 and measure errors af-

ter running a commercial facial landmark tracker (see Fig-

ure 3). We report the mean squared error on the landmarks

between the original data and the generated avatars for dif-

ferent facial regions, i.e. (1) for the 32 landmarks on the

mouth, (2) for the 13 landmarks on the nose, (3) for the 20

landmarks around the eyes, (4) for the 18 landmarks on the

eyebrows, and (5) averaged over all facial landmarks.

Lip closure is especially important for perceptual qual-

ity and is assessed by a second metric. We detect all lip

closures in the recorded data by determining when the land-

marks on the inner upper and lower lip match (i.e. when they

do not deviate by more than two pixels each) and compare

them to the lip closures detected in the generated avatars.

We report the F1-score to emphasize the importance of both

high precision and high recall.

5. Experiments & Analysis

We describe results for three ablation studies: a com-

parison of various models, investigations on training data

configurations, and the impact of different input modalities.

5.1. Model Ablations

In this section, we analyze the components of our model

and compare the multimodal VAE to a conventional TCN-

based regression network. We show (a) that a structured

shared latent space leads to better models, (b) that recon-

structing the input modalities is beneficial for subtle facial

motion such as accurate lip closure, and (c) that our pro-
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Table 1. a-d: effect of the KL loss on different latent embeddings. d vs. e: effect of reconstructing audio and gaze features during training

vs. only predicting facial coefficients alone. f: a conventional regression baseline.

Landmark Error (↓) F1-score (↑)

eyebrows eyes nose mouth all lip closure

(a) no KL loss 4.27 6.84 2.27 20.46 15.15 0.557
(b) KL on Zm (m ∈ {a,g}) 4.18 6.08 2.12 19.03 14.12 0.569
(c) KL on ZM 4.00 5.62 1.99 17.95 13.36 0.546
(d) KL on Zm (m ∈ {a,g}) and ZM 4.06 5.49 2.06 18.42 13.42 0.521

(e) no audio/gaze reconstruction 4.18 6.05 2.15 19.42 14.22 0.534
(f) conventional regression 4.38 7.43 2.34 20.64 15.52 0.462
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(b) Comparison of gaze-only and audio-only mod-

els which each encode complementary signals.

Figure 4. Qualitative results of the rendered avatar.

posed multimodal VAE yields more authentic and expres-

sive facial motion than a conventional regression baseline.

Structuring the Shared Latent Space. Conventional

VAEs learn a structured latent space by imposing a Gaus-

sian prior on the latent embeddings. For our multimodal

VAE, there are several strategies where to apply this prior.

The KL loss can either be applied to the per-modality em-

beddings Zm, to the joint embedding ZM as proposed in

Section 3.1, or to all Zm and ZM. A comparison of the

landmark errors and lip closure scores of the corresponding

experiments in Table 1b-d shows that structuring only the

per-modality embeddings is beneficial for lip closure but

degrades the overall facial geometry and appearance. Im-

posing the KL loss on the shared embedding ZM, on the

contrary, leads to consistent improvements in the landmark

error in all facial regions at the cost of only a minor degra-

dation in lip closure.

Applying the KL loss on the per-modality embeddings

and the shared embedding (Table 1d) is inferior to regular-

izing ZM only. Investigation of Equation (6) and Equa-

tion (8) shows that – in case the per-modality and shared

embeddings are both regularized towards an isotropic Gaus-

sian – the KL loss is minimized if the mixure weights are

either zero or one. Therefore, regularizing both, individual

and shared embeddings, strips the model of the ability to

interpolate between the embeddings of different modalities.

Training the multimodal VAE without a KL loss leads to

an unstructured latent space that is not particularly suitable

for interpolation between the observed training embeddings

and therefore does not generalize well enough on unseen

data. We empirically observe this issue in Table 1a, where

the landmark error is consistently worse than for any of the

KL regularized variants in lines b-d.

Reconstructing the Input Modalities. A comparison of

line c and e in Table 1 reveals that reconstructing the input

modalities improves performance. If the shared latent space

does not contain sufficient information about gaze and au-

dio, the model tends to overfit the training data and fails to

generate accurate lip closure, mouth shape, or eye move-

ment. We find the reconstruction of the input modalities

particularly important to generate subtle and fine-grained

facial motion and expressions.

Multimodal VAE vs. Regression Baseline. We trained a

baseline regression-based TCN that receives the concate-

nated audio and gaze features as input and predicts the fa-

cial coefficients directly. The size of the TCN is compara-

ble to our multimodal VAEs. Conceptually this is similar to

what Cudeiro et al. [12] used for audio-alone except in our

46



Table 2. Comparison of audio and gaze models on tasks that are neutral (image description) and expressive (conversation). Note the impact

of gaze on estimating the mouth shape and the impact of audio on accurate lip closure.

Landmark Error (↓) F1-score (↑)

eyebrows eyes nose mouth all lip closure

conversation

only audio 5.03 13.70 4.19 32.67 25.70 0.437
only gaze 4.20 5.92 3.11 32.94 20.03 0.062
audio + gaze 3.66 6.05 2.49 22.95 15.71 0.450

descriptive

only audio 5.05 9.88 1.73 13.08 14.05 0.650
only gaze 4.78 5.27 1.89 22.95 14.88 0.075
audio + gaze 4.49 5.01 1.30 10.79 9.99 0.677

case we use audio and gaze. We find the baseline performs

significantly worse than the proposed multimodal VAE in

landmark errors and lip closure (Table 1c and f). The re-

gression model tends towards more neutral expressions and

fails to capture more articulated expressions such as excite-

ment with widely opened eyes and raised eyebrows or subtle

lip motion and accurate lip closure for plosives such as “p”

(Figure 4a).

One strength of the multimodal VAE is its capability

to dynamically decide on the weight each modality gets.

Figure 5 shows the predicted mixture weights in the latent

space over a one second long snippet. Yellow means all

probability mass is on audio, blue means all is on gaze. In-

terestingly, the model learns to use some latent components

exclusively for a single modality. Specifically, the blue hor-

izontal stripes represent components for which the audio

weight is always zero, i.e. components that exclusively en-

code gaze information. The yellow horizontal stripes are

purely dedicated to the audio modality. Many latent com-

ponents use a mixture of the input modalities that varies

over time depending on the temporal context. Note that the

mixture weight encoder resembles a self-attention across

modalities and is a crucial part of the model. Without the

mixture weights the model heavily resembles the conven-

tional regression baseline and initial experiments without it

showed less expressive faces.

5.2. Modality Ablations

Subject Comparisons.

We compare our full system with single modality ver-

sions to analyze the impact each signal has on encoding dif-

ferent types of facial expressions. Experiments were evalu-

ated on “image description” and “conversational” tasks with

a single-input version of the architecture outlined in Fig-

ure 2, i.e. without the weights encoder and decoders for the

held-out modalities. See results in Table 2. As expected,

the landmark error around the eyes is large when only using

audio and low when using the gaze input. It was also of no

surprise that the gaze modality fails to predict lip closure.

Performance for the mouth shape estimation was more sur-

prising. For the image description task, the audio modality

accurately models the mouth shape estimation and the gaze

Figure 5. Mixture weights (per parameter) from a 1 second test

clip. Some latent components (yellow rows) always use the audio

embedding, others (blue rows) always use the gaze embedding.

The rest (varying colors) change dynamically based on the input.

avg errorlower than avg higher than avg

Subject 1
(Male/White)

Subject 2
(Male/Asian)

Subject 3
(Female/African American)

eyebrows eyes nose mouth lip closure

Figure 6. Relative errors per subject compared to the errors aver-

aged over all subjects. Red indicates errors that are proportionally

larger than the averaged errors, blue is lower than average.

modality fails to achieve comparably good results. For the

conversational task, surprisingly both modalities have huge

errors for the mouth shape. In this task the user frequently

smiles, laughs, and gives the other person quizzical expres-

sions. While the audio may pick up on speech related lip

motion and loud laughter, we find that non-verbal, voiceless

expressions like smiling are more reliably predicted from

gaze, see Figure 4b for an example. Within the given data

captures, smiles and laughter have strong co-occurring gaze

patterns where the user squints their eyes and looking down-

wards, and can therefore be picked up without audio input.

While each modality is indeed complementary, combining

both results substantially improved performance as shown

in Table 2.

5.3. Data Ablations

It should be no surprise that the kind of data used for

training is critical for the results. In this section, we in-

vestigate the impact of different subjects, monotone versus

expressive tasks, and different audio features.

Figure 6 shows a per-subject breakdown of the errors rel-
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Table 3. Impact of training data on different test tasks for landmark

error and lip closure (Subject 1).

train data test data

descriptive #2 conversation #2

↓ landmarks / lips ↑ ↓ landmarks / lips ↑
descriptive #1 8.38 / 0.715 35.66 / 0.234
conversation #1 13.22 / 0.429 14.56 / 0.216
all 8.97 / 0.712 16.06 / 0.275

ative to the averaged errors over all subjects. Red means the

error is proportionally larger than for the average over sub-

jects, blue means it is lower. The largest outlier is the eye

error for Subject 2 who has has smaller eyes than the other

subjects and a dark iris which makes pupil tracking less re-

liable. It is also interesting to observe results from Subject

3, a trained actress, in the supplementary video. She heav-

ily moves her eyebrows during expressive speech, which is

hard to synthesize correctly from only audio and gaze and

leads to increased errors in that facial region. We attribute

Subject 1’s slightly increased mouth landmark errors and

lip closure errors to his frequent open-mouthed smiles and

his tendency during conversations to open his mouth while

silent to show an intent to speak. These voiceless mouth

movements particularly impact lip closure and mouth shape

prediction.

Training Data Characteristics. While deep neural net-

works excel at interpolating within the training distribution,

they typically struggle to extrapolate beyond it. This is

what has limited most prior work to generating monotone-

looking speech; typical datasets simply include neutral read

sentences as their training data. We show that a diverse

dataset with both expressive and descriptive speech is key

to not only accurate but also authentic facial animation.

Table 3 shows the performance of our approach when

training the same model on three different subsets of the

data. The descriptive tasks tend to be largely monotone,

the conversational tasks tend to be more lively, and all in-

cludes a mixture of many types of expressive and descrip-

tive speech. We evaluate on held out descriptive speech

and expressive conversation to illustrate how the nature of

training data affects different test scenarios. As expected,

when training on the descriptive tasks and testing on con-

versational tasks the landmark error is poor, because the

model does not generate as many expressions like smil-

ing and laughter. Likewise when trained on conversational

tasks the descriptive results deteriorate since all generated

facial motion is more extreme than it should be. Overall,

we find that descriptive data is responsible for accurate lip

closure whereas conversational data is crucial to capture a

wide range of expressions. As one would hope, when train-

ing on both, descriptive and expressive speech, the model

generates both muted and expressive results when needed.

Phonemes vs. Mel Spectrograms. Phonemes are a pop-

ular mid-level representation in speech processing [6, 17]

Table 4. Impact of different audio features (Subject 1).

Mouth Error (↓) lip closure (↑)

audio features (landmark error) (F1 score)

phonemes 20.74 0.251
mel spectrograms 20.53 0.465
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Figure 7. Our model encodes subtle audio cues such as wetting

your lips with your tongue, which are only represented by a short

high-frequency segment in the spectrogram.

and also find application in face animation [37, 13, 48].

We therefore compare results when using phonemes ver-

sus mel spectrograms. Phoneme models are trained to ro-

bustly recognize which out of 43 phonemes a user is say-

ing and inherently abstract away the subtleties of speech.

Figure 7 shows that we are capable of picking up very nu-

anced sounds such as licking your lips which is encoded by

a tiny blip in the high frequency information. This is not

encoded in the phoneme-based model. While this example

may not generalize to low quality microphones or noisy en-

vironments, it highlights one of many signals that are lost

from phoneme-based encodings. We find that the kind of

training data, as described above, has a larger impact than

the choice of audio features, however, Table 4 indicates a

substantial improvement in lip closure using mel spectro-

grams and a modest improvement in expressivity. This is

shown in more detail in the supplemental video.

6. Conclusion

In this work we showed that with a sufficient amount

of expressive animation data we are able to map from raw

audio to expressive facial animation. We find that in gen-

eral our approach to multi-modal fusion is able to over-

come limitations with models overfitting to individual sen-

sors and improves animation performance. In the supple-

mental video we show that the quality of lip articulations

from our audio-only solution can even surpass the quality

from video-based solutions such as [45] which uses mouth

and eye cameras. Future work may look at combining our

audio-driven model with this video-based solution.
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