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Abstract

Many deep learning models, developed in recent years,
reach higher ImageNet accuracy than ResNet50, with fewer
or comparable FLOPs count. While FLOPs are often seen
as a proxy for network efficiency, when measuring actual
GPU training and inference throughput, vanilla ResNet50
is usually significantly faster than its recent competitors, of-
fering better throughput-accuracy trade-off. In this work,
we introduce a series of architecture modifications that aim
to boost neural networks’ accuracy, while retaining their
GPU training and inference efficiency. We first demonstrate
and discuss the bottlenecks induced by FLOPs oriented op-
timizations. We then suggest alternative designs that bet-
ter utilize GPU structure and assets. Finally, we intro-
duce a new family of GPU-dedicated models, called TRes-
Net, which achieves better accuracy and efficiency than
previous ConvNets '. Using a TResNet model, with sim-
ilar GPU throughput to ResNet50, we reach 80.8% top-1
accuracy on ImageNet. Our TResNet models also trans-
fer well and achieve state-of-the-art accuracy on compet-
itive single-label classification datasets such as Stanford
Cars (96.0%), CIFAR-10 (99.0%), CIFAR-100 (91.5%) and
Oxford-Flowers (99.1%). TResNet models also achieve
state-of-the-art results on a multi-label classification task,
and perform well on object detection.

1. Introduction

The seminal ResNet models [10], introduced in 2015,
revolutionized the world of deep learning. ResNet models
use repeated well-designed residual blocks, allowing train-
ing of very deep networks to high accuracy while main-
taining high GPU utilization. ResNet models are also easy
to train, and converge fast and consistent even with plain
SGD optimizer [45]. NVIDIA Volta tensor cores [27] fur-
ther improved ResNet models GPU utilization, up to qua-
drupling their GPU throughput on mixed-precision training

I'Source code is available at: https:/github.com/mrT23/TResNet

and inference [44]. Among the ResNet models, ResNet50
established itself as a prominent model in terms of speed-
accuracy trade-off, and became a leading backbone model
for many computer vision tasks [8, 21, 42, 14].

Since ResNet50, many modern deep learning models
were developed, which achieve better ImageNet accuracy
with fewer or comparable FLOPs. Surprisingly, even
though most deep learning models are trained, and some-
times deployed, on GPUs, few models try explicitly to
find an optimal design in terms of GPU throughput. Since
FLOPs are not an accurate proxy for GPU speed [2], sub-
optimal design for GPUs might occur. This is especially
true for GPU training speed, which is rarely measured and
documented in academic literature, and can be severely hin-
dered by some modern architecture design tricks [26].

Table 1 compares ResNet50 to popular newer architec-
tures, with similar ImageNet top-1 accuracy - ResNet50-D
[11], ResNeXt50 [43], SEResNeXt50 [13], EfficientNet-B1
[36] and MixNet-L [37]. We see from Table 1 that the re-
duction of FLOPs and the usage of new tricks in modern
networks, compared to ResNet50, is not translated to im-
provement in GPU throughput. This is especially evident
for GPU training speed, where ResNet50 gives by a large
margin better speed-accuracy trade-off. We identify two
main reasons for this throughput gap:

1. Modern networks like EfficientNet, ResNeXt and
MixNet do extensive usage of depthwise and 1x1 convolu-
tions, that provide significantly fewer FLOPs than 3x3 con-
volutions. However, GPUs are usually limited by memory
access cost and not by number of computations, especially
for low-FLOPs layers. Hence, the reduction in FLOPs is not
translated well to an equivalent increase in GPU throughput
[26].

2. Modern networks like ResNeXt and MixNet do exten-
sive usage of multi-path. For training, this creates lots of
activation maps that need to be stored for backward propa-
gation, which reduces the maximal possible batch size, thus
hurting the GPU throughput. Multi-path also limits the abil-
ity to use inplace operations [32], and can lead to network
fragmentation [26].
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Model Training Speed [img/sec] | Inference Speed [img/sec] | Topl Accuracy [%] | Flops [G]
ResNet50 [10] 805 2830 79.0 4.1
ResNet50-D [11] 600 2670 79.3 4.4
ResNeXt50 [43] 490 1940 79.4 4.3
EfficientNetB1 [36] 480 2740 79.2 0.6
SEResNeXt50 [36] 400 1770 79.9 43
MixNet-L [37] 400 1400 79.0 0.5
TResNet-M 730 2930 80.8 5.5

Table 1. Comparison of ResNet50 to top modern networks, with similar top-1 ImageNet accuracy. All measurements were done
on Nvidia V100 GPU with mixed precision. For gaining optimal speeds, training and inference were measured on 90% of maximal
possible batch size. Except TResNet-M, all the models’ ImageNet scores were taken from the public repository [41], which specialized
in providing top implementations for modern networks. Except EfficientNet-B1, which has input resolution of 240, all other models have

input resolution of 224.

Following our analysis of Table 1, we want to design a
new family of networks, TResNet, aimed at high accuracy
while maintaining high GPU utilization. TResNet mod-
els will contain the latest published design tricks available,
along with our own novelties and optimizations. Unlike pre-
vious works, which measure only the FLOPS proxy or just
GPU inference speed, we will directly focus on both GPU
inference and training speed. For a proper comparison to
previous models, one network variant (TResNet-M) is de-
signed to match ResNet50 GPU throughput, while the rest
match modern larger architectures.

We will show that for all tested datasets, TResNet mod-
els offer an improved speed-accuracy trade-off. Specifi-
cally, they reach ImageNet top-1 accuracy of 80.8% with
GPU throughput similar to ResNet50 (79.0%), and top-
1 accuracy of 84.3% with better GPU throughput than
EfficientNet-B5 (83.7%). Besides ImageNet, TResNet
models also achieve state-of-the-art accuracy on 3 out of
4 widely used downstream single-label datasets, with x8-15
faster GPU inference speed. They also excel on multi-label
classification and object detection tasks.

2. TResNet Design

TResNet design is based on the ResNet50 architecture,
with dedicated refinements, modifications and optimiza-
tions. It contains three variants, TResNet-M, TResNet-L
and TResNet-XL, that vary only in their depth and the num-
ber of channels. TResNet architecture contains the follow-
ing refinements and changes compared to plain ResNet50
design:

» SpaceToDepth Stem

* Anti-Alias Downsampling

* In-Place Activated BatchNorm
* Novel Block-type Selection

* Optimized SE Layers.

Previous works usually offer refinements to ResNet50
which increase the accuracy at the cost of reducing the GPU
throughput [11, 20, 13, 46]. Differently, in our design some
refinements increase the models’ throughput and some de-
crease it. All-in-all, for TResNet-M we chose a mixture
of refinements that provide a similar GPU throughput to
ResNet50, for a fair comparison of the models’ accuracy.

2.1. Refinements

SpaceToDepth Stem - Neural networks usually start
with a stem unit - a component whose goal is to quickly
reduce the input resolution. ResNet50 stem is comprised
of a stride-2 conv7x7 followed by a max pooling layer
[10], which reduces the input resolution by a factor of 4
(224 — 56). ResNet50-D stem design [11], for compar-
ison, is more elaborate - the conv7x7 is replaced by three
conv3x3 layers. The new ResNet50-D stem design did
improve accuracy, but at a cost of lowering the training
throughput - see Table 1, where the new stem design is re-
sponsible for almost all the decline in the throughput.

We wanted to replace the traditional convolution-based
downscaling unit by a fast and seamless layer, with little in-
formation loss as possible, and let the well-designed resid-
ual blocks do all the actual processing work. The new stem
layer sole functionality should be to downscale the input
resolution to match the rest of the architecture, e.g., by a
factor of 4. We met these goals by using a dedicated Space-
ToDepth transformation layer [33], that rearranges blocks
of spatial data into depth. Notice that in contrast to [33],
which mainly used SpaceToDepth in the context of isomet-
ric (single-resolution) networks, in our novel design Space-
ToDepth is used as a drop-in replacement for the traditional
stem unit. The SpaceToDepth layer is followed by simple
convolution, to match the number of wanted channels, as
can be seen in Figure 1.

Anti-Alias Downsampling (AA) - [46] proposed to re-
place all downscaling layers in a network by an equivalent
AA component, to improve the shift-equivariance of deep
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Input SpaceToDepth | 56x56x48 _ Conv3x3
224x224x3 BlockSize=4 64 Ch

Output

> 56x56x64

Figure 1. TResNet-M SpaceToDepth stem design.

networks and give better accuracy and robustness.

We implemented an economic variant of AA, similar to
[20], that provides an improved speed-accuracy trade-off -
only our stride-2 convolutions are replaced by stride-1 con-
volutions followed by a 3x3 blur kernel filter with stride 2,
as described in Figure 2.

Baseline SEIEIE
(stride 2)
Anti-aliased Conv3x3 Fixed Blur Filter
(stride 1) ( 3x3 kernel, stride 2)

Figure 2. The AA downsampling scheme of TResNet architec-
ture. All stride-2 convolutions are replaced by stride-1 convolu-
tions, followed by a fixed downsampling blur filter [46].

In-Place Activated BatchNorm (Inplace-ABN) -
Along the architecture, we replaced all BatchNorm+ReLU
layers by Inplace-ABN [32] layers, which implements
BatchNorm with activation as a single inplace operation,
allowing to reduce significantly the memory required for
training deep networks, with only a small increase in the
computational cost. As an activation function for the
Inplace-ABN, we chose to use Leaky-ReLU instead of
ResNet50’s plain ReLU.

Using Inplace-ABN in TResNet models offers the fol-
lowing advantages:

* BatchNorm layers are major consumers of GPU mem-
ory. Replacing BatchNorm layers with Inplace-ABN
enables to significantly increase the maximal possible
batch size, which can improve the GPU utilization.

» For TResNet models, Leaky-ReLU provides better ac-
curacy than plain ReLU. While some modern activa-
tion, like Swish and Mish [28], might also give better
accuracy than ReLU, their GPU memory consumption
is higher, as well as their computational cost. In con-
trast, Leaky-ReLU has exactly the same GPU memory
consumption and computational cost as plain ReL.U.

* The increased batch size can also improve the effec-
tiveness of popular algorithms like triplet loss [19] and
momentum-contrastive learning. [9]

Novel Block-Type Selection - ResNet34 and ResNet50
share the same architecture, with one difference: ResNet34
uses solely ’BasicBlock’ layers, which comprise of two

conv3x3 as the basic building block, while ResNet50 uses
’Bottleneck’ layers, which comprise of two convlx1l and
one conv3x3 as the basic building block [10]. Bottleneck
layers have higher GPU usage than BasicBlock layers, but
usually give better accuracy. However, BasicBlock layers
have larger receptive field, so they might be more suited to
be placed at the early stages of a network.

We found that the uniform block selection of ResNet
models is not optimal, and a better speed-accuracy trade-off
can be obtained using a novel design, which uses a mixture
of BasicBlock and Bottleneck layers. Since BasicBlock lay-
ers have a larger receptive field, we placed them at the first
two stages of the network, and Bottleneck layers at the last
two stages.

To create larger variants of TResNet, we modified the
number of initial channels, and the number of residual
blocks in the 3rd stage, similarly to [10] and [36]. Full spec-
ification of TResNet networks, including block type, width
and number of residual blocks in each stage, appears in Ta-
ble 2.

Optimized SE Layers - We added dedicated squeeze-
and-excitation [13] layers (SE) to TResNet architecture. In
order to reduce the computational cost of the SE blocks,
and gain the maximal speed-accuracy benefit, we placed SE
layers only in the first three stages of the network. The last
stage, which works on low-resolution maps, does not get a
large accuracy benefit from the global average pooling op-
eration that SE provides.

Compared to standard SE design [13], TResNet SE
placement and hyper-parameters are also optimized: For
Bottleneck units, we added the SE module after the conv3x3
operation, with a reduction factor of 8, and for BasicBlock
units, we added SE module just before the residual sum,
with a reduction factor of 4. This change aims to reduce the
number of parameters and computational cost of SE layers:
since BasicBlock units are placed on the first two stages
of the network, they contain relatively low number of in-
put channels, so only a small reduction factor (4) is needed.
The Bottleneck units are placed in later stages of the net-
work, with more input channels, so a higher reduction fac-
tor (8) is needed. Placing the SE layers after the reduction
phase of the Bottleneck layer further reduces the computa-
tional cost. The complete blocks design, with SE layers and
Inplace-ABN, is presented in Figure 3.

2.2. Code Optimizations

In this section we will describe code optimizations we
did to enhance the GPU throughput and reduce the mem-
ory footprint of TResNet models. While code optimizations
are sometimes overlooked and seen as ’implementation de-
tails’, we claim that they are crucial for designing a modern
network with top GPU performance.

We designed TResNet using the PyTorch library [30],
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Layer Block Type Output | Stride TResNet
M L XL
Repeats | Channels | Repeats | Channels | Repeats | Channels
SpaceToDepth - 1 48 1 48 1 48
Stem PComixt | 56%56 | | 1 64 1 76 1 84
Stagel BasicBlock+SE | 56x56 1 3 64 4 76 4 84
Stage2 BasicBlock+SE | 28x28 2 4 128 5 152 5 168
Stage3 Bottleneck+SE | 14x14 2 11 1024 18 1216 24 1344
Stage4 Bottleneck Tx7 2 3 2048 3 2432 3 2688
Pooling GlobalAvgPool I1x1 1 1 2048 1 2432 1 2688
#Params. 29.4M 54.7M 77.1M
Table 2. Overall architecture of the three TResNet models.
”””””” S S control statements are still possible.
Basic Block Bottleneck Block !
v v ! For the AA and SpaceToDepth modules, we found that
Q Q JIT compilation reduces the GPU cost by almost a factor of
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Figure 3. TResNet BasicBlock and Bottleneck design (stride 1).
IBN = Inplace-BatchNorm, r = reduction factor, * - Only for 3rd
stage.

due to its popularity and ability for easy code prototyping.
However, all the optimization described below are also ap-
plicable to other deep learning libraries, such as TensorFlow
[1] and MXNet [4]

2.2.1 JIT Compilation

JIT compilation enables, at execution time, to dynamically
compile a high-level code into highly-efficient, optimized
machine code. This is in contrast to the default Pythonic op-
tion of running a code dynamically, via an interpreter. We
used JIT compilations for network modules that don’t con-
tain learnable parameters - the AA blur filter and the Space-
ToDepth modules. For modules without learnable parame-
ters, JIT compilation is a seamless process that accelerates
the network GPU throughput without imposing limitations
on the actual training and inference - for example, the in-
put size does not need to be fixed and pre-determined, flow

creasing the maximal possible batch size. In TResNet code,
inplace operations are used as as much as possible. In addi-
tion of using Inplace-ABN, there are also inplace operations
for the residual connection, SE layers, blocks’ final activa-
tion and more. This is a key factor in enabling large batch
size - TResNet-M maximal batch size is almost twice of
ResNet50 - 512, as can be seen in Table 1. For full review
of TResNet inplace operations, see our public code.

2.2.3 Fast Global Average Pooling

Global average pooling (GAP) is used heavily in TResNet
architecture - both in the SE layers, and before the final fully
connected. GAP can be implemented via a general boiler-
plate method, AvgPool2d, that does average pooling of a
tensor to a given spatial dimension, which in the GAP is
(1,1). However, usually using this boilerplate methodology
is usually not optimal, and leading to sub-optimal perfor-
mances, mainly due to bad memory utilization.

We found that a simple dedicated implementation of
GAP, with optimized code for the specific case of (1,1) spa-
tial output, can be up to 5 times faster than the boilerplate
implementation on GPU, since it can bring data from mem-
ory more efficiently. Our full TResNet code implementa-
tion, include the fast GAP, appears in the github page cited
in the abstract.
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2.2.4 Deployment Optimizations

There are dedicated optimizations for enhancing (frozen)
model inference speed during deployment. For example,
BatchNorm layers can be fully absorbed into the convo-
lution layers before them, significantly accelerating the
model. In addition, there are dedicated libraries for GPU
deployment, such as TensorRT [39]. However, we wanted
to provide a fair comparison of TResNet to other architec-
tures, while focusing on all aspects of GPU efficiency (train-
ing speed, inference speed and maximal batch size), so we
avoided doing inference-tailored optimizations. In practice,
the inference speed reported for TResNet can be improved
via such optimizations.

3. ImageNet Results

In this section, we will evaluate TResNet models on stan-
dard ImageNet training (input resolution 224), and compare
their top-1 accuracy and GPU throughput to other known
models. We will also perform an ablation study to better
understand the effect of different refinements, show results
for fine-tuning TResNet to higher input resolution, and do a
thorough comparison to EfficientNet models.

3.1. Basic Training

Our main benchmark for evaluating TResNet models is
the popular ImageNet dataset [18]. We trained the mod-
els on input resolution 224, for 300 epochs, using a SGD
optimizer and 1-cycle policy [34]. For regularization, we
used AutoAugment [6], Cutout [7], Label-smoothing [35]
and True-weight-decay [25]. We found that the common
ImageNet statistics normalization [20, 6, 36] does not im-
prove the training accuracy, and instead normalized all the
RGB channels to be between 0 and 1. For comparison, we
repeated the same training procedure for ResNet50. Results
appear in Table 3.

Top Top o Max iy
Training | Inference | Train

Models Acc.
Speed Speed Batch %]

(img/sec) | (img/sec) | Size 7

ResNet50 805 2830 288 79.0
TResNet-M 730 2930 512 80.8
TResNet-L 345 1390 316 81.5
TResNet-XL 250 1060 240 82.0

Table 3. TResNet models accuracy and GPU throughput on
ImageNet, compared to ResNet50. All measurements were done
on Nvidia V100 GPU, with mixed precision. All models are
trained on input resolution of 224.

We can see from Table 3 that TResNet-M, which has
similar GPU throughput to ResNet50, has significantly

higher validation accuracy on ImageNet (+1.8%). It also
outperforms all the other models that appear in Table 1, both
in terms of GPU throughput and ImageNet top-1 accuracy.

Note that our ResNet50 ImageNet top-1 accuracy,
79.0%, is significantly higher than the accuracy stated in
previous articles [10, 11, 15], demonstrating the effec-
tiveness of our training procedure. In addition, training
TResNet-M and ResNet50 models takes less than 24 hours
on an 8xV100 GPU machine, showing that our training
scheme is also efficient and economical.

Another strength of the TResNet models, as reflected by
Table 3, is the ability to work with significantly larger batch
sizes than other models. In general, large batch size leads
to better GPU utilization, and allows easier scaling to large
inputs. For distributed learning, it also reduces the number
of synchronization needed in an epoch between the different
GPUs.

3.2. Ablation Study
3.2.1 Network Refinements

We performed an ablation study to evaluate the impact of
the different refinements and modifications in TResNet-M
model on the validation accuracy, inference speed, training
speed and maximal batch size. Results appear in Table 4.
We can better understand from Table 4 the contribution of
each refinement:

SpaceToDepth: The SpaceToDepth module provides
improvements to all the indices. Notice that while we are
not the first to use this innovative module (see [33]), we are
the first to integrate it into a high-performance network as
a drop-in replacement for the traditional convolution-based
stem, and get a meaningful improvement. While the GPU
throughput improvement is expected, the fact that also the
accuracy improves (marginally) when replacing the ResNet
stem cell by a “cheaper” SpaceToDepth unit is somewhat
surprising. This result supports our intuition that there could
be “information loss” within convolution-based stem unit -
details from the original image are not propagated well due
to the aggressive downscaling process. Although simpler, a
SpaceToDepth module can minimizes this loss, and enables
to process the data via the residual blocks, which are pro-
tected from information loss by the skip connections. We
will further investigate this issue in future works.

Block-Type selection: Our novel block-type selection
scheme, which uses both ’BasicBlock’ and ’Bottleneck’
blocks in the network, provides significant improvements
to all indices, and shows that the uniform block-type design
of the ResNet models is not optimal. Notice that this refine-
ment also includes changing the number of residual blocks
in the 3rd stage, from 6 to 11. In practice, the actual number
(11) was chosen after all the other refinements were final-
ized. Its goal was to bring TResNet-M to a similar GPU
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Inference Speed | Training Speed | Maximal
Refinement Topl Accuracy [%] [img/sec] [img/sec] Batch size
ResNet50 79.0 2830 805 288
79.1 2950 830 312
+ SpaceToDepth (+0.1) (+120) (+25) (+24)
. 79.4 3320 930 424
+ Novel Block-Type Selection (+0.3) (+370) (+100) (+112)
79.5 3470 880 624
+ Inplace-ABN +0.1) (+150) (-50) (+200)
- 80.3 3280 815 596
+ Optimized SE (+0.8) (-190) (-65) (-32)
L AA 80.8 2930 730 512
(+0.5) (-350) (-85) (-80)

Table 4. Ablation study - The impact of different refinements in TResNet-M model on ImageNet top-1 accuracy, inference speed,
training speed and maximal batch size. All measurements are done on Nvidia V100 GPU, with mixed precision.

throughput as ResNet50.

Inplace-ABN: As expected, Inplace-ABN enables us to
significantly increase the possible batch size, by 200 im-
ages. In addition, using Leaky-ReLU as activation func-
tion, instead of plain ReLU, marginally improved the accu-
racy. However, in terms of contribution to the actual GPU
throughput, the impact of Inplace-ABN is mixed: while the
inference speed improved, the training speed was some-
what reduced. While Inplace-ABN enables us to increase
the batch size (which should be translated to better GPU
throughput), it is also a more complicated module than a
simple BatchNorm layer, so there is an inherent trade-off for
using it. Since the ability to work with larger batch is highly
beneficial for multi-GPU training and some dedicated loss
functions, we chose to include this refinement.

Optimized SE + Anti-Aliasing layers: As expected,
these layers significantly improve the ImageNet top-1 accu-
racy, with a price of reducing the model GPU throughput.
We were able to compensate for this decrease with the pre-
vious refinements, and all-in-all get a better speed-accuracy
trade-off than ResNet50.

3.2.2 Code Optimizations

In Table 5 we evaluate the contribution of the different code
optimizations. We can see from Table 5 that among the
optimizations, dedicated inplace operations give the great-
est boost - not only it improves the GPU throughput, but it
also significantly increases the maximal possible batch size,
since it avoids the creation of unneeded activation maps for
backward propagation.

3.3. High-Resolution Fine-Tuning

We tested the scaling of TResNet models to higher input
resolutions on ImageNet. We used the pre-trained TResNet
models that appear in Table 3 as a starting point, and did a

Inference | Training | Maximal
Refinement Speed Speed Batch
[img/sec] | [img/sec] size
TResNet-M
No Code 2790 670 420
Optimizations
2830 695 420
+IIT +40) | (+25) 0)
+ Inplace 2910 715 512
Operations (+80) (+20) (+92)
+ Fast 2930 730 512
GAP (+20) (+15) 0)

Table 5. Ablation study - The impact of code optimizations
in TResNet-M model on inference speed, training speed and
maximal batch size.

short 10 epochs fine-tuning to input resolution of 448. The
results appear in Table 6.

Input Top-1
Model Resolution | Accuracy [%]

TResNet-M 224 80.8
TResNet-M 448 83.2
TResNet-L 224 81.5
TResNet-L 448 83.8
TResNet-XL 224 82.0
TResNet-XL 448 84.3

Table 6. Impact of the input resolution on the topl ImageNet
accuracy for TResNet models. All TResNet 448 input-resolution
accuracies are obtained with 10 epochs of fine-tuning.

We see from Table 6 that TResNet models scale well to
high resolutions. Even TResNet-M, which is a relatively
small and compact model, can achieve top-1 accuracy of
83.2% on ImageNet with high-resolution input. TResNet
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largest variant, TResNet-XL, achieves 84.3% top-1 accu-
racy on ImageNet.

3.4. Comparison to EfficientNet Models

EfficientNet models, which are based on MobilenetV3
architecture [12], propose to balance the resolution, height,
and width of a base network for generating a series of larger
networks. They are considered state-of-the-art architec-
tures, that provide efficient networks for all ImageNet top-1
accuracy spectrum [36]. In Figure 4 and Figure 5, we com-
pare the inference and training speed of TResNet models to
the different EfficientNet models respectively.

Top-1 Accuracy [%] Vs Inference Speed

T I
—m— EfficientNet

XL @448
g4l \ L@448

—+—  TResNet

1,000 1,500 2,000 2,500 3,000

Inference Speed (images/sec)

|
0 500

Figure 4. TResNet Vs EfficientNet models inference speed com-
parison. Y label is the accuracy[%]

We can see from Figure 4 and Figure 5 that all
along the top-1 accuracy curve, TResNet models give bet-
ter inference-speed-accuracy and training-speed-accuracy
tradeoff than EfficientNet models. Note that each Efficient-
Net model was bundled and optimized to a specific reso-
lution, while TResNet models were trained and tested on
multi-resolutions, which makes this comparison biased to-
ward EfficientNet models; Yet, TResNet models show su-
perior results. Also note that EfficientNet models were
trained for 450 epochs and not for 300 epochs like TRes-
Net models, and that EfficientNet training procedure in-
cluded more GPU intensive tricks (RMSProp optimizer,
drop-block) [36], so the actual gap in training times is even
higher than stated in Figure 5.

Top-1 Accuracy [%] Vs Training Speed

I T
—m— EfficientNet

—+— TResNet

XL @448

| |
0 200 400 600
Training Speed (images/sec)

Figure 5. TResNet Vs EfficientNet models training speed com-
parison. Y label is the accuracy[%]

4. Transfer Learning Results

In this section, we will present transfer learning results
of TResNet models on four well-known single-label classi-
fication downstream datasets. We will also present transfer
learning results on multi-label classification and object de-
tection tasks.

4.1. Single-Label Classification

We evaluated TResNet on four commonly used, compet-
itive transfer learning datasets: Stanford-Cars [16], CIFAR-
10 [17], CIFAR-100 [17] and Oxford-Flowers [29]. For
each dataset, we used ImageNet pre-trained checkpoints,
and fine-tuned the models for 80 epochs using 1-cycle pol-
icy [34] . For the fine-grained classification tasks (Stanford-
Cars and Oxford-Flowers), in addition to cross-entropy loss
we used weighted triplet loss with soft-margin [31, 19],
which emphasizes hard examples by focusing of the most
difficult positives and negatives samples in the batch. Ta-
ble 7 shows the transfer learning performance of TResNet,
compared to the known state-of-the-art models.

We can see from Table 7 that TResNet surpasses or
matches the state-of-the-art accuracy on 3 of the 4 datasets,
with x8-15 faster GPU inference speed. Note that all TRes-
Net’s results are from single-crop single-model evaluation.

4.2. Multi-Label Classification

For multi-label classification tests, we chose to work
with MS-COCO dataset [23] (multi-label recognition task).
We used the 2014 split, which contains about 82K images
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Dataset Model Top-1 . Speed Input
Acc. | img/sec

Gpipe 99.0 - 480
CIFAR-10 R eoNet XL | 99.0 | 1060 | 224

EfficientNet-B7 | 91.7 70 600
CIFAR-100 R eNetXL | 915 | 1060 | 224
Stanford EfficientNet-B7 | 94.7 70 600
Cars TResNet-L 96.0 500 368
Oxford- EfficientNet-B7 | 98.8 70 600
Flowers TResNet-L 99.1 500 368

Table 7. Comparison of TResNet to state-of-the-art models
on transfer learning datasets (only ImageNet-based transfer
learning results). Models inference speed is measured on a mixed
precision V100 GPU. Since no official implementation of Gpipe
was provided, its inference speed is unknown.

for training and 41K for validation. In total, images are
involved with 80 object labels, with an average of 2.9 la-
bels per image. Our training scheme is similar to the one
used for single-label training. The main difference is the
loss function, which is adapted for a multi-label setting -
we implemented a variant of the well known focal-loss [22],
where two different gamma values are used for positive and
negative sample. This enables to better tackle the highly
imbalanced nature of a multi-label dataset.

Following the conventional settings [5, 40], we report the
main performance evaluation metric, mean average preci-
sion (mAP), but in addition state average per-class precision
(CP), recall (CR), F1 (CF1) and the average overall preci-
sion (OP), recall (OR), F1 (OF1). In Table 9, we present the
transfer learning results of TResNet model and compare it
to the known state-of-the-art model.

Backbone |mAP| CP CR CF1 OP OR OFl1

KSSNet[40] | 83.7 |84.6 732 772 87.8 762 81.5

TResNet-L | 86.4 |87.6 76.0 81.4 88.4 789 834

Table 9. Comparison of TResNet to state-of-the-art model on
multi-label classification on MS-COCO dataset. KSSNet [40],
is the known SOTA, based on ResNet101 backbone.

We can see from Table 9 that the TResNet-based solu-
tion significantly outperforms previous top solution for MS-
COCO multi-label dataset, increasing the known SOTA by
a large margin, from 83.7 mAP to 86.4 mAP. All additional
evaluation metrics also show improvement.

4.3. Object Detection

While our main focus was on various classification tasks,
we wanted to further test TResNet on another popular com-
puter vision task - object detection.

We used the known MS-COCO [23] dataset (object de-
tection task), with a training set with 118k images, and an

evaluation set (minival) of 5k images. For training, we used
the popular mm-detection [3] package, with FCOS [38]
as the object detection method and the enhancements dis-
cussed in ATSS [47].

We trained with SGD optimizer for 70 epochs with 0.9
momentum, weight decay of 0.0001 and batch size of 24.
We used learning rate warm up, initial learning rate of 0.01
and 10x reduction at epochs 40, 60. We also implemented
the data augmentations techniques described in [24]. For
a fair comparison, we used first ResNet50 as backbone,
and then replace it by TResNet-M (both give similar GPU
throughput). Comparison results appear in Table 10.

Method | Babkbone | mAP %
FCOS | ResNet50 42.8
FCOS | TResNet-M | 44.0

Table 10. Comparison of TResNet-M to ResNet50 on MS-
COCO object detection task. Results were obtained using mm-
detection package, with FCOS as the object detection method .

We can see from Table 10 that TResNet-M outperform
ResNet50 on this object-detection task, increasing COCO
mAP score from 42.8 to 44.0. This is consistent with the
improvement we saw in the single-label ImageNet classifi-
cation task.

5. Conclusion

In this paper, we point out a possible blind-spot of lat-
est developments in neural network design patterns. They
tend not to consider actual GPU utilization as one of the
measurements for a network quality. While GPU infer-
ence speed is sometimes measured, GPU training speed and
maximal possible batch size are widely overlooked. For
many real-world deep learning applications, training speed,
inference speed and maximal batch size are all critical fac-
tors. To address this issue, we propose a carefully selected
set of design refinements, which are highly effective in uti-
lizing typical GPU resources - SpaceToDepth stem cell,
economical AA downsampling, Inplace-ABN operations,
block-type selection redesign and optimized SE layers. We
combine these refinements with a series of code optimiza-
tions and enhancements to suggest a family of new mod-
els, dedicated for GPU high-performance, which we call
TResNet. We demonstrate that on ImageNet, all along the
top-1 accuracy curve TResNet gives better GPU throughput
than existing models. In addition, on three commonly used
downstream single-label classification datasets it reaches
new state-of-the-art accuracies. We also show that TResNet
generalizes well to other computer vision tasks, reaching
top scores on multi-label classification and object detection
datasets.
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