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Abstract

Unsupervised domain adaptation (UDA) deals with the

adaptation process of a given source domain with labeled

training data to a target domain for which only unannotated

data is available. This is a challenging task as the domain

shift leads to degraded performance on the target domain

data if not addressed. In this paper, we analyze commonly

used UDA classification datasets and discover systematic

problems with regard to dataset setup, ground truth ambigu-

ity and annotation quality. We manually clean the most pop-

ular UDA dataset in the research area (Office-31) and quan-

tify the negative effects of inaccurate annotations through

thorough experiments. Based on these insights, we collect

the Adaptiope dataset – a large scale, diverse UDA dataset

with synthetic, product and real world data – and show that

its transfer tasks provide a challenge even when consider-

ing recent UDA algorithms. Our datasets are available at

https://gitlab.com/tringwald/adaptiope.

1. Introduction

Training a modern convolutional neural network (CNN)

requires a vast amount of labeled data in order to learn mil-

lions of weight parameters. While annotated data is often

readily available for a given source domain, this might not

be the case for the actual domain of interest (target domain).

In the medical area, for example, synthetic images (e.g. 3D

renderings) could be used for training while inference on

real patient data (e.g. CT scans) is the actual objective. This

would enable the accumulation of larger amounts of train-

ing data while also being cheaper and less critical from a

privacy perspective. Unfortunately, current CNN classifica-

tion methods are unable to handle large domain gaps such as

synthetic (source) to real (target) transfer tasks, which leads

to a degraded performance when trying to apply a source-

trained model to the target domain.

Unsupervised domain adaptation (UDA) seeks to ad-

dress this domain shift problem and strives for accurate pre-

dictions on the target domain even in the absence of target

labels. Multiple different methods have been presented in

(a) bicycle helmet (b) backpack

(c) hot glue gun (d) diving fins

(e) tyrannosaurus (f) acoustic guitar

(g) boxing gloves (h) over-ear headphones

Figure 1: Example images from eight randomly picked

classes of our proposed Adaptiope dataset. From left to

right: product, real life and synthetic domain.

recent years that tackle the UDA problem from different

directions. At the image level, UDA methods usually try

to infer an image-to-image mapping between the domains

by the means of image-to-image translation or style trans-

fer, thereby enabling transfer into a common image distribu-

tion where straightforward classification is possible [10, 1].

At the feature level, common approaches rely on minimiz-

ing divergence or distance measures between the different

domains such as the Kullback-Leibler divergence [21] or

the maximum mean discrepancy (MMD) [12]. Other works

also considered domain discriminative training for enforc-

ing either domain-specific or domain-invariant feature rep-

resentations [7, 25, 32].

Independent of the chosen approach, key component of

every algorithm is its fair and unbiased evaluation on a given

target domain after training with both source and (unla-

beled) target domain data. For this, the ground truth tar-

get domain labels have to be accurate and unambiguous as
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Dataset #C #D
#Images

Avg. Size [px] Balanced?
Synthetic

Min. Max. Overall Domain?

Office-31 [26] 31 3 7 100 4,110 418×418 × ×
Syn2Real-C (VisDA 2017) [24] 12 2 2,075 17,360 207,785 355×219 × X

Office-Home [28] 65 4 15 99 15,588 727×650 × ×
Digits [15, 8, 6] 10 3 542 6,000 127,291 27×27 × ×
ImageCLEF-DA [3] 12 4 50 50 2,400 443×357 X ×

Refurbished Office-31 (ours) 31 3 7 100 4,110 556×548 × ×
Modern Office-31 (ours) 31 4 7 100 7,210 781×777 × X

Adaptiope (ours) 123 3 100 100 36,900 1,186×1,144 X X

Table 1: Most commonly used unsupervised domain adaptation datasets (see Figure 2) in comparison with our proposed

datasets. Min. and Max. denote the minimum and maximum number of images available concerning all classes in all

domains.

otherwise the performance of a given classifier will be mis-

judged. Unfortunately, the opposite is oftentimes the case

with popular UDA datasets. In this paper, we analyze fre-

quently used UDA datasets with regard to annotation qual-

ity and uncover systematic problems in the annotation and

data selection process. In order to validate our findings,

we manually clean the most popular dataset in the research

area – Office-31 [26] – and quantify the negative effect of

inaccurate annotations through experiments.

Given our insights w.r.t. the annotation processes, we col-

lect a new dataset called Adaptiope, which does not suf-

fer from the aforementioned problems. Adaptiope is one of

the biggest, most diverse datasets for unsupervised domain

adaptation and offers 123 classes in 3 different domains.

Due to the practical relevance for real world application, we

also focus on the difficult synthetic to real UDA task: Adap-

tiope contains a large scale synthetic domain with multiple

hundred different 3D models in addition to a product image

and real life domain. Example images are shown in Fig-

ure 1. To summarize, our contributions are as follows:

• We analyze commonly used UDA datasets and un-

cover systematic problems w.r.t. annotation quality.

• We clean the most popular Office-31 [26] dataset and

validate our findings through thorough experiments.

• We propose Adaptiope, a large scale UDA dataset with

123 diverse classes that offers a synthetic, product and

real life domain.

• Based on Adaptiope’s synthetic domain and our

cleaned Office-31 version, we construct Modern

Office-31 – an updated Office-31 version.

2. Related Work

Methods. In recent years, many different domain adap-

tation methods have been presented. At the feature level,

discriminative training has been used for a long time: One

of the first uses was proposed by Ganin et al. [7, 8] in

their domain-adversarial neural network (DANN). DANN

is based on a domain classifier that – in conjunction with a

novel gradient-reversal layer (RevGrad) – enforces domain-

invariant representations at the feature level. Xie et al. [30]

later picked up this idea in their moving semantic trans-

fer network (MSTN), which complements the domain-

discriminative training with a centroid-based alignment.

Both DANN and MSTN were chosen as base architec-

ture for the robust spherical domain adaptation (RSDA)

method [9] which extends these approaches with a robust

pseudo-label loss and a spherical classifier. The recently

proposed SymNets [32] by Zhang et al. extend the idea of

discriminative training to a two-level adversarial training

setup that aims at aligning both joint distributions of fea-

tures and categories. Furthermore, they use a symmetric

design of source and target domain classifiers with an addi-

tional shared classifier stage.

Instead of discriminative training, distribution distance

and divergence measures have been successfully applied for

unsupervised domain adaptation and proved to be effective

in aligning the different distributions of source and target

domain features. For example, Meng et al. [21] used the

Kullback-Leibler divergence while Long et al. [19] employ

the Maximum Mean Discrepancy (MMD) to achieve do-

main adaptation. Recently, this MMD-based approach was

extended by Kang et al. [12] in their Contrastive Adaptation

Network (CAN). Here, inter-class and intra-class MMD is

applied in their proposed CDD loss during an iterative clus-

tering and training regime, which can successfully align the

source and target domain features.

Datasets. Image classification is one of the most ex-

tensively studied problems in computer vision research and

thus offers a large amount of different benchmark datasets.

For unsupervised domain adaptation, however, it is diffi-

cult to create new multi-domain benchmarks by re-using
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existing datasets because the class set has to be identi-

cal between the domains. Earlier UDA research thus fo-

cused on simplistic, common tasks such as handwritten

character recognition across domains, for which existing

datasets with a shared class set already existed. With re-

gard to digits (ten classes, 0-9), these datasets are usually

MNIST [15], MNIST-M [8] and USPS [6] for handwritten

digits or SVHN [22] for real life images of house numbers.

Due to the small amount of classes and simplicity of

the adaptation task, new benchmarks such as the popular

Office-31 dataset [26] were created and superseded the al-

most solved digits transfer tasks. Office-31 contains images

of 31 object categories from an everyday office setting in

3 different domains: Amazon (product images) as well as

DSLR and Webcam pictures. While providing a more diffi-

cult challenge than abovementioned digit tasks, the dataset

is still restricted to an Office setting with basic categories

such as pen and scissors. Another issue is the small scale

of the dataset: Modern CNN architectures require a lot of

training data, while Office only offers approximately 4,000

images. Especially the DSLR domain is problematic in this

regard as it contains less than 500 images with the ruler

class having only 7 images available for training and eval-

uation. Similar arguments apply to other UDA datasets

such as ImageCLEF-DA [3] with only 2,400 images overall

and the Office-Home [28] dataset with only 15 images for

some classes. With regard to dataset scale, the Syn2Real-C

(VisDA 2017) [24] dataset tries to address this problem by

offering over 200,000 images in a more difficult synthetic to

real UDA setup. Despite of its size, however, VisDA 2017

only contains 12 object categories that are also highly dis-

tinguishable (e.g. horse and airplane). Recent research [12]

showed that results on VisDA 2017 already approach the

upper bound of a target domain oracle [24, 12]. Therefore,

this dataset also ceases to provide a challenge for recently

proposed UDA methods.

For these reasons, one of our main contributions in this

work is a novel, large scale UDA dataset with 123 classes

and a difficult synthetic to real transfer task that we will

show to provide a new challenge for modern unsupervised

domain adaptation algorithms.

3. Problems in Common UDA Datasets

In this section, we provide an in-depth analysis on com-

monly used unsupervised domain adaptation datasets and

their problems. For this, we first establish the most popular

datasets by inspecting 14 recent CVPR 2020 publications in

the UDA research area [31, 13, 27, 4, 23, 16, 11, 9, 20, 29,

17, 14, 18, 5]. The resulting top 5 datasets and their usage

percentage are visualized in Figure 2. Further statistics (e.g.

number of classes and domains) for these datasets are avail-

able in Table 1. We observe that most research focuses on

Office-31 [26], VisDA 2017 [24], Digits [15, 8, 6], Office-

Office-31 VisDA 2017 Digits Office-Home ImageCLEF
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Figure 2: Top 5 commonly used unsupervised domain adap-

tation datasets for image classification concerning recent

CVPR 2020 publications: Office-31 [26], VisDA 2017 [24],

Digits [15, 6, 8], Office-Home [28] and ImageCLEF [3].

Home [28] and ImageCLEF-DA [3] with the overwhelming

majority (78% of analyzed papers) reporting results on the

Office-31 dataset. Due to its high popularity, Office-31 will

therefore be the main subject of further analysis. Similari-

ties to other datasets such as VisDA 2017 [24] will also be

pointed out when applicable.

Office-31 [26] is a classification dataset for UDA tasks

and contains 4,110 images of 31 commonplace office ob-

jects in three different domains: Amazon (product images)

with 2,817 images, 498 DSLR images of objects from dif-

ferent viewpoints and similarly 795 images from a Webcam.

Given these 3 domains, the dataset offers 6 possible transfer

tasks (A→D, A→W, ...) for which a model is trained with

labeled source domain data (A in this case) and adapted to

the unlabeled target domain data. Finally, a method’s UDA

performance is measured as classification accuracy on the

target domain for a single transfer task and as an overall

average over all transfer tasks (see Section 5).

While images for the DSLR and Webcam domains

were manually collected, Office-31’s Amazon domain was

crawled from the Amazon online store. However, prod-

uct images often do not correspond to search terms leading

to an inherent label noise problem with such an automated

data collection process. During our analysis of the Office-

31 dataset, we noticed five major problem areas w.r.t. the

Amazon domain and also the overall dataset:

Annotation and Data Quality. This was mostly reflected

in three different ways: (i) Some images are only vaguely

related to the object category, because they were offered as

additional services on the product page (extended warranty

option icon in Figure 3b). (ii) Some images show an actual

object, however, with an incorrect annotation (see e.g. lap-

top labeled as backpack in Figure 3a). (iii) Many images

were found to be exact duplicates of other instances in the

Amazon domain. Overall, we found 71 duplicate images

which constitute about 2.5% of the available data.
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Ambiguous Ground Truth. Many images in the dataset

show multiple objects of the class set in the same frame, e.g.

a keyboard, mouse, monitor or speakers in front of a com-

puter (see Figure 3e and 3f). However, only a single label

is given. This leads to problems when training with these

annotations (using the domain as source) but even more so

when evaluating a model on these annotations (using the do-

main as target), because only one label is considered to be

correct. We found this to be especially problematic when

the non-annotated objects are dominant with regard to the

occupied image area, e.g. the monitor in Figure 3f while the

image is annotated as computer.

Class Definitions. Some of the classes follow a different

definition between the domains. For the desk chair class,

the DSLR and Webcam domains show only office chairs

(see Figure 3i) while the Amazon domain contains a broader

definition of seating options (see Figure 3j). We argue that

this does not constitute the classical domain shift problem

but instead represents an entirely new class. Similarly, the

bike helmet class includes motorcycle helmets in the Ama-

zon domain while the DSLR and Webcam domains only

depict bicycle helmets.

Dataset Imbalance. Office-31 is highly imbalanced w.r.t.

available training and evaluation data. For certain classes

and domains, only 7 images are available while there are

100 for other classes (see Table 1). This leads to skewed

evaluation results as a model can ignore whole classes with-

out being penalized significantly.

Domain Leakage. Many images in the Amazon domain

(product images) leak information w.r.t. other domains, due

to showing the object in a real life setting (see Figure 3m)

instead of the usual product setting with white background

(see Figure 3n). This significantly weakens the unsuper-

vised domain adaptation task because source domain labels

are available during training.

Unfortunately, these problems are not specific to Office-

31 [26] and also occur in other datasets. In VisDA

2017 [24], for example, many images are labeled as car

although they show other vehicles such as trucks (see Fig-

ure 3c) or unrecognizable blurry content (see Figure 3d).

Many images in VisDA 2017 also show multiple objects,

e.g. a motorcycle or horse in front of a car (see Figure 3g

and 3h) although all 3 objects are part of the label set and

the image only has a single annotation. The knife class

of the real life domain consists mostly of kitchen knives

(see Figure 3k) while the synthetic domain also includes

cleavers and axes (see Figure 3l). Furthermore, some syn-

thetic images leak information about the real life domain by

including color although those images are supposed to be

grayscale (see Figure 3o and 3p). Similar problems can also

be observed in Office-Home [28] and ImageCLEF-DA [3].

Recent neural network architectures and training setups

have been shown to be moderately robust w.r.t. label er-

Office-31 VisDA 2017

(a) backpack (b) computer (c) car (d) car

(e) computer (f) computer (g) car (h) car

(i) desk chair (j) desk chair (k) knife (l) knife

(m) desk lamp (n) desk lamp (o) plant (p) plant

Figure 3: Different problems types in UDA datasets. From

top to bottom row: Annotation and data quality, ambiguous

ground truth, different class definitions and domain leakage.

The image caption denotes the ground truth annotation.

rors and low quality images as long as the majority of the

training data is unaffected. This, however, does not hold

when the evaluation dataset contains errors. Here, a model

could predict an objectively correct label for a given image

while being penalized if the prediction does not correspond

to an errorenous annotation. For example, a model would

be penalized for classifying Figure 3h as horse instead of

the ground truth car annotation. Given N domains D in an

UDA dataset, it is common to construct N × (N − 1) trans-

fer tasks ({D1 → D2,D2 → D1, ...}), thereby using every

domain as source and target domain at least once. Consider-

ing this construction process, we hypothesize that a domain

D̃ with aforementioned problems (such as label noise and

ambiguous ground truth) will have a high impact on the re-

sults when used for evaluation (∗ → D̃) while being less

influential when used for training (D̃ → ∗).

4. Proposed Datasets

4.1. Adaptiope

In this section, we now introduce Adaptiope – our

new, diverse UDA classification dataset with synthetic data.

Adaptiope contains 36,900 images from 123 classes in the
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3 domains product image, real life and synthetic. Example

images for eight randomly picked classes are shown in Fig-

ure 1. Additionally, major dataset statistics are shown in Ta-

ble 1. The main goal of Adaptiope was to fix the problems

mentioned in Section 3 and to provide a better benchmark-

ing opportunity for UDA algorithms: Unlike other UDA

datasets, Adaptiope is balanced – every class contains ex-

actly 100 unique images per domain. This inhibits many

problems during evaluation and forces a model to treat

every class equally, as incorrect predictions are weighted

evenly for all classes. Nevertheless, Adaptiope can also be

used to research domain adaptation in imbalanced settings

by selectively removing images. On the converse, a dataset

such as Office-31 could only be balanced by collecting new

data because some classes only contain 7 images.

Images for the product and real life domain were crawled

from amazon.com and then manually cleaned by human

annotators. Here, customer review images were used for

the real life domain while the actual article image was used

for the product domain. To guarantee a cleanly annotated

dataset, we took utmost care to prevent multiple classes

from being visible in the same frame by either cropping

or replacing the whole image during the collection pro-

cess. For the synthetic domain, freely available 3D mod-

els were collected from sites such as sketchfab.com or

created by the authors themselves. The models were then

ray-traced using the Blender [2] rendering engine. Similar

to [24], 3D models were rendered without textures. A total

of 615 models (5 per class) were positioned on a shadow

catcher surface under a light source and automatically ren-

dered from 20 different camera angles (see supplementary

material). For some objects, the camera views were man-

ually filtered, as many classes (e.g. a bookcase) would not

be distinguishable when seen directly from the top. When

compared to the only other UDA dataset with synthetic 3D

renderings – VisDA 2017 [24] – we have a multiple times

larger synthetic image size (see Table 1) with a resolution of

1080×1080px whereas VisDA provides only 384×216px

renderings. VisDA’s synthetic renderings also suffer from

visual noise caused by undersampling during ray tracing

and are based on rather simplistic 3D models (see Fig-

ure 4b). We therefore also focused on higher quality 3D

models and better rendering settings.

Classes for our dataset were chosen based on the avail-

ability and distinguishability of 3D models. Whenever pos-

sible, any overlap with classes from ImageNet was avoided

in order to prevent leakage from pretrained models. In total,

Adaptiope offers 123 diverse classes, which is more than

10 times as many as the only other UDA dataset with syn-

thetic data, VisDA 2017 [24] (12 classes). Moreover, our

123 classes are also a superset of the classes from Office-

31, which will be further discussed in Section 4.3. Overall,

Adaptiope’s classes were designed to be more fine-grained

(a) Adaptiope’s fighter jet class (b) VisDA’s airplane class

Figure 4: Comparison of synthetic image quality in our

proposed Adaptiope dataset (left) and VisDA 2017 (right).

VisDA offers only simplistic 3D models that exhibit visual

noise due to suboptimal rendering settings.

than any other UDA dataset: While many classes in other

datasets are trivially distinguishable (e.g. airplane and horse

in VisDA 2017 [24]), Adaptiope offers much more detailed

class definitions such as in-ear vs. over-ear headphones,

acoustic vs. electrical guitar and bicycle helmet vs. motor-

cycle helmet. A full list of all 123 classes is provided in the

supplementary material.

4.2. Refurbished Office­31

In Section 3, we stated major problems with regard to the

Office-31 dataset. To quantify the extend of these problems

through experiments, we propose a refurbished version of

the Office-31 dataset. We apply our insights and points of

criticism to manually clean all affected images in Office-

31’s Amazon domain and replace them with newly gathered

product images from the Amazon.com online store. We re-

placed a total of 834 of the 2,817 images in the Amazon

domain. Detailed replacement statistics are available in the

supplementary material. During the replacement process,

we tried to closely match the distribution of the original im-

ages to provide a fair comparison between the dataset ver-

sions. This also implies that the total number of images re-

mains unchanged, i.e. 2,817 images in the Amazon domain.

As the DSLR and Webcam domains were mostly unaffected

by abovementioned problems, we include their original ver-

sions in our refurbished dataset for a total of 3 domains and

6 transfer tasks. Further information about the refurbished

version can be found in Table 1.

4.3. Modern Office­31

Building upon our refurbished Office-31 version and our

newly proposed Adaptiope dataset, we also introduce Mod-

ern Office-31. Modern Office-31 is supposed to be a drop-

in replacement for the popular Office-31 [26] dataset using

the same 31 classes. However, a synthetic domain is sup-

plemented to provide a new challenge for UDA algorithms.

As Adaptiope’s 123 classes are a superset of the 31 classes

in Office-31, we easily construct this domain by utilizing

Adaptiope’s synthetic 3D renderings. This results in a new

synthetic domain containing 3,100 images. Furthermore,

we adopt the original Office-31 webcam images in order to

provide a real life domain. Finally, we employ our cleaned
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Method A→D A→W D→A D→W W→A W→D Avg.

Source only 81.8±0.9 75.1±0.8 62.6±0.9 96.3±0.2 63.9±0.5 99.1±0.3 79.8±0.6

RSDA-DANN 91.1±0.6 92.5±1.2 73.1±1.5 98.8±0.2 75.4±0.5 99.9±0.1 88.5±0.1

RSDA-MSTN 94.9±0.5 94.9±0.7 76.5±0.4 99.1±0.2 78.3±0.4 100.0±0.0 90.6±0.1

SymNet 93.5±0.5 90.8±0.6 74.9±0.2 98.0±0.1 72.0±0.3 99.8±0.0 88.2±0.2

CAN 94.9±0.1 95.2±0.4 76.9±0.6 98.5±0.2 75.1±0.9 99.7±0.2 90.1±0.4

Table 2: Classification accuracy (in %) on the original Office-31 [26] dataset for four recent UDA methods using ResNet-50.

Method Aref→D Aref→W D→Aref D→W W→Aref W→D Avg. ∆Avg.

Source only 79.2±0.6 76.8±1.0 73.5±1.2 96.3±0.2 74.1±0.5 99.1±0.3 83.2±0.6 +3.4

RSDA-DANN 90.9±1.3 91.8±0.5 87.3±0.6 98.8±0.2 90.5±0.9 99.9±0.1 93.2±0.5 +4.7

RSDA-MSTN 93.2±1.0 92.2±0.3 91.7±0.9 99.1±0.2 93.0±0.6 100.0±0.0 94.9±0.4 +4.3

SymNet 92.4±0.4 91.0±0.2 90.6±0.4 98.0±0.1 89.2±0.4 99.8±0.0 93.5±0.1 +5.3

CAN 94.4±0.3 92.8±0.5 92.3±0.8 98.5±0.2 90.9±1.0 99.7±0.2 94.8±0.2 +4.7

Table 3: Classification accuracy (in %) for our proposed Refurbished Office-31 dataset with a refurbished Amazon domain

(denoted as Aref) using ResNet-50. Compared to the original dataset, results improve by a huge margin when using the

cleaned Amazon domain for evaluation (∗→Aref) instead of the noisy original version. ∆Avg. is calculated w.r.t. Table 2.

Amazon domain (see Section 4.2) for an additional prod-

uct image domain. Overall, our Modern Office-31 dataset

provides 7,210 images in the 3 domains Amazon, Synthetic

and Webcam resulting in 6 possible transfer tasks. Further

statistics can be found in Table 1.

5. Experiments

5.1. Setup

We validate our findings on four different datasets:

(1) The original Office-31 [26] dataset with domains Ama-

zon, DSLR and Webcam. (2) Our Refurbished Office-31

dataset with a cleaned Amazon domain as well as the orig-

inal DSLR and Webcam domains. (3) Our proposed Mod-

ern Office-31 dataset consisting of our cleaned Amazon do-

main, a new synthetic domain and the original webcam do-

main. (4) Our proposed Adaptiope dataset with domains

Product, Real Life and Synthetic. For further information

and statistics concerning these datasets, please refer to Sec-

tion 3 and 4 as well as Table 1.

For evaluation, we select four recent state-of-the-art un-

supervised domain adaptation algorithms. Results are ob-

tained using RSDA [9] in conjunction with DANN [7, 8]

and MSTN [30], SymNets [32] and CAN [12]. These meth-

ods utilize different approaches such as domain discrimi-

native training or distribution-based loss functions and are

described further in Section 2.

For every transfer task, we report source only results by

training a plain model on the source domain and evaluat-

ing it on the target domain without applying any domain

adaptation techniques. This constitutes a lower bound as no

target domain images are used during training. We obtain

these results by adding a single linear layer to the respec-

tive backbone architecture and train for 4,000 mini-batch

iterations using SGD with momentum of 0.9, learning rate

5 × 10−4 and a batch size of 64. In general, every result is

reported as mean and standard deviation over 3 runs.

5.2. Results

Refurbished Office-31. We start by reporting baseline

results on the original Office-31 [26] dataset for our selected

UDA algorithms in Table 2. Our reproduced results closely

match the results reported in the respective publications [9,

32, 12] which verifies our basic experimental setup.

We continue by examining our main hypothesis w.r.t.

dataset and annotation quality of the original Office-31 [26]

dataset. For this, we utilize our Refurbished Office-31

dataset. Please recall from above that this version is simi-

lar to the original dataset with the exception of the Amazon

domain, which was cleaned of problematic images w.r.t. our

insights in Section 3. We evaluate the same four UDA al-

gorithms on the refurbished version and show the results in

Table 3. We note three key observations:

Webcam and DSLR. Results for D→W and W→D remain

constant as these domains were not modified in the refur-

bished dataset version.

Amazon as source. All evaluated methods achieve similar

results as the original version when using the refurbished

Amazon domain as source domain (i.e. Aref→ ∗ tasks).

This confirms that we closely matched the original image

distribution when replacing images. Additionally, cleaning

the Amazon domain did not make the domain adaptation
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Method Aref→S Aref→W W→Aref W→S S→Aref S→W Avg.

Source only 51.3±0.4 76.8±1.0 74.1±0.5 51.3±1.0 14.9±3.5 8.0±1.5 46.1±1.3

RSDA-DANN 76.1±0.5 91.8±0.5 90.5±0.9 70.4±1.0 80.8±0.3 83.1±2.8 82.1±0.7

RSDA-MSTN 82.0±0.6 92.2±0.3 93.0±0.6 76.3±0.7 90.0±1.5 86.2±2.9 86.6±0.3

SymNet 65.9±1.0 91.0±0.2 89.2±0.4 56.5±1.4 86.8±2.1 82.2±1.2 78.6±0.6

CAN 79.1±3.0 92.8±0.5 90.9±1.0 77.9±1.6 91.2±0.5 89.7±0.5 86.9±0.7

Table 4: Classification accuracy (in %) for our proposed Modern Office-31 dataset using ResNet-50.

Backbone Method P→R P→S R→P R→S S→P S→R Avg.

ResNet-50 Source only 63.6±0.4 26.7±1.7 85.3±0.3 27.6±0.3 7.6±0.8 2.0±0.2 35.5±0.6

ResNet-50 RSDA-DANN 78.6±0.1 48.5±0.7 90.0±0.0 43.9±0.9 63.2±1.1 37.0±1.2 60.2±0.2

ResNet-50 RSDA-MSTN 73.8±0.2 59.2±0.2 87.5±0.2 50.3±0.5 69.5±0.6 44.6±1.1 64.2±0.4

ResNet-50 SymNet 81.4±0.3 53.1±0.6 92.3±0.2 49.2±1.0 69.6±0.5 44.9±1.5 65.1±0.2

ResNet-50 CAN 81.5±0.3 72.3±0.3 92.2±0.2 69.3±0.9 74.9±1.1 60.7±0.6 75.2±0.2

ResNet-101 Source only 67.7±0.6 35.3±0.9 86.0±0.4 28.2±2.2 8.9±1.0 2.2±0.6 38.1±0.9

ResNet-101 CAN 83.5±0.2 75.7±0.2 93.4±0.2 73.6±0.2 78.3±0.2 63.1±0.8 77.9±0.1

ResNeXt-5032x4d Source only 68.4±0.5 34.2±1.4 87.7±0.2 29.2±0.3 8.5±4.3 4.7±0.2 38.8±0.4

ResNeXt-5032x4d CAN 83.8±0.2 73.1±1.1 93.1±0.1 73.0±0.6 79.1±1.4 64.5±1.4 77.8±0.2

Table 5: Classification accuracy (in %) for our proposed Adaptiope dataset using different backbone architectures.

task easier. In fact, for some methods, the accuracy slightly

decreases regarding those transfer tasks.

Amazon as target. All methods improve by a large mar-

gin w.r.t. to the original version when using the refurbished

Amazon domain for evaluation (i.e. ∗→Aref tasks). This is

in accordance with our hypothesis about annotation errors

and image quality in the original Office-31 dataset. While

UDA algorithms can usually compensate some label noise

in the source domain annotations, they cannot account for

label errors during evaluation. This is reflected in large

gains of up to 17.2% accuracy (for SymNet W→Aref com-

pared to W→A), which are consistent for all four methods.

Overall, the average accuracy increased by over 4% for

all methods (see ∆Avg. in Table 3). This is mostly owed

to transfer tasks that use the refurbished Amazon domain as

target domain, which provides a fairer, noiseless evaluation.

In Figure 5, we provide further analysis in the form of

confusion matrices using the RSDA-MSTN algorithm. For

the W→A task, the confusion matrix clearly demonstrates

the presence of annotation errors and image quality prob-

lems in the original Amazon domain as discussed in Sec-

tion 3. For example, the computer class is often confused

with the monitor class as they are often shown together in

the same image while only one label is provided (see e.g.

Figure 3f). Similarly, the punchers and stapler classes con-

tain a lot of label noise and unrecognizable images due

to which less than 22% of those images were classified

correctly – even when considering a SOTA algorithm like

RSDA-MSTN. Additionally, we found that the most con-

fused classes correlate with the amount of images that were

replaced in our refurbished Amazon domain (see supple-

mentary). For the W→Aref task, a much more distinct diag-

onal can be observed due to the rectification of annotation

errors and replacement of low quality images. Problem-

atic classes – such as e.g. computer – profit hugely from our

cleaning effort and gain more than 56% in accuracy. The re-

maining off-diagonal non-zero values constitute the actual

domain adaptation challenge and are not caused by incor-

rect annotations anymore. This effect can also be observed

for other UDA algorithms and is shown for CAN [12] in the

supplementary material.

We conclude that our refurbished Amazon domain pro-

vides a much cleaner, fairer evaluation (∗→Aref) while not

weakening the UDA challenge in Aref→∗ cases. This con-

firms our main hypothesis about the negative influence of

label noise on the evaluation of Office-31 transfer tasks.

Modern Office-31. Furthermore, we evaluate our Mod-

ern Office-31 dataset as drop-in replacement for Office-

31 [26]. This dataset was introduced in Section 4.3 and

builds upon our refurbished Amazon domain and syn-

thetic images from Adaptiope. Results for the four se-

lected UDA algorithms are shown in Table 4. Compared

to Office-31 [26] and Refurbished Office-31 (see Table 2

and 3), Modern Office-31 provides a much greater chal-

lenge to the evaluated algorithms where even the best

method (CAN [12]) drops on average 3.2% w.r.t. Office-

31 and 7.9% w.r.t. Refurbished Office-31. Note that this

challenge is also reflected in the source only results, which
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are already surpassing 79.8% for Office-31 without even ap-

plying any domain adaptation techniques. In this regard,

Modern Office-31 is also much more challenging with only

46.1% accuracy after the source only training.

Adaptiope. We continue by evaluating our proposed

Adaptiope dataset with product, real and synthetic domains.

Results are shown in Table 5 for a ResNet-50 backbone

(23M parameters). Again, RSDA [9], SymNet [32] and

CAN [12] are selected for evaluation. Evidently, Adap-

tiope’s 123 classes provide a much greater challenge than

all previously evaluated datasets. A large part of this chal-

lenge is posed by the transfer tasks involving the synthetic

domain. Here, RSDA and SymNet only achieve less than

60% in the P→S task, less than 51% in the R→S task and

less than 70% in the S→P task. Especially the synthetic to

real task exhibits a strong domain gap: All evaluated algo-

rithms achieve less than 61% on Adaptiope’s challenging

S→R transfer task.

Overall, CAN [12] was the best performing method on

Adaptiope with an average accuracy of 75.2%. In order

to control for the employed backbone architecture, we also

evaluate CAN with a ResNet-101 (42M parameters) and

ResNeXt-5032x4d (23M parameters) feature extractor stage

and show results in Table 5. Our results indicate that

Adaptiope’s domain adaptation challenge cannot simply be

solved by adding more parameters (ResNet-101) or using

more complicated architectures (ResNeXt): While the av-

erage accuracy marginally increases, Adaptiope’s hardest

transfer task S→R remains at less than 65% even when al-

most doubling the number of parameters.

Finally, we conduct upper bound experiments similar to

the “oracle” setup in [24]. Here, a single domain is chosen

as both source and target. Note that these are not domain

adaptation experiments but instead used to determine a the-

oretical upper bound of any algorithm on that dataset. This

can also be seen as a proxy measure for dataset cleanness.

The more noise a dataset contains, the more complicated the

objective becomes. A model would need an increased num-

ber of parameters in order to approximate this more com-

plex function and also fit the noisy examples. Results are

reported in Table 6 for different network architectures.

Adaptiope was carefully crafted in order to contain as lit-

tle noise as possible. This is clearly reflected in our results,

which approach 100% accuracy for all transfer tasks and

backbones. We also apply the same experimental setup to

VisDA 2017 [24], as its synthetic to real task is similar to

Adaptiope’s S→R task. While VisDA’s synthetic domain

only has minor issues, we observe subpar results for the

real domain. With Alexnet, only 85.7% accuracy can be

achieved on the Real→Real task while all transfer tasks of

Adaptiope converge towards 100%. Note that this is neither

related to dataset nor model size: VisDA’s synthetic domain

(152,397 images) is three times bigger than its real domain
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Figure 5: Confusion matrices for the W→A and W→Aref

tasks using RSDA-MSTN. The refurbished Amazon do-

main exhibits a much more distinct diagonal due to the rec-

tification of annotation errors.

Dataset Task Alexnet ResNet-50 ResNet-101

VisDA 2017 [24] Synth→Synth 98.3±0.2 99.8±0.0 99.9±0.0

VisDA 2017 [24] Real→Real 85.7±0.4 94.7±0.1 95.8±0.2

Adaptiope (ours) P→P 99.8±0.1 99.7±0.1 99.9±0.0

Adaptiope (ours) R→R 99.5±0.1 99.0±0.0 99.8±0.0

Adaptiope (ours) S→S 99.6±0.1 99.9±0.1 99.9±0.1

Table 6: Upper bound accuracy (in %) for different back-

bones and datasets. Note that these are not domain adapta-

tion tasks but instead proxy measures for dataset cleanness.

(55,388 images) but can be fitted by all three models – un-

like the real domain. Furthermore, not even a large architec-

ture such as ResNet-101 with 42M parameters can success-

fully fit the real domain of VisDA 2017. Instead, these re-

sults are caused by the inherent annotation and image qual-

ity problems discussed in Section 3, once again confirming

the need for clean UDA datasets such as Adaptiope.

6. Conclusion

In this paper, we analyze commonly used image classi-

fication datasets for unsupervised domain adaptation. We

find systematic problems w.r.t. data and annotation quality

in the most popular Office-31 dataset and undertake a clean-

ing effort following key insights gained from our analysis.

We quantify the negative influence of the problematic Ama-

zon domain in Office-31 with the help of our proposed Re-

furbished Office-31 dataset. Our results indicate that prior

research was limited by poor annotation quality and evalu-

ation results strongly improve when correcting label errors

and noisy images. Following these insights, we propose our

novel Modern Office-31 and Adaptiope datasets in order to

provide a better benchmarking opportunity and new chal-

lenge for UDA algorithms. Both proposed datasets are pub-

licly available to enable further research on the challenging

synthetic to real domain adaptation task.
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